US1841983A - Electric igniter with condenser as storing device for the ignition current - Google Patents
Electric igniter with condenser as storing device for the ignition current Download PDFInfo
- Publication number
- US1841983A US1841983A US568175A US56817531A US1841983A US 1841983 A US1841983 A US 1841983A US 568175 A US568175 A US 568175A US 56817531 A US56817531 A US 56817531A US 1841983 A US1841983 A US 1841983A
- Authority
- US
- United States
- Prior art keywords
- condenser
- igniter
- ignition
- igniting
- storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C11/00—Electric fuzes
- F42C11/06—Electric fuzes with time delay by electric circuitry
Definitions
- the electric igniters or fuses which in the form of percussion, time, or double igniters for projectiles, grenades, mines, or other bodies containing percussion charges, which carry the electrical energy necessary for igniting an igniting agent stored in condensers, containtwo condensors connected in-opposition to one another and with means for the mutual variation of the voltage of their stored energies, the difference-of potential between which, which gradually increases to the magnitude'required forthe ignition voltage, is employed for igniting the igniting agent;
- time igniters also for the purpose of attaininga simple way oftimingQthe igniter is given" the necessary electrical energy only shortly before use, from a source of voltage separate therefrom and only transiently connected thereto.
- igniters for projectiles this occurs at" the instant of firing off the projectile, or during-its passage through the bore of thegun, or only upon its leaving the mouth of the bore, in the case of grenades it occurs shortly after'their release, during the falling out of the throwing device.
- both igniting condensers must be charged-and each of them requires for this purpose at least one special connecting contact element insulated withrespect to the body of the igniter, both of'which'are to be placed into contact with the poles of a source of current.
- the same condition may also arise due to breaks in the charging circuits of. the condensers during transportation, in the caseof igniters which previously have left thier points of manufacture in perfect condition.
- Percussion igniters with condenser devices of the above described type may furthermore give rise to duds, due to the fact that upon the entering of the igniter into a target the action of the material of the target upon the charging contact terminals produces a short-circuit between the two condensers, whereby the dilference of potential thereof will become equalized before the percussion contact closure can produce the ignition.
- the electrical igniter or fuse in accordance with the invention also: contains'a plurality of condensers used as storing means for the igniting currentand has the advantageous properties of the above noted-known 'igniters,
- the new igniter- has' a condenser arrangement'wherein a condenser which yields its energy as igniting currenthereinafter qejerred to as the igniting condenser-is connected to a second condenser which is chargeable by means of a source of current-- known as the storage condenserfrom which it receives its entire energy, or the partial energy still lacking for producing an ignition, by suitable means only after a cermin delay after the completion of the charg-l ing of the storage condenser.
- the source of current for providing the energy" of the condensers may be arranged in the igniters' itself and rigidly connected to the latter, preferably, however, separated in the above noted manner from the igniter,j
- An electric igniting agent 9 and a percussion closing contact 7; are connected in series acrossthe igniting condenser b.
- the electrical energy necessary for producing an ignition is obtained by the ign ter after firing-0E the projectile, upon leaving .the mouth of the gun bore, from a stationary source of current, ,whose poles are connected,
- the acceleration of the projectile ceases and the outer charging contact e of the igniter will be disconnected b the automatically opening inertia switch d from the now charged storage condenser a.
- the-storage condenser. a discharges 'densers a and b to one another.
- the voltage curves of the two condensers a and b asymptotically approach a mean end voltage E the magnitude of which depends upon the ratio of the capacities of the two con-
- the larger the capacity of the storage condenser a is chosen with respect to the capacity of the igniter condenser b, the higher will be the final voltage E as is shown by the dotted lines.
- a minimum voltage-the igniting voltage E (Fig. 1a)is necessary in the igniter' condenser b, which, measured from the instant of charging the igniter, is produced only after the lapse of a certain time It. Only after the lapse of thissafety time period will the igniter have become capable of producing ignition. At that time it will already be at such a distance'from the gun, that an ignition produced by a premature closing of the percussion contact h will be free from danger for the gun and the gun crew.
- one of the two lead wires leading to the igniting agent will be at the potential of the body by the grounding to the body of the condenser armatures 1),, a,.
- the other igniting agent wire should be injured and likewise have a ground, no danger of a premature ignition would exist at the instant of charging the igniter.
- the igniting agent is then short-circuited and solely a dud is the result.
- the percussion closing switch It isarranged between the igniting agentg and the coating 6 of the igniting condenser b which is connected to the body of the igniter c.
- a simple percussion closing switch is produced which, for example, consists of a diaphragm switch in the point of the projectile, consisting of only a single metallic diaphragm h arranged in the body of the projectile and anopposlng contact element 7L insulated with respect to the body of the igniter.
- the exemplary embodiments according to Figs. 3--5 relate to percussion igniters for hand grenades which, for example, at the instant of their release and falling-out of the throwing device are provided with the necessary electrical energy by means of a charging plug connected to a source of current of suitable voltage.
- the general structure of the igniter corresponds to that of Fig. 1.
- the igniters furthermore, however, are provided also with a device which posifively prevents the flowing of energy from the storage condenser aor from the source of current into the igniting condenser b during the time the storage condenser is connected to a source of current.
- a special switch is arranged in the circuit leading from the storage. condenser a to the-igniting condenser b.
- This consists of an intermediate contact member is which is shiftable by means of the charging plug i from one connecting position, against spr1'ng pressure into a second position, and which is insulated with respect to the body of the igniter a. In the normal position when the plug is not introduced into the igniter, the
- contact element it closes the circuit leading through theresistance f between the two condensers a and b by means of an end lug k insulated with respect to its body, and is thereby itself out of contact with the supply leads to the storage condenser a.
- the contact member When the charging plus 5 is inserted, (Fig. 3) the contact member is pushed inward to such extent that the connecting lead through the resistance f is interrupted between the two condensers a and b. Simultaneously the contact member is comes into contact with the lead to the storage condenser a, provides a connection between the same and the live parts of the source of current, and the storage condensera becomes charged.
- the igniting con-denser b is short-circuited during the charging of the-storage condenser a, in order to prevent a current from flowing into the igniter condenser, and thereby the ignit ing agent 9 is also short-c-ircuited. This occurs by means of a pin it, secured to, but insulated from, the intermediate contactmember h.
- the pin member 1 After the insertion of the charging plug '2 and the abutting of the now live intermediate contact member is produced thereby, against one coatin of the storage condenser a, the pin member 1 short-circuits the ignitpig condenser b and the igniting agent 9 through the body 0 on the igniter, so that no storage condenser a supplies energy to the igniting condenser b.
- a percussion igniter is illustrated wherein the two different devices for prevent- 1ng a premature transfer of energyinto the ignlting condenser b, illustrated in Figs. 3 p
- the forward pinportion [c of the latter short-circuits the igniting condenser b and thereby the igniting agent 9, through the body of the igniter, switches the igniting condenser 1) off by abutting of the insulating element 16 located betweenic and is against the divided portion of the connection leading through the resistancef, from the storage condenser a and further-4 more, by producing a contact between is and the lead passing through the storage condenser a connects the latter with the charging plug 2' so that the storage condenser (1 becomes charged.
- the igniter in this .case for charging the storage condenser a has two charging contact elements '70 and k insulated with respect. to the body'ot the igniter c.
- percussion igniters are illustrated which, for example in the form of igniters for hand grenades, have two complete condenser arrangements, each of WhlCh actuates a specia-lagnitlng agency, in accordance I with the invention.
- the igniter in accordance with Fig. 8, is capable of being set selectively to percussion ignition with delay or without delay.
- Each of the condenser arrangements has an insulated insertion socket with an intermediate contact element for introducing 'a charging plug i the second pole 2' of the source of currentjs connected to the body 0 of the igniterr-The setting of the igniter to the desired type of ignition is accomplished by the particular nature of the charging.
- the percussion igniter in accordance with Fig. 9 has only a single push socket with an intermediate contact element, which upon "the insertion of a charging plug a, thereinto, connects the storage condensers of both condenser arrangements A, and Air.
- the setting .of the device to the desired type of ignition is accomplished by charging either only the condenser arrangement A which. operates with delay or both condenser arrangement's A and A This occurs automatically by the magnitude of the voltage fedto the igniter,
- a discharge tube l is inserted, which the storage con enser from A and thereby the charging of the latter only when a charging voltage exceeding the break-down voltage of the tube 1,, occurs.
- both condenser at. range-ments A and A become charged and ermits a flow of current to the igniter gives instantaneous ignition upon impact.
- the charging voltage is chosen smaller than the igniting voltage of the discharge tube Z ,'then only the condenser arrangement A will receive current and igni-' tion with delay,is obtained.
- the discharge tube Z instead'of being arranged between the charging plug and the storage condenser a could also be connected at any of the points Z Z i indicated in dotted lines or in the discharge circuit .of the igniting condenser b of the condenser arrangement A
- the use of a plurality of condenser devices each instituting a special ignition efiect may also be employed in order to make percussion igniters effective upon targets over water as well as targets located under water, without causing the igniter to produce an ignition upon striking the surfaceof the water.
- Such a throwable percussion igniter for action above and below water contains two condenser arrangements U andU each provided with aistorage condenser a andlan ignition condenser 11 acting through a percussion closing switch h upon an igniting agent 9, the-storage cons densers a of which are both charged when the device is" thrown.
- the condenser arrangement'IL acts in the case of targets above the water; after a short safety time interval its igniting condenser b has assumed the voltage necessary for producingan ignition upon striking a target above the water. If, however, the igniter'lands in the water, then the igniting condenser b of U is discharged by means of a. water contact m which shortcircuits the same, before the percussion closing switch h of a U which operates somewhat more slowly, uponimpact has also assumed the closed position necessary for Jignition.
- the Voltage still present in the storage condenser a of U then likewise gradually becomes dissi ated through the water. contact m.
- An igniter which is capable of being set for various types of ignition may also, instead of being provided with a complete igniting arrangement for each type of ignition, have only two or more igniting condensers which deliver their energy in a definite manner as igniting current through electrical igniting agents, which are fed from a commonstorage condenser which can be charged from a source of current.
- Fig. 11 shows such a throwing type igniter for operation without delay and with delay, which uses in all, only three capacities.
- an ignition condenser b dischargeable with delay through a percussion'closing switch k and an igniting agent g and furthermore a second igniting condenser b likewise operating withoutdelay through a percussion closing switch h and an igniting agent g through a high ohmic resistance f and adischargetube Z connected in series therewith are connected 'to a common storage condenser a.
- At the instant of throwing of the igniter only its storage condenser a is charged, namely with a small or large voltage in order to produce the desired type of ignition.
- the above noted connection withonly one storage condenser is also advantageously usable for igniters for use above and below water as shown in Fig. 12.
- the igniter contains t wo ignition condensers b and b each operating through a percussion closingswitch iii h and h and an ignitingagent g 'and g and capable of being supplied from a common storage condenser a through high ohmic resistances f and f Only the storage condenser a is charged by means of a source of current, the former then during the flight of the projectile charging only the ignition condenser be through the resistance f When the igniter strikes a target above the water accordingly the igniting agent g is ignited.
- the condenser b - Upon striking the water, on the other hand, the condenser b -is discharged by means of a water contact 0 short-circuiting the igniting condenser b -through the body a of the igniter before the condenser b produces an ignit-ion through its percussion closing switch h Atthe same time a see-0nd water contact 72 connects the second poleof the igniting condenser b to the storage. condenser (1. Through this connection namely a charging of the igniting condenser b occurs through the resistance f and upon the striking of the igniter upon an under-Water target the igniting agent g is caused to ignite by closure of the switch The igniter in accordance with Fig.
- FIG. 12 shows furthermore how, by the insertion of a percussion-closed switch and simultaneously a discharge tube into the discharge circuit of an ignition condenser, the energy thereof can be used for producing a percussion ignition as well as a time ignition.
- a discharge 7 tube Z In parallel to the percussion-closed switch h and in series with the igniting agent g there is located in the discharge circuit of the condenser b a discharge 7 tube Z... If the igniter has struck neither an over-water target nor an underwater target, then the voltage which gradually increases continually in the igniting condenser b will eventually break down the discharge tube Z as soon as it has reached the value of the break-down voltage thereof.
- the ignition voltage E sufficient for igniting the ignitingagent g has formed in the condenser b after the safety time interval t From then on'up to the striking of the igniter upon water at the time 25 an operation of the ignite-r is possible upon water, whereas from'this point on the second age condenser a.
- Fig. 13 the connection in accordance with the invention is shown applied to a pure time igniter, for example for projectiles.
- the structure of the igniter is similar essentially to that of the igniter according to Fig. 1. Only in place of the percussion closing switch of the latter it has a discharge tube Z in the discharge circuit of the igniting condenser b.
- the inertia switch d d2 isarrangedbetween the storage co ndenser a and the outer charging contact 6, for example as a two-Way switch, in such way that it normally disconnects the contact e from the condenser a, thus providing the connection between the condenser a and the igniting condenser I) through the resistance f, whereasonly during the period of acceleration of the projectile, that is, at the instant of charging the igniter, does it interrupt the connection between a and b and connect the charging contact 6 to the condenser a.
- the igniter likewise only the storage condenser (1 becomes charged, which then provides the igniting condenser bwith energy through the resistance f. If the voltage in the same has grown to the magnitude of the break-down potential of the tube Z, then a disruptive dis-. charge of voltage occurs automatically through Z, whereby the. igniting agent 9 is ignited.
- the setting of the igniter to a definite time of ignition takes place directly upon charging, by the' nature of the current supply, namely by suitable determination of the charging voltage.
- vel of the'igniter a relatively high charging voltage is applied to its storage condenser a.. Then a strong flow of current takes place toward the igniting condenser 11 and b will assume a voltage sufiicient for breaking down the tube Z after only a short -time.
- Lower charging voltages will cause the flow of current from a to b through the resistance f to t'akeplace' more slowly and thus longer times of travel of the igniter mav be attained.
- the ignition condenser It is possible, however, alsoto charge the ignition condenser initially with a certain voltage lying below the ignition voltage, and to provide it with the remaining energy necessary for producing anignition with a definite delay from the storage condenser.
- This may be advantageous particularly in the case. of time igniters, for example such as shown in Fig. 13, in order to make it pos-. sible to include all occurring times of ignition with a smaller range of voltage than is possible by simple charging of the storage condenser.
- the igniting 110 condensers of the igniters may also be provided with externally located connection terminals, as carried out, for example, in the igniter according to Fig. 13, the charging intact 6 shown in dotted lines.
- An electrical igniter wherein electrical capacity is used as storage means for the igniting current, comprising an ignition condenser which yields its energy in the form of ignition current, connected to a storage condenser which is chargeable from a source of current, from. which said ignition condenser receives its entire energy or the par-' tial amount still lacking for producing an ignition, and suitable means whereby said energy is supplied to the ignition condenser only after a certain delay; after the completion of the charging of the storage condenser.
- An igniter as in claim 1 wherein the a ignition condenser'is connected to the storage condenser through a high ohniic'resistance. 3. An igniter as in claim 1, having also an igniting agent, and electrical leads betweenvthe said agent and the ignition .con-,
- one side of the storage condenser and one side of the ignition condenser being grounded to the body of theigniter, whereby one of the leads of the igniting agent is also brought to the potential of said body.
- An igniter as inclaim 1 having also an electrical ignition agent, and electrical leads between the said agent and the. ignition condenser, one side of the storage condenser and one sideof the ignition condenser being groundedto the body of the igniter, whereby one of the leads of the igniting agent is also brought to the potential of said body, and a percussion-closingcontact in the discharge circuit of the ignition condenser, wherein the said percussion-closing contact is inserted between the igniting agent and that pole of the ignition condenser w hich is grounded to the body of the igniter.
- igniter in accordance with claim 1 having also means which are actuated upon and by the connection of a source of current'to the storage condenser and which during the duration of said connection will prevent the flow of energy from the latter into the ignition condenser.
- Igniter in accordance with claim 1 having also means which are actuated upon and by the connection of a source of current to the storage condenser and which during the duration of said connection will prevent the flow of energy trom the latter into the ignition condenser, and having also a switch in the circuit connecting the storage condenser to the ignition condenser.
- Igniter in accordance with claim 1 having also means whichare actuated upon and by the connection of a source of current to the storage condenser and which during the duration of said connection will prevent the flow of energy from the latter into the ignition condenser, and having also a switch in the circuit connecting the storage condense "to the ignition condenser, the switch being connected in the circuit between the twoconde'nsers in positive connection with a'movable contact element connected to or connectable to the storage condenser, so that upon contact of live parts with the storage condenser and during the charging of the latter which results, it automatically maintains the circuit opened between the two condensers.
- Ign ter in accordance with claim 1 having means which are actuated upon and by the connection of a source of current to the thereby the igniting agent,connected there: to, and actuated upon and by the contact or live parts ivith the storage condenser.
- An electrical igniter wherein electrical capacity is used as storage means for the igniting current, including two independent electrical systemseach comprising an. ignition condenser which yields its energy in the form of ignition current, connected to a stor-' age condenser which is chargeable from a source of current, from which said ignition condenser receives its entire energy or the partial amount still lacking for producing an ignition, and suitable means whereby said energy is supplied to the ignition condenser only after a certain delay after the completion of the charging of the storage condenser.
- Igniter in accordance withclaim 10 which has two condenser arrangements provided with percussion-closing contacts in the ignition circuits of their ignitior condensers,
- Igniter in accord'ance with claim for operation above and below water, characterized by the fact that it isiprovided with two condenser arrangements each having a storage condenser and an ignition condenser operating upon an igniting agent through a switch, wherein the condenser arrangement operating for above-water targets is dischargeable when the igniter strikes water by means of water contacts short-circuiting its condensers, before the production of an igni- -tion,-Whereas the igniting condenser of the second condenser arrangement which operates upon under-water targets, is connected to its storage condenser only upon the igniter striking water, by means of a water contact, in order to take up energy from said storage condenser, Whose reverse discharge through its charging connections is completely or partly prevented, by means of discharge tubes or similar means. d
- Igniter in accordance with claim 1 which contains a' plurality of igniting condensers which deliver their energy as igniting currents through electrical igniting agents,
- a common storage condenser which is chargeable from a source of current,and wherein an igniting condenser is connected througha percussion-closing contact and an igniting agent operating with delay through a high ohmic resistance, and a second igniting condenser operating without delay through a percussion-closing contact and an igniting agent isconneetedthrough a high ohmic resistance and-a discharge tube connected in series therewith to a common storage condenser.
- Igniter in accordance withclaim 1 for operatlon over or under Water,'and having two igniting condensers which. are feedable from a common storage condenser through high ohmic resistances each operating through a percussion-closing contact and an igniting agent, one of which igniting condensers, operating upon targets above water, upon striking of the igniter againstwater, is dischargeable by means of a short-circuit- 17.
- a discharge tubeare providedin the discharging circuit of anignition condenser, whereby the energy of the same serves for producing a percussion ignition as well as a time ignition.
- Igniter in accordance with claim 1 wherein a percussion-closing contact and simultaneously a discharge tube are provided inthe discharging circuit of an ignition condenser, whereby the energy of the same serves for producing a percussion ignition as well as a time ignition, and wherein the percus ion-closinglcontact and the discharge tube ar connected in. parallel to one another in a anner known per se, and in series with a single igniting agent.
- I 20 Process for providing energy and timing electrical igniters in accordance with claim 1, wherein in order to produce a time ignition a discharge gap is inserted into the discharge circuit of an ignition condenser and the ignition condenser and its storage condenser are charged simultaneously but with mutually different voltages, in order to vary the nature of the ignition.
- PIOCQSSOI' providing energy to electrical igniters in accordance with claim 1, consisting in charging from a source of current only the storage condenser of the igniter, with the entire amountof energy required in the igniter.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Air Bags (AREA)
- Rectifiers (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE157075X | 1931-04-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US1841983A true US1841983A (en) | 1932-01-19 |
Family
ID=5678322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US568175A Expired - Lifetime US1841983A (en) | 1931-04-11 | 1931-10-10 | Electric igniter with condenser as storing device for the ignition current |
Country Status (6)
Country | Link |
---|---|
US (1) | US1841983A (xx) |
BE (1) | BE381387A (xx) |
CH (1) | CH157075A (xx) |
FR (1) | FR721485A (xx) |
GB (1) | GB376128A (xx) |
NL (1) | NL28700C (xx) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2439256A (en) * | 1944-02-21 | 1948-04-06 | Gen Electric | Timing circuit |
US2466729A (en) * | 1943-09-22 | 1949-04-12 | Carl F Nelson | Fuse |
US2557949A (en) * | 1942-08-22 | 1951-06-26 | Standard Telephones Cables Ltd | Fire control system |
US2665386A (en) * | 1941-10-01 | 1954-01-05 | Schlumberger Well Surv Corp | Well radioactivity logging apparatus |
US2696103A (en) * | 1951-07-24 | 1954-12-07 | Laurence B Heilprin | Photoflash indicator of air-burst fuse function |
US2801588A (en) * | 1949-08-31 | 1957-08-06 | Jr Howard C Filbert | Deceleration discriminating firing device for a fuze |
US2807712A (en) * | 1943-09-02 | 1957-09-24 | Bell Telephone Labor Inc | Electronic systems |
US2809586A (en) * | 1943-10-07 | 1957-10-15 | Richard B Roberts | Safety delay circuit |
US2821138A (en) * | 1956-08-07 | 1958-01-28 | Charles A Borcher | Accurate triggering device for high velocity projectiles |
US2889777A (en) * | 1951-05-31 | 1959-06-09 | Rabinow Jacob | Electrical arming mechanism for fuses |
US2897759A (en) * | 1944-01-06 | 1959-08-04 | Jr Wilbur S Hinman | Electrical arming circuit |
US2927224A (en) * | 1955-08-25 | 1960-03-01 | Herbert E Ruehlemann | Temperature compensated r. c. network |
US2938461A (en) * | 1956-07-05 | 1960-05-31 | Rabinow Jacob | Free-flight arming device |
US2950400A (en) * | 1942-03-30 | 1960-08-23 | Itt | Protective circuit for radio repeater |
US2954516A (en) * | 1956-04-05 | 1960-09-27 | Leesona Corp | Power supply |
US2980020A (en) * | 1952-05-27 | 1961-04-18 | Thomas C Smith | Condition responsive fuzing system |
US2981190A (en) * | 1953-09-24 | 1961-04-25 | Albert S Will | Bomb fuze |
US2996991A (en) * | 1954-07-07 | 1961-08-22 | Wolfgang A Menzel | One-lead charging system for a timing device |
US2998773A (en) * | 1954-10-15 | 1961-09-05 | Herbert E Ruehlemann | Selectively variable timing fuze |
US3032714A (en) * | 1959-04-14 | 1962-05-01 | Bell Telephone Labor Inc | Stabilized timing circuit |
US3041937A (en) * | 1952-10-09 | 1962-07-03 | John F Toomey | Rocket control system |
US3059541A (en) * | 1957-03-27 | 1962-10-23 | Brevets Aero Mecaniques | Rockets carried in clusters by a launching machine and in particular an aircraft |
US3369487A (en) * | 1943-09-23 | 1968-02-20 | Navy Usa | Proximity fuzes for projectiles |
US3976012A (en) * | 1973-05-21 | 1976-08-24 | U.S. Philips Corporation | Arrangement for automatic switching in electric fuses for projectiles |
-
0
- BE BE381387D patent/BE381387A/xx unknown
- NL NL28700D patent/NL28700C/xx active
-
1931
- 1931-07-11 FR FR721485D patent/FR721485A/fr not_active Expired
- 1931-07-17 CH CH157075D patent/CH157075A/de unknown
- 1931-10-10 US US568175A patent/US1841983A/en not_active Expired - Lifetime
- 1931-10-24 GB GB29561/31A patent/GB376128A/en not_active Expired
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2665386A (en) * | 1941-10-01 | 1954-01-05 | Schlumberger Well Surv Corp | Well radioactivity logging apparatus |
US2950400A (en) * | 1942-03-30 | 1960-08-23 | Itt | Protective circuit for radio repeater |
US2557949A (en) * | 1942-08-22 | 1951-06-26 | Standard Telephones Cables Ltd | Fire control system |
US2807712A (en) * | 1943-09-02 | 1957-09-24 | Bell Telephone Labor Inc | Electronic systems |
US2466729A (en) * | 1943-09-22 | 1949-04-12 | Carl F Nelson | Fuse |
US3369487A (en) * | 1943-09-23 | 1968-02-20 | Navy Usa | Proximity fuzes for projectiles |
US2809586A (en) * | 1943-10-07 | 1957-10-15 | Richard B Roberts | Safety delay circuit |
US2897759A (en) * | 1944-01-06 | 1959-08-04 | Jr Wilbur S Hinman | Electrical arming circuit |
US2439256A (en) * | 1944-02-21 | 1948-04-06 | Gen Electric | Timing circuit |
US2801588A (en) * | 1949-08-31 | 1957-08-06 | Jr Howard C Filbert | Deceleration discriminating firing device for a fuze |
US2889777A (en) * | 1951-05-31 | 1959-06-09 | Rabinow Jacob | Electrical arming mechanism for fuses |
US2696103A (en) * | 1951-07-24 | 1954-12-07 | Laurence B Heilprin | Photoflash indicator of air-burst fuse function |
US2980020A (en) * | 1952-05-27 | 1961-04-18 | Thomas C Smith | Condition responsive fuzing system |
US3041937A (en) * | 1952-10-09 | 1962-07-03 | John F Toomey | Rocket control system |
US2981190A (en) * | 1953-09-24 | 1961-04-25 | Albert S Will | Bomb fuze |
US2996991A (en) * | 1954-07-07 | 1961-08-22 | Wolfgang A Menzel | One-lead charging system for a timing device |
US2998773A (en) * | 1954-10-15 | 1961-09-05 | Herbert E Ruehlemann | Selectively variable timing fuze |
US2927224A (en) * | 1955-08-25 | 1960-03-01 | Herbert E Ruehlemann | Temperature compensated r. c. network |
US2954516A (en) * | 1956-04-05 | 1960-09-27 | Leesona Corp | Power supply |
US2938461A (en) * | 1956-07-05 | 1960-05-31 | Rabinow Jacob | Free-flight arming device |
US2821138A (en) * | 1956-08-07 | 1958-01-28 | Charles A Borcher | Accurate triggering device for high velocity projectiles |
US3059541A (en) * | 1957-03-27 | 1962-10-23 | Brevets Aero Mecaniques | Rockets carried in clusters by a launching machine and in particular an aircraft |
US3032714A (en) * | 1959-04-14 | 1962-05-01 | Bell Telephone Labor Inc | Stabilized timing circuit |
US3976012A (en) * | 1973-05-21 | 1976-08-24 | U.S. Philips Corporation | Arrangement for automatic switching in electric fuses for projectiles |
Also Published As
Publication number | Publication date |
---|---|
CH157075A (de) | 1932-09-15 |
NL28700C (xx) | |
GB376128A (en) | 1932-07-07 |
FR721485A (fr) | 1932-03-03 |
BE381387A (xx) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1841983A (en) | Electric igniter with condenser as storing device for the ignition current | |
US1791606A (en) | Setting electric projectile fuses | |
US1776796A (en) | Electrical projectile igniter | |
US2404553A (en) | Electric fuse and setting apparatus | |
US3814017A (en) | Method and system arrangement for determining the type and condition of ammunition ready for firing | |
US2545474A (en) | Delayed detonating means for projectiles | |
NO151065B (no) | Elektrisk krets for tenning av et sprengstofftennroer | |
US4015531A (en) | Electrical fuze with selectable modes of operation | |
US2485887A (en) | Projectile | |
US3088409A (en) | Electronic timer | |
US1897863A (en) | Contact device for transferring electrical energy into projectile igniters | |
US2889777A (en) | Electrical arming mechanism for fuses | |
US2509910A (en) | Time-delay circuit | |
US3052185A (en) | Electric switch | |
US2880672A (en) | Electric fuze | |
GB751579A (en) | Electric fuze for artillery projectiles | |
US2853010A (en) | Bomb fuze | |
US3976012A (en) | Arrangement for automatic switching in electric fuses for projectiles | |
US3889599A (en) | Fuze | |
GB549998A (en) | Electrical systems or circuit arrangements for producing an electrical impulse with variable time delay | |
US1917814A (en) | Circuit connections for feeding energy to electric ignitors | |
US4033266A (en) | Electrical fuze with selectable modes of operation | |
US2998773A (en) | Selectively variable timing fuze | |
US3983819A (en) | Self-destruct delay fuze with voltage-responsive switch | |
US571909A (en) | Charles e |