US1885429A - Magnesium base alloys - Google Patents
Magnesium base alloys Download PDFInfo
- Publication number
- US1885429A US1885429A US590307A US59030732A US1885429A US 1885429 A US1885429 A US 1885429A US 590307 A US590307 A US 590307A US 59030732 A US59030732 A US 59030732A US 1885429 A US1885429 A US 1885429A
- Authority
- US
- United States
- Prior art keywords
- magnesium
- alloys
- per cent
- tin
- cadmium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title description 25
- 229910052749 magnesium Inorganic materials 0.000 title description 25
- 239000011777 magnesium Substances 0.000 title description 25
- 229910045601 alloy Inorganic materials 0.000 title description 23
- 239000000956 alloy Substances 0.000 title description 23
- 229910052793 cadmium Inorganic materials 0.000 description 17
- 229940044194 cadmium Drugs 0.000 description 17
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 17
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 15
- 229910052718 tin Inorganic materials 0.000 description 15
- 229910002058 ternary alloy Inorganic materials 0.000 description 7
- 229910002056 binary alloy Inorganic materials 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- -1 magnesium-cadmium-tin Chemical compound 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- RRXGIIMOBNNXDK-UHFFFAOYSA-N [Mg].[Sn] Chemical compound [Mg].[Sn] RRXGIIMOBNNXDK-UHFFFAOYSA-N 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- WZGKIRHYWDCEKP-UHFFFAOYSA-N cadmium magnesium Chemical compound [Mg].[Cd] WZGKIRHYWDCEKP-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
Definitions
- the present invention relates to improved light weight alloys in which magnesium is the predominating constituent.
- One object of our invention is to produce magnesium base alloys having a combination of high tensile strength and other mechanical properties with a good resistance to corrosion. Other objects and advantages will appear as the description proceeds.
- the commercial. ternary alloys of magnesium developed up to the present time contain at least one of the metals aluminum, manganese, or zinc as an essential alloying ingredient, and as far as we are aware no one has produced or investigated ternary magnesium ase alloys which do not contain these metals.
- ternary alloys can be made from magnesium by adding thereto both cadmium and tin in relatively small amounts. These alloys have many valuable properties, including the characteristic low specific gravity approaching that of magnesium, which are not only superior to either of the parent binary alloys, e. g. magnesium-cadmium or magnesium-tin, but also in some respects to the ternary alloys having a small percentage of at least one of the metals aluminum, manganese, or zinc as an essential alloying ingredient.
- the alloys which are the subject of our invention contain the three metals magnesium, cadmium, and tin, wherein the magnesium content is in excess of about 75 per cent.
- These new alloys may be cast, rolled, extruded or otherwise wrought into shape according to the known methods for working magnesium base alloys. Heat treatments known to those skilled in the art of treating magnesium alloys may be applied effectively to these alloys.
- the tensile strength of extruded samples of the known binary magnesium-cadmium alloys containing from 1 to 8 per cent cadmium is approximately 31,000 to 34,000 lbs. /sq. in. and that of the known binary magnesium-tin alloys containing from 1 to 8 per cent of tin ranges from 31,000 to 33,000
- magnesium-tin binary alloys (defined as the load in lbs/sq. in. at which the stress-strain curve deviates 0.1 per cent elonation from the modulus line) range from 15,000 to 17 ,500 lbs. /sq. in.forthe magnesiumcadmium binary alloys, and those for the magnesium-tin binary alloys range from 14,000 to 19,000 lbs/sq. in.
- Alloys suitable for hammer forging may have a cadmium content preferably of about 2 per cent, while the tin content may be from 4 to 8 per cent, the balance being magnesium. If the alloys are to be press-forged, rolled, or extruded, more cadmium may be introduced and satisfactory alloys for these methods or working may have a cadmium content lying between 1 and 8 per cent. For good casting alloys the cadmium content may be further increased, but not more than 12 per cent nor under 0.5 per cent ispreferably employed; the tin content at the same time may vary from 0.5 to 12 per cent. In some cases the cadmium content of the alloys may exceed that of tin for certain types of forging operations, and for casting such alloys the proportions for tin may be from 8 to 10 per cent and those for cadmium from 4 to 8 per cent.
- These alloys may be prepared by the known metallurgical methods for melting and alloying magnesium.
- a magnesium base alloy consisting of from 0.5 to 12 per cent of cadmium and from 0.5 to 12 per cent of tin, the balance being magnesium.
- a magnesium base alloy consisting of from 1 to 4 per cent of cad-- mium and from 1 to 8 per cent of tin, the balance being magnesium.
- a magnesium base allo consisting of approximately 2 per cent 0 cadmium and from 4 to 8 per cent of tin, the balance being magnesium.
- a magnesiumbase alloy containing from 4 to 12 per cent of cadmium and from 0.5 to 12 per cent of tin, the balance being substantially magnesium.
- a magnesium base alloy containing from 4 to 8 per cent of cadmium and from 8 to 10 per cent of tin, the balance being substantially magnesium.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Patented Nov. 1, 1932 UNITED STATES PATENT OFFICE JOHN A. GANN Am) FRED L. REYNOLDS, OF MIDLAND, MICHIGAN, ASSIGNOBS TO THE DOW CHEMICAL COMPANY, OF MIDLAND, MICHIGAN, A CORPORATION OF MICHIGAN MAGNESIUM BASE ALLOYS No Drawing.
The present invention relates to improved light weight alloys in which magnesium is the predominating constituent. One object of our invention is to produce magnesium base alloys having a combination of high tensile strength and other mechanical properties with a good resistance to corrosion. Other objects and advantages will appear as the description proceeds.
The commercial. ternary alloys of magnesium developed up to the present time contain at least one of the metals aluminum, manganese, or zinc as an essential alloying ingredient, and as far as we are aware no one has produced or investigated ternary magnesium ase alloys which do not contain these metals.
We have discovered that highly desirable and useful ternary alloys can be made from magnesium by adding thereto both cadmium and tin in relatively small amounts. These alloys have many valuable properties, including the characteristic low specific gravity approaching that of magnesium, which are not only superior to either of the parent binary alloys, e. g. magnesium-cadmium or magnesium-tin, but also in some respects to the ternary alloys having a small percentage of at least one of the metals aluminum, manganese, or zinc as an essential alloying ingredient.
Accordingly, the alloys which are the subject of our invention contain the three metals magnesium, cadmium, and tin, wherein the magnesium content is in excess of about 75 per cent.
These new alloys may be cast, rolled, extruded or otherwise wrought into shape according to the known methods for working magnesium base alloys. Heat treatments known to those skilled in the art of treating magnesium alloys may be applied effectively to these alloys.
The tensile strength of extruded samples of the known binary magnesium-cadmium alloys containing from 1 to 8 per cent cadmium is approximately 31,000 to 34,000 lbs. /sq. in. and that of the known binary magnesium-tin alloys containing from 1 to 8 per cent of tin ranges from 31,000 to 33,000
lbs/sq. in. The corresponding yield points Application filed February 1, 1932. Serial No. 590,301.
(defined as the load in lbs/sq. in. at which the stress-strain curve deviates 0.1 per cent elonation from the modulus line) range from 15,000 to 17 ,500 lbs. /sq. in.forthe magnesiumcadmium binary alloys, and those for the magnesium-tin binary alloys range from 14,000 to 19,000 lbs/sq. in.
The increase in tensile strength and yield point of our new improved ternary alloys is shown by comparing the above values for the parent binary alloys with the corresponding ternary alloys which are specific examples of the alloys coming within the scope of our invention. These alloys, in the extruded condition, have a tensile strength offrom about 31,000 to 38,000 lbs/sq. in. for a given cadmium content between 1 and 4 per cent and a tin content of from 1 to 8 per cent, the balance being substantially magnesium. The yield points corresponding to these compositions vary from 15,000 to 27,000 lbs/sq. in. Thus a marked improvement in. tensile strength and yield point may be obtained over the known binary alloys above mentioned by employing the ternary combination magnesium-cadmium-tin with amounts of tin and cadmium within the limits indicated.
On testing the corrosion resistance of the magnesium-cadmium-tin ternary alloys coming within the scope of this invention by the well known alternate immersion test, we have found as much as 20 times greater resistance to corrosion in 3 per cent salt solution than is exhibited by the well known aluminum containing ternary alloys, such as magnesium-aluminum-cadmium, magnesium-aluminum-tin, and magnesium aluminum zinc, wherein magnesium is present in predominating amount.
Alloys suitable for hammer forging may have a cadmium content preferably of about 2 per cent, while the tin content may be from 4 to 8 per cent, the balance being magnesium. If the alloys are to be press-forged, rolled, or extruded, more cadmium may be introduced and satisfactory alloys for these methods or working may have a cadmium content lying between 1 and 8 per cent. For good casting alloys the cadmium content may be further increased, but not more than 12 per cent nor under 0.5 per cent ispreferably employed; the tin content at the same time may vary from 0.5 to 12 per cent. In some cases the cadmium content of the alloys may exceed that of tin for certain types of forging operations, and for casting such alloys the proportions for tin may be from 8 to 10 per cent and those for cadmium from 4 to 8 per cent.
These alloys may be prepared by the known metallurgical methods for melting and alloying magnesium.
Other modes of applying the principle of our invention may be employed instead of the one explained, change being made as regards the proportions of the ingredients employed within the limits specified, provided the ingredients stated by any of the following claims or the equivalent of such stated ingredients be employed.
We therefore particularly point out and distinctly claim as our invention 1. As a new product, a magnesium base alloy consisting of from 0.5 to 12 per cent of cadmium and from 0.5 to 12 per cent of tin, the balance being magnesium.
2. As a new product, a magnesium base alloy consisting of from 1 to 4 per cent of cad-- mium and from 1 to 8 per cent of tin, the balance being magnesium.
3. As a new product, a magnesium base allo consisting of approximately 2 per cent 0 cadmium and from 4 to 8 per cent of tin, the balance being magnesium.
4. As a new product, a magnesiumbase alloy containing from 4 to 12 per cent of cadmium and from 0.5 to 12 per cent of tin, the balance being substantially magnesium.
5. As a new product, a magnesium base alloy containing from 4 to 8 per cent of cadmium and from 8 to 10 per cent of tin, the balance being substantially magnesium.
6. As a new product, a ternary magnesiumcadmium-tin alloy wherein the amount of magnesium varies from 84 to 95 per cent, the cadmium from 1 to 8 per cent and the tin from 4 to 8 per cent.
Signed by us this 28 day of January, 1932.
JOHN A. GANN.
FRED L. REYNOLDS.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US590307A US1885429A (en) | 1932-02-01 | 1932-02-01 | Magnesium base alloys |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US590307A US1885429A (en) | 1932-02-01 | 1932-02-01 | Magnesium base alloys |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US1885429A true US1885429A (en) | 1932-11-01 |
Family
ID=24361724
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US590307A Expired - Lifetime US1885429A (en) | 1932-02-01 | 1932-02-01 | Magnesium base alloys |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US1885429A (en) |
-
1932
- 1932-02-01 US US590307A patent/US1885429A/en not_active Expired - Lifetime
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4239535A (en) | Magnesium alloys | |
| US3567436A (en) | Compression resistant zinc base alloy | |
| US1880614A (en) | Magnesium alloy | |
| US3892565A (en) | Magnesium alloy for die casting | |
| US1885429A (en) | Magnesium base alloys | |
| US2317980A (en) | Magnesium-base alloy | |
| US2000115A (en) | Alloy | |
| US3067028A (en) | Mg-si-zn extrusion alloy | |
| US1933390A (en) | Copper zinc silicon alloys | |
| US1886251A (en) | Magnesium-manganese-zinc alloys | |
| US1932848A (en) | Aluminum alloys | |
| US1910431A (en) | Magnesium base alloys | |
| US2085416A (en) | High strength brass | |
| US1918260A (en) | Magnesium base alloy | |
| US2305825A (en) | Magnesium alloy | |
| US3508916A (en) | Cu base die casting alloy | |
| US2178580A (en) | Magnesium alloy | |
| JPH0649572A (en) | High strength zinc alloy for die casting and zinc alloy die-cast parts | |
| US2178577A (en) | Magnesium base alloy | |
| US2233953A (en) | Magnesium base alloy | |
| US2279712A (en) | Magnesium base alloy | |
| US2376868A (en) | Magnesium alloy | |
| US2178579A (en) | Magnesium alloy | |
| US3634076A (en) | Die-casting alloy compositions | |
| US2178575A (en) | Magnesium base alloy |