US2105220A - Ferrous metal - Google Patents

Ferrous metal Download PDF

Info

Publication number
US2105220A
US2105220A US25418A US2541835A US2105220A US 2105220 A US2105220 A US 2105220A US 25418 A US25418 A US 25418A US 2541835 A US2541835 A US 2541835A US 2105220 A US2105220 A US 2105220A
Authority
US
United States
Prior art keywords
iron
metal
alloy
cast iron
white cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US25418A
Inventor
Carl F Lauenstein
Clarence J Brinkworth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Link Belt Co
Original Assignee
Link Belt Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Link Belt Co filed Critical Link Belt Co
Priority to US25418A priority Critical patent/US2105220A/en
Priority to US184341A priority patent/US2192645A/en
Application granted granted Critical
Publication of US2105220A publication Critical patent/US2105220A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Definitions

  • This invention relates to a ferrous alloy and to the process of producing and heat treating said alloy.
  • an ailoy which in one form is generally similar to white cast iron but which has increased wear resistant properties. It may also have increased hardness. Another object is to provide a method of making the alloy. A still further object is to provide a method of heat treating the alloy to increase its hardness and to increase its abrasion resistant qualities.
  • the balance of the metal is substantiallyiron.
  • white cast iron has a composition within the limits .5% to 2.0% silicon; .18% to .70% manganese; 1.5% to 3.5% carbon; .05% to .3% phosphorus; up to about 2% sulphur and the balance iron.
  • white cast iron consists of grains of pearlite or sorbitic pearlite embedded in a cementite matrix the mass of metal including the above materials listed in the analysis. Ordinarily the hardness of white cast iron varies from 350 to 420 Brinell.
  • the material of the present invention has basically an analysis typical of white cast iron, but has alloying materials in addition.
  • it may contain one or more of the metals below listed:
  • the alloy of the present invention While carbon is normally present in the analysis of white cast iron, for .certain purposes the alloy of the present invention has added to it carbon above that normally present in the metal in quantities varying from .05 per cent to 1.5 per cent, so that carbon, in additional quantities, 5 when added to that normally present in the iron, is to be considered as an alloying substance in addition to the four above listed, and the alloy of the present invention thus. comprises a metal having an analysis basically that of white cast iron to which has been added an additional quantity of carbon with or without a suitable quantity of chromium, manganese, bolybdenum or vanadium, or suitable uantities of any number of these alloying substances.
  • One manner of producing the metal is to melt the iron in the usual way, in an air furnace, cupola, electric furnace or any other suitable furnace.
  • the charge consisting of sprue, pig iron and scrap, according to the usual well known methods of producing such material. After it 20 has been melted and refined to the point where it is ready for pouring the desired alloy or alloys, generally in the form of ferro chromium, ferro manganese, ferro molybdenum or ferro vanadium, are added and the iron is poured into 25 the molds.
  • carbon is to be added above that normally present in the metal, while it may be added in any suitable form, for most purposes it is convenient to add it as coke.
  • the alloying material instead of being added to the melted metal may, where it is desirable, be charged into the melting furnace with the other elements of the charge.
  • chromium may be added, usually in quantities from .5% to 4.0% and further carbon may be added in addition to that'already present in the metal in quantities from .05% to 1.5%. Generally if chromium is to' be added it is added in the 40 form of ferro chromium within the proportions indicated.
  • This heat treatment in general includes the heating of alloy white cast iron to a point above the critical temperature and then quenching it.
  • a typical heat treatment of the alloy metal in cludes' the following steps:
  • the alloy iron is heated to a temperature between l450 and 1650, preferably to approximately 1550";
  • the hardness of the metal is between 750 and 800 Brinell. Should it be desired to reduce the brittleness and strains of the quenched material, the metal may then be drawn.
  • the cementite of the alloyed metal without the heat treatment, due to the higher carbon and alloy content, is harder than the cementite of ordinary white iron.
  • Chemically cementite is Fe C, or iron carbide.
  • the chromium forms with the iron and carbon a double carbide of iron and chromium which is harder than the ordinary unalloyed iron carbide.
  • the pearlite or sorbitic pearlite is substantially the same as that of ordinary white iron except that it contains a portion of the alloying element.
  • this pearlite is transformed to martensite which is the hardest form of iron carbide,
  • this martensite is harder than the typical or unalloyed martensite.
  • the material resulting from the alloying and the heat treatment consists of alloy cementite and alloy martensite, both harder than unalloyed cementite and unalloyed martensite, and the relative amount of the cementite area with respect to that normally present in white cast iron has been increased by increasing the carbon content. The result is an extremely hard and wear resistant metal.
  • this metal are such that the usual annealing cycle applied to white iron to graphitize it and to form malleable iron does not affect it, and thus in the cast form the alloyed and heat treated metal of this invention will not be annealed if passed through the normal malleableizing cycle and a prolonged heating, followed by a slow cooling, does not materially alter the relative proportions or physical properties of the constituents.
  • This feature is of advantage because it makes possible the use of inserts of the hard material of the present invention in chain links and other parts otherwise made of ordinary white cast iron.
  • a composite unit may be made with wearing parts of metal of the present invention or other parts of cast iron and the composite unit may be subjected to an annealing or malleableizing treatment and after this treatment the white cast iron parts are found to be properly malleableized while the harder inserts are to all intents and purposes unchanged in their chemical composition and in their physical prop-' erties and this composite unit, after the malleableizing cycle, may be given other suitable heat treatments still without changing the chemical constituents and the physical properties of the hard insert made according to the analysis and the process of the present invention.
  • the metal of the present invention may involve an alloy such as chromium, and may also involve carbon with the chromium. It is to be understood that any of the alloying substances mentioned may be associated in a single metal. Thus the metal might have all, or one of them, or any number of them, ordinarily within the proportions ndicated, and a metal having any of the alloys or all of them or any number of them may be used without subsequent heat treatment where extreme hardness and extreme abrasion resistant qualities are not necessary, or any such metal may be heat treated where it is desirable to increase the hardness and the abrasion resistant qualities.
  • the invention thus contemplates among other features the production of an iron alloy metal which, while having generally the analysis of white cast iron, has added to it one or more alloying substances in addition to those normally present in the iron, and which metal may or may not be heat treated subsequent to its formation.
  • carbon and manganese are ordinarily present in white cast iron and when reference is made herein to the addition of carbon and manganese to the'metal, it is meant that carbon or manganese, or both, are added in addition to the carbon or manganese normally present in white cast iron.
  • the invention also includes the method of heat treating the alloy metal, whatever its analysis, as
  • the alloying substances above set out which are. added to the white cast iron to produce the metal of the present invention, have an important property in common, namely, that when alloyed with iron they form carbides'and for that reason they may be referred to as of "the carbide forming group of alloys.
  • the carbide forming group of alloys When alloyed with iron it is found that each of them forms an iron carbide and whether or not it is present elsewhere in the mass of metal, it is present in combination with carbon and in the form of iron carbide within the metal.
  • a white cast iron alloy which by reason of the alloying material present in it has a hardness and an abrasion resistance greater than that of ordinary white cast iron.
  • a product produced by our heat treating method as a result of which the alloy white cast iron is given through heat treating a hardness and a degree of abrasion resistance greater than that which it has prior to the heat treatment.
  • the alloy white cast iron without heat treatment has a Brinell cast alloy white iron and less than that of the heat treated alloy. This is obtained by casting the alloy metal against a chilled surface and the metal so cast has a Brinell hardness of from 470 to 520.
  • the alloy thus produced has therefore without additional heat treatment a hardness greater than that of the sand, cast alloy. If it is desired, such chill cast metal may be subsequently treated according to the treatment above outlined and its hardness after heat treatment will be approximately the same as that of the heat treated sand cast metal.
  • cooling in air, oil, Water or other suitable cooling means is meant and the expression is therefore not limited to any specific cooling medium.

Description

Patented Jan. 11, 1938 0 FERROUS METAL Carl F. Lauenstcin and Clarence J. Brinkworth, Indianapolis, Ind., assignors to Link-Belt Company, Chicago, 111., a corporation of Illinois No Drawing.
Application June '7, 1935,
Serial No. 25,418
5 Claims.
This invention relates to a ferrous alloy and to the process of producing and heat treating said alloy.
It has for one object to provide an ailoy which in one form is generally similar to white cast iron but which has increased wear resistant properties. It may also have increased hardness. Another object is to provide a method of making the alloy. A still further object is to provide a method of heat treating the alloy to increase its hardness and to increase its abrasion resistant qualities.
Other objects will appear from time to time in the specification and claims.
Ordinary white cast iron is well known to have moderately good wear resistant qualities. The material of the present invention has better wear resistant qualities than those of white cast iron.
An average chemical analysis of commercial white cast iron is as follows:
The balance of the metal is substantiallyiron.
v While the analysis above given is an average analysis, of white cast iron, and while the analysis of white cast iron may vary considerably,
in a general way white cast iron has a composition within the limits .5% to 2.0% silicon; .18% to .70% manganese; 1.5% to 3.5% carbon; .05% to .3% phosphorus; up to about 2% sulphur and the balance iron.
structurally white cast iron consists of grains of pearlite or sorbitic pearlite embedded in a cementite matrix the mass of metal including the above materials listed in the analysis. Ordinarily the hardness of white cast iron varies from 350 to 420 Brinell.
The material of the present invention has basically an analysis typical of white cast iron, but has alloying materials in addition. For example, it may contain one or more of the metals below listed:
Per cent Chromium .5 to 4.0 Manganese .50 to 6.00 Molybdenum .30 to 4.00 Vanadium .20 to 3.00
While carbon is normally present in the analysis of white cast iron, for .certain purposes the alloy of the present invention has added to it carbon above that normally present in the metal in quantities varying from .05 per cent to 1.5 per cent, so that carbon, in additional quantities, 5 when added to that normally present in the iron, is to be considered as an alloying substance in addition to the four above listed, and the alloy of the present invention thus. comprises a metal having an analysis basically that of white cast iron to which has been added an additional quantity of carbon with or without a suitable quantity of chromium, manganese, bolybdenum or vanadium, or suitable uantities of any number of these alloying substances.
One manner of producing the metal is to melt the iron in the usual way, in an air furnace, cupola, electric furnace or any other suitable furnace. The charge consisting of sprue, pig iron and scrap, according to the usual well known methods of producing such material. After it 20 has been melted and refined to the point where it is ready for pouring the desired alloy or alloys, generally in the form of ferro chromium, ferro manganese, ferro molybdenum or ferro vanadium, are added and the iron is poured into 25 the molds. If carbon is to be added above that normally present in the metal, while it may be added in any suitable form, for most purposes it is convenient to add it as coke. The alloying material, instead of being added to the melted metal may, where it is desirable, be charged into the melting furnace with the other elements of the charge.
As one example of analloying material chromium may be added, usually in quantities from .5% to 4.0% and further carbon may be added in addition to that'already present in the metal in quantities from .05% to 1.5%. Generally if chromium is to' be added it is added in the 40 form of ferro chromium within the proportions indicated.
An alloy made according to our invention and containing 1.5% chromium and 2.70% carbon, but with an analysis otherwise substantially that outlined above, will have an increased Brinell ,hardness of from 420 to 470. It is thus harder than ordinary white cast iron and its abrasion relsistant qualities are substantially increased. For certain purposes this alloy, without fluther treatment, is usable since it is distinctly superior both in hardness and in abrasion resistant qualities to ordinary white cast iron.
Where it is desired to increase the abrasion resistant qualities above that just indicated in the untreated metal, a special heat treatment is given. This heat treatment in general includes the heating of alloy white cast iron to a point above the critical temperature and then quenching it.
A typical heat treatment of the alloy metal in cludes' the following steps:
(1) The alloy iron is heated to a temperature between l450 and 1650, preferably to approximately 1550";
(2) The metal is held at this temperature for about one-half hour;
(3) It is then quenched in oil.
After the heat treatment just outlined the hardness of the metal is between 750 and 800 Brinell. Should it be desired to reduce the brittleness and strains of the quenched material, the metal may then be drawn.
A microscopic study of the metal shows that after the heat treatment the material consists largely of grains of martensite embedded in cementite. It is very hard and is less brittle than the original white iron before treatment.
The cementite of the alloyed metal without the heat treatment, due to the higher carbon and alloy content, is harder than the cementite of ordinary white iron. Chemically cementite is Fe C, or iron carbide. In the alloyed metal of this invention the chromium forms with the iron and carbon a double carbide of iron and chromium which is harder than the ordinary unalloyed iron carbide.
Also, due to the fact that the carbon in the iron has been increased by the addition of coke or some other source, there is present in the body of metal more carbon available for carbide or cementite formation, and there is thus a larger amount of cementite or hard constituent present in the metal than is ordinarily present in white cast iron.
In the alloy of this invention, before heat treatment, the pearlite or sorbitic pearlite is substantially the same as that of ordinary white iron except that it contains a portion of the alloying element. As a result of the heat treatment at temperatures above the critical temperature, and the quenching, this pearlite is transformed to martensite which is the hardest form of iron carbide,
and because of the chromium present in the alloy this martensite is harder than the typical or unalloyed martensite.
The material resulting from the alloying and the heat treatment consists of alloy cementite and alloy martensite, both harder than unalloyed cementite and unalloyed martensite, and the relative amount of the cementite area with respect to that normally present in white cast iron has been increased by increasing the carbon content. The result is an extremely hard and wear resistant metal.
The properties of this metal are such that the usual annealing cycle applied to white iron to graphitize it and to form malleable iron does not affect it, and thus in the cast form the alloyed and heat treated metal of this invention will not be annealed if passed through the normal malleableizing cycle and a prolonged heating, followed by a slow cooling, does not materially alter the relative proportions or physical properties of the constituents. This feature is of advantage because it makes possible the use of inserts of the hard material of the present invention in chain links and other parts otherwise made of ordinary white cast iron. Thus a composite unit may be made with wearing parts of metal of the present invention or other parts of cast iron and the composite unit may be subjected to an annealing or malleableizing treatment and after this treatment the white cast iron parts are found to be properly malleableized while the harder inserts are to all intents and purposes unchanged in their chemical composition and in their physical prop-' erties and this composite unit, after the malleableizing cycle, may be given other suitable heat treatments still without changing the chemical constituents and the physical properties of the hard insert made according to the analysis and the process of the present invention.
It has been stated above that the metal of the present invention may involve an alloy such as chromium, and may also involve carbon with the chromium. It is to be understood that any of the alloying substances mentioned may be associated in a single metal. Thus the metal might have all, or one of them, or any number of them, ordinarily within the proportions ndicated, and a metal having any of the alloys or all of them or any number of them may be used without subsequent heat treatment where extreme hardness and extreme abrasion resistant qualities are not necessary, or any such metal may be heat treated where it is desirable to increase the hardness and the abrasion resistant qualities. The invention thus contemplates among other features the production of an iron alloy metal which, while having generally the analysis of white cast iron, has added to it one or more alloying substances in addition to those normally present in the iron, and which metal may or may not be heat treated subsequent to its formation. It is to be noted that carbon and manganese are ordinarily present in white cast iron and when reference is made herein to the addition of carbon and manganese to the'metal, it is meant that carbon or manganese, or both, are added in addition to the carbon or manganese normally present in white cast iron.
The invention also includes the method of heat treating the alloy metal, whatever its analysis, as
above pointed out, as well as the steps of that method.
The alloying substances above set out, which are. added to the white cast iron to produce the metal of the present invention, have an important property in common, namely, that when alloyed with iron they form carbides'and for that reason they may be referred to as of "the carbide forming group of alloys. When alloyed with iron it is found that each of them forms an iron carbide and whether or not it is present elsewhere in the mass of metal, it is present in combination with carbon and in the form of iron carbide within the metal.
We have thus far described a white cast iron alloy which by reason of the alloying material present in it has a hardness and an abrasion resistance greater than that of ordinary white cast iron. We have also described a product produced by our heat treating method as a result of which the alloy white cast iron is given through heat treating a hardness and a degree of abrasion resistance greater than that which it has prior to the heat treatment. The alloy white cast iron without heat treatment has a Brinell cast alloy white iron and less than that of the heat treated alloy. This is obtained by casting the alloy metal against a chilled surface and the metal so cast has a Brinell hardness of from 470 to 520. The alloy thus produced has therefore without additional heat treatment a hardness greater than that of the sand, cast alloy. If it is desired, such chill cast metal may be subsequently treated according to the treatment above outlined and its hardness after heat treatment will be approximately the same as that of the heat treated sand cast metal.
-Where the expression quenching is used, cooling in air, oil, Water or other suitable cooling means is meant and the expression is therefore not limited to any specific cooling medium.
We claim:
1. The process of 'heat treating white cast iron which iron includes an alloying element of the carbide forming group of elements consisting of manganese, molybdenum, chromium and vanadium and is substantially free from ferrite, which process includes the steps of heating the iron to a temperature above the critical temperature, holding it at that temperature approximately one half hour and quenching it.
2. The process of heat treating white cast iron which iron includes an alloying element of the carbide forming group of elements consisting of manganese, molybdenum, chromium and vanadium and is substantially free from ferrite, which process includes the steps of heating the ,iron to a temperature above the critical temperature, holding it at that temperature approximately one half hour and quenching it, and reheating it to a temperature below the critical tempera- 4. The process of heat treating white cast iron which iron includes an alloying element consisting of molybdenum, and is substantially free from ferrite, and containing carbon in quantities varying from 1.50 to 4.0 per cent, which process includes the steps of heating the iron to a temperature above the critical temperature, holding it at that temperature approximately onehalf hour and quenching it.
5. The process of heat treating white cast iron which iron includes an alloying element consisting of chromium and is substantially free from ferrite, and containing carbon in quantities varying from 1.50 to 4.0 per cent, which process includes the steps, of heating the iron to a temperature above the critical temperature, holding it at that temperature approximately one-half hour and quenching it.
CARL F. LAUENSTEIN. CLARENCE J. BRINKWORTH.
US25418A 1935-06-07 1935-06-07 Ferrous metal Expired - Lifetime US2105220A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US25418A US2105220A (en) 1935-06-07 1935-06-07 Ferrous metal
US184341A US2192645A (en) 1935-06-07 1938-01-10 Ferrous metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US25418A US2105220A (en) 1935-06-07 1935-06-07 Ferrous metal

Publications (1)

Publication Number Publication Date
US2105220A true US2105220A (en) 1938-01-11

Family

ID=21825931

Family Applications (1)

Application Number Title Priority Date Filing Date
US25418A Expired - Lifetime US2105220A (en) 1935-06-07 1935-06-07 Ferrous metal

Country Status (1)

Country Link
US (1) US2105220A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE745810C (en) * 1939-06-24 1944-12-06 Manufacture of hot rolls
DE751492C (en) * 1940-06-22 1953-10-26 Krupp Fried Grusonwerk Ag Manufacture of hot rolls
DE751491C (en) * 1939-07-07 1953-10-26 Krupp Fried Grusonwerk Ag Manufacture of hot rolls
US3095300A (en) * 1961-02-24 1963-06-25 Meehanite Metal Corp Air hardening cast iron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE745810C (en) * 1939-06-24 1944-12-06 Manufacture of hot rolls
DE751491C (en) * 1939-07-07 1953-10-26 Krupp Fried Grusonwerk Ag Manufacture of hot rolls
DE751492C (en) * 1940-06-22 1953-10-26 Krupp Fried Grusonwerk Ag Manufacture of hot rolls
US3095300A (en) * 1961-02-24 1963-06-25 Meehanite Metal Corp Air hardening cast iron

Similar Documents

Publication Publication Date Title
US2485761A (en) Gray cast iron having improved properties
US4596606A (en) Method of making CG iron
US1973263A (en) Method of producing pearlitic cast iron
US3485683A (en) Method of heat treating a ductile austenitic ductile iron casting including refrigeration treatment and article produced thereby
US2105220A (en) Ferrous metal
US2413602A (en) Bearing steels
KR910003481B1 (en) Pig iron for the manufacture of brake bodies
US2370225A (en) Malleable iron
US3565698A (en) Fast-annealing malleable cast iron method
US2192645A (en) Ferrous metal
US2749238A (en) Method for producing cast ferrous alloy
US2610912A (en) Steel-like alloy containing spheroidal graphite
US5034069A (en) Low white cast iron grinding slug
US1984458A (en) Cast iron alloy articles
CN105714182B (en) A kind of high tenacity is containing high boron cast iron of aluminium and preparation method thereof
US2501059A (en) Manufacture of black-heart malleable cast iron
US2885284A (en) Ferrous alloy
US2368418A (en) Heat treatment for steel alloys
US3518128A (en) Process for manufacturing high-strength,wear-resistant piston rings
US1211826A (en) Iron alloy.
US2008452A (en) Heat treated cast iron and process of producing the same
US921924A (en) Ballistic plate.
US2174282A (en) Ferrous alloy
US2519627A (en) Graphitic steel of controllable hardenability and article made therefrom
US2835619A (en) Method of heat treating cast iron