US1857655A - Process of preparing secondary and tertiary aliphatic amines from primary aliphatic bases - Google Patents

Process of preparing secondary and tertiary aliphatic amines from primary aliphatic bases Download PDF

Info

Publication number
US1857655A
US1857655A US408154A US40815429A US1857655A US 1857655 A US1857655 A US 1857655A US 408154 A US408154 A US 408154A US 40815429 A US40815429 A US 40815429A US 1857655 A US1857655 A US 1857655A
Authority
US
United States
Prior art keywords
bases
primary
aliphatic
tertiary
amines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US408154A
Inventor
Nicodemus Otto
Schmidt Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IG Farbenindustrie AG
Original Assignee
IG Farbenindustrie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IG Farbenindustrie AG filed Critical IG Farbenindustrie AG
Application granted granted Critical
Publication of US1857655A publication Critical patent/US1857655A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/64Preparation of compounds containing amino groups bound to a carbon skeleton by disproportionation

Definitions

  • the present invention relates to process of preparing secondary and tertiary aliphatic amines from primary aliphatic bases.
  • the preferred mode of operating consists in passing the aliphatic primary base, such as for instance methylamine, ethylamine or butylamine, in gaseous state over a metal which is known to be a hydrogenating catalyst, the metal being in a finely subdivided form, advantageously carried on a porous material and heated, according to the character of the metal, to a temperature of between 150 C. and 280 C.
  • a metal which is known to be a hydrogenating catalyst
  • the metal being in a finely subdivided form, advantageously carried on a porous material and heated, according to the character of the metal, to a temperature of between 150 C. and 280 C.
  • From the product secondary and tertiary aliphatic amines are obtained besides ammonia;-whether the secondary amines or the tertiary amines are produced in the larger or predominating proportion depends mainly on gaseous current.
  • the crude product condensed at the higher temperature consists of, -per cent. of diethylamine and 28 per cent. of triethylamine, the rest being condensation prod ucts of higher boiling point;
  • Vapor of eth lamine is'passed at a temperature between 220 C. and 280 C. over a contact made by subjecting cobalt carbonate carried on pumice stone to reduction by a current of hydrogen, the velocity being such that 65 per cent. of the vapor is converted.
  • a condensate is obtained which contains 78 per cent. of diethylamine and 20 per cent. of tri-ethylamlne- By fractionating the condensate strength can easily be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

Patented May 10, 1932 OTTO NICODEMUS AND WALTER soHMIn'r, or; renewomemmamm-aocesw;
GERMANY, ASSIGNORS TO I. G. FABBENINDUSTBIE axrrmveesntnscnarn: or.
FBANKFORT-ON-THE-MAIN, GERMANY, A conrona'rroiv onennrranr W I rnoonss or PREPARING snconnnmr AND TERTIARY Amefia'ric'iinmnsritoilt PRIMARY anrrna'rro BASES v v No Drawing. Application filed November 18, 1929, Serial No. 408,154, and ii Germany Noven'mer 27,1928. I
The present invention relates to process of preparing secondary and tertiary aliphatic amines from primary aliphatic bases.
The manufacture of secondary aliphatic bases from primary amines by catalytic elimination of ammonia in the gaseous phase has already often been the subject of investigations. These trials have, however, not led to the desired result because the elimination of ammonia was always accompanied by a dehydrogenation of the aliphatic bases and with a decomposition of the products of dehydrogenation.
We have now found that primary aliphatic amines in the gaseous phase can be converted catalytically in an easy manner, with elimination of ammonia, into secondary and tertiary bases without accompanying decomposition into hydrocarbons or dehydrogenation to nitriles, if case is taken that the working temperatures are below 300 C. As suitable catalysts for this purpose are the metals which are known to have hydrogenating 0r clehydrogenating action, stance, copper, cobalt, nickel or platinum. According to the character of the metal used the temperature at which the desired change occurs and the yield of converted primary bases vary; in most cases the temperature is about 200 C. when copper is used, it is somewhat higher, about 260 C.280 C. Only above the optimum working temperatures do the metals determine dehydrogenation and decomposition.
The preferred mode of operating consists in passing the aliphatic primary base, such as for instance methylamine, ethylamine or butylamine, in gaseous state over a metal which is known to be a hydrogenating catalyst, the metal being in a finely subdivided form, advantageously carried on a porous material and heated, according to the character of the metal, to a temperature of between 150 C. and 280 C. From the product secondary and tertiary aliphatic amines are obtained besides ammonia;-whether the secondary amines or the tertiary amines are produced in the larger or predominating proportion depends mainly on gaseous current.
such as, for in.
the velocity of the The. following examples serve to illustrate our invention, but they are'notlintendedto' limit it theretoz y i 1::fA*continuous' curr nt of ethylamine is passed at a temperature between 260 C. and 270 (1, over a contact containing about. 6 per centot' copper whichis prepared by sub- ]ecting copper carbonate carried on pumice stone to careful reduction in a current of hydrogen. The velocity of the vapor of ethylamine is regulated in such a manner that every hour 140-150 grams of the amine pass the tube filled with two liters of a catalyst of copper. The products leaving the contact are cooled in stages, the first refrigerator being kept at a temperature between 30 C. and 40 C. and thelast at -10 C. In the first refrigerator ethylamine formed are condensed, whilst the unchanged ethylamine is liquefied in the lowtemperature refrigeratorand thereby separated from the ammonia which has been formed. The unchanged .ethylamine, which amounts to about 2530 per cent. of the ethylamine used during one passage over the contact, is reconducted into the contact chamber.
The crude product condensed at the higher temperature consists of, -per cent. of diethylamine and 28 per cent. of triethylamine, the rest being condensation prod ucts of higher boiling point;
2. Vapor of eth lamine is'passed at a temperature between 220 C. and 280 C. over a contact made by subjecting cobalt carbonate carried on pumice stone to reduction by a current of hydrogen, the velocity being such that 65 per cent. of the vapor is converted. By working up the product as described above, a condensate is obtained which contains 78 per cent. of diethylamine and 20 per cent. of tri-ethylamlne- By fractionating the condensate strength can easily be obtained.
3. Vapor of normal butylamine is passed over the contact described in Example 1 so that about 70 per cent. of the butylamine is converted. The condensate obtained as described in Example 1 consists of 7 6 per cent. of dibutylamine,the rest being tributylamine diethylamine of per cent. 0
and small quantities of condensation products.
We claim: c 1. Process of preparing secondary and tertiary aliphatic amines from primary aliphatic amines, which comprises passing the vapor ofa primary aliphatic amine at a temperai ture' below 300 C. over a metal which is known to be a hydrogenating catalyst.
2. Process of preparing cliethylamine and triethylamine from ethylamine, which com- 7 prises passing the Vapor ofethylamine at a temperature below 300 C. over a metal which is known to be a hydrogenating catalyst.
3. Process of preparing diethylamine and triethylamine from ethylamine, which comprises passing the vapor of ethylamine at 260 C. to 280 C. over a catalyst of copper. In testimony whereof, we afiix our signatures.
.7 OTTO NICODEMUS. -WALTER SCHMIDT.
US408154A 1928-11-27 1929-11-18 Process of preparing secondary and tertiary aliphatic amines from primary aliphatic bases Expired - Lifetime US1857655A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1857655X 1928-11-27

Publications (1)

Publication Number Publication Date
US1857655A true US1857655A (en) 1932-05-10

Family

ID=7746311

Family Applications (1)

Application Number Title Priority Date Filing Date
US408154A Expired - Lifetime US1857655A (en) 1928-11-27 1929-11-18 Process of preparing secondary and tertiary aliphatic amines from primary aliphatic bases

Country Status (1)

Country Link
US (1) US1857655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726925A (en) * 1970-06-24 1973-04-10 Union Oil Co Preparation of trialkylamines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726925A (en) * 1970-06-24 1973-04-10 Union Oil Co Preparation of trialkylamines

Similar Documents

Publication Publication Date Title
US2234566A (en) Catalytic process for the production of caprolactam, amino-capronitrile and hexamethylene diamine
US2501509A (en) Preparation of amines
US1857655A (en) Process of preparing secondary and tertiary aliphatic amines from primary aliphatic bases
US2649472A (en) Process for producing acrylonitrile
US2357855A (en) Method for producing butadiene
US3022349A (en) Production of amines
US2614131A (en) Fluorocarbon mono-iodides and method of making
US1976265A (en) Manufacture of oxidation products of trichlorethylene
US2820058A (en) Production of ketene
GB317303A (en) Improvements in the manufacture and production of diolefines
US2564131A (en) Cyano aldehyde compound
US3092654A (en) Preparation of dicarboxylic acid nitriles
US2366464A (en) Manufacture of tetbahydbofuman
US2098592A (en) Preparation of dimethylfurane
US2143383A (en) Process for the preparation of hydroxy propanone
US2079490A (en) Maleic acid from diolefines
US3427355A (en) Process for preparing aniline and alkyl aniline
US2344258A (en) Conversion of hydrocarbons
US3278603A (en) Process for preparing aromatic amines
US1541176A (en) Process for the manufacture of styrol or its homologues
US1967430A (en) Method of producing terpenes
US2399164A (en) Dehydration process
US2599089A (en) Catalytic hydrogenolysis of cycloaliphatic alcohols, ketones, and aldehydes
US2409259A (en) Preparation of conjugated dienes
US2079580A (en) Process for the recovery of monomethyl amine