US1813143A - Aerial system - Google Patents
Aerial system Download PDFInfo
- Publication number
- US1813143A US1813143A US235464A US23546427A US1813143A US 1813143 A US1813143 A US 1813143A US 235464 A US235464 A US 235464A US 23546427 A US23546427 A US 23546427A US 1813143 A US1813143 A US 1813143A
- Authority
- US
- United States
- Prior art keywords
- antenna
- active
- wave
- active elements
- aerial system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005540 biological transmission Effects 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 230000000644 propagated effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000012211 strain insulator Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q11/00—Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
- H01Q11/02—Non-resonant antennas, e.g. travelling-wave antenna
- H01Q11/04—Non-resonant antennas, e.g. travelling-wave antenna with parts bent, folded, shaped, screened or electrically loaded to obtain desired phase relation of radiation from selected sections of the antenna
Definitions
- This invention relates to wave transmission and more especially to aerial systems arranged broadside with respect to the direction of propagation of radiant energy .6 waves.
- This aerial system comprises a reflector or reradiating unit and an antenna unit, each consisting of a series of vertical wires to constitute active elements which are connected together by a transmission line having an apparent in- 0 finite transmission velocity. Because the energy supplied to the antenna unit is propagated therein at an apparent infinite ve locity, the currents in the active elements are in phase with each other.
- the aerial system consists of an antenna unit and a reflector or reradiatorunit which are identical in form, are arranged 'inparallel planes, and are spaced from each other a -3 definite fraction of a wave length.
- the antenna and reflector cooperate to give the aerial system a uni-directional characteristic.
- Fig. 1 is a schematic illustrating one design of antenna (without a reflector) and vectors of the currents and voltages pro-' quizd 1n the active elements by an incoming ments.
- both the actii e and non-active elements are one quarter of a wave length long.
- An active element is one which serves to effect the translation of the energy or a wave, incident upon the antenna, into energy which is supplied to the receiver, whereas a non-active element does transmitting or receiving set connected at not operate to effect such translation, but;
- each active element is shown the vectors for voltages and currents at a given time t, for an'ideal lossless line when the radiant wave is propagated in a direction perpendicular to the plane of the antenna.
- Row A represents the phases of thevoltages induced by the wave. As is well known these voltages are all in the same direction. The wire voltage phases, however, which are ment 2 will be in phase with it.
- the resultant voltages induced in each active element may be considered as concentrated at the middle of the vertical, since the resultant of the voltages in each ele mental part of the active element has the same phase as the voltage in the middle element. Assume the voltage in each active element to be at e.
- the wire distance between points 5 in adjacent active elements is when the current due to the voltage in active element 1 reaches 6 in active element 2 the current due to the voltage then impressed by the succeeding half space wave in active ele- This con dition is represented in row C which shows the currents at the receiving set R directly propagated by the active elements.
- Wire length from c to the free end is measured from the open end, current nodes in Fig. 1 occur at points a, b, a. (Z and e. It will at once be evident that the undesired reradiation from the non-active members Will be annulled in all directions perpendicular to these members. The reradiation in all other directions will be negligible, because of the reduced effective length oi a non-active member in these directions, Well as because the current magnitudes which exist in these members are low.
- the receiver R is replaced by a suitable transmitter apparatus and the active elements serve to translate the locally supplied energy into radiant wave energy.
- the non-active elements function to conduct locally supplied energy to the different active elements and no appreciable power will be consumed in horizontally polarized radiations.
- the antenna system shown to the right of R in Fig. 1 may be duplicated at the left with an improvement in the directional characteristic.
- Such an arrangement is illustrated in Fig. 2.
- the voltage and current conditions illustrated and explained in connection with Fig. 1 hold for the antenna of Fig. 2.
- the improved directional characteristic is due to the symmetry of the system.
- the undesired reradiation from the non-active elements is negligible.
- this reradiation is nullified, since that occurring to the left of the set is opposed to that occurring to the right of the set.
- Figs. 1 and 2 Other lengths of the active elements and spacings therebetween, than those indicated in Figs. 1 and 2, may be used to obtain the proper phase relationship required for broadside reception and propagation. Dimensions for the heights of active elements and spacing between them may be chosen within a wide range, as long as they satisfy the equations where is the wave length, S the spacing between active members, V is the height of an active member, which should not exceed and where a 1s any integer. Examples of aerial systems conforming with the above principles are illustrated in Fig. 3.
- the aerial systems described above are bi-directional and to obtain an aerial system having a uni-directional characteristic, a reflector or reradiator is used.
- a unidirectional aerial system is shown in Fig. 4 in which an antenna F and a reflector or reradiator D are shown.
- the reflee-tor has the same form and dimensions as the antenna and is spaced back of it, with reference to the direction of wave propagation, an odd multiple of one quarter of a wave length. the integer one is considered an odd multiple.
- the reflector is equally efficient in either transmitting or receiving.
- the mid-point of the antenna is connected to ground through a resonant circuit which may be tuned and the signal Wave is conducted to or from the antenna by means of a one wire transmission line.
- the reflector is connected to ground through a similar resonant circuit which may also be tuned. The reflector, however, is not connected to the receiving or transmitting set.
- the resonant circuit connected to the reflector has been found effective in makin It is to be understood that especially those due to atmospheric disturbances.
- FIG. 1 Various methods may be used for supporting the aerial system, one of which is shown in connection with a part of the system of Fig.4.
- two vertical poles 10 and 11 of sufiicient height to support the antenna above ground have cross arms 12 and 13 at least one quarter of a wave length long to give the proper spacing between the antenna and reflector.
- Ropes or cables 14 and 15 extend between corresponding points of the cross arms, and the antenna and reflector are supported therefrom by means of short lengths of rope or cable and strain insulators in any well known manner.
- the lower part of the system is maintained in position and prevented from swaying by means of ropes or cables properly' insulated therefrom and anchored in the ground substantiall as shown.
- Other means, such as a fixed iramework may also be used to support the aerial system.
- a uni-directional broadside aerial system comprising an antenna and a reflector, identical in form, mounted in parallel planes separated by an odd multiple of a quarter wave length, said antenna and said reflector comprising a series of active elements having corresponding terminals of adjacent elements alternately connected by non-active elements, the sum of the length of each active element andthe spacing between adjacent active elements being an odd multiple of half a Wave length.
- a broadside aerial system in accord ance with claim 1 characterized in this, that the free non-active elements have a length equal to one half the wave distance between the mean points of the active elements.
- the antennain accordance with claim 4 characterized in this, that the vertical and horizontal conductors have equal lengths.
- a broadside aerial system in accordance with claim 1 characterized in this, that the wire distance between a point on one active element and the corresponding point on another active element in the system is an odd multiple of half a wave length.
- An antenna comprising a coplanar series of substantially vertical linear conductors and substantially horizontal linear conductors alternately connecting corresponding terminals of the vertical conductors, so as to constitute the whole, a singie series circuit of generally zigzag'form, the'lengths of the respective vertical and horizontal conductors being such that the sum of each adjacent pair of them is an odd multiple of a half wave length of the wave operated on. l
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Aerials With Secondary Devices (AREA)
- Catching Or Destruction (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE358311D BE358311A (en, 2012) | 1927-11-25 | ||
US235464A US1813143A (en) | 1927-11-25 | 1927-11-25 | Aerial system |
GB33164/27A GB307446A (en) | 1927-11-25 | 1927-12-07 | Improvements in aerial systems |
DEI35774D DE518653C (de) | 1927-11-25 | 1928-10-16 | Richtantenne aus einem in einer Ebene maeanderfoermig gebogenen Leiter |
FR662802D FR662802A (fr) | 1927-11-25 | 1928-10-23 | Perfectionnements aux antennes pour systèmes radiotransmetteurs ou récepteurs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US235464A US1813143A (en) | 1927-11-25 | 1927-11-25 | Aerial system |
Publications (1)
Publication Number | Publication Date |
---|---|
US1813143A true US1813143A (en) | 1931-07-07 |
Family
ID=10349367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US235464A Expired - Lifetime US1813143A (en) | 1927-11-25 | 1927-11-25 | Aerial system |
Country Status (5)
Country | Link |
---|---|
US (1) | US1813143A (en, 2012) |
BE (1) | BE358311A (en, 2012) |
DE (1) | DE518653C (en, 2012) |
FR (1) | FR662802A (en, 2012) |
GB (1) | GB307446A (en, 2012) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2622198A (en) * | 1950-08-23 | 1952-12-16 | Philco Corp | Phased antenna array |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1197135B (de) * | 1960-03-04 | 1965-07-22 | Telefunken Patent | Richtantenne aus mehreren in einer Ebene liegenden Antennenelementen |
-
0
- BE BE358311D patent/BE358311A/xx unknown
-
1927
- 1927-11-25 US US235464A patent/US1813143A/en not_active Expired - Lifetime
- 1927-12-07 GB GB33164/27A patent/GB307446A/en not_active Expired
-
1928
- 1928-10-16 DE DEI35774D patent/DE518653C/de not_active Expired
- 1928-10-23 FR FR662802D patent/FR662802A/fr not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2622198A (en) * | 1950-08-23 | 1952-12-16 | Philco Corp | Phased antenna array |
Also Published As
Publication number | Publication date |
---|---|
BE358311A (en, 2012) | |
GB307446A (en) | 1929-03-07 |
FR662802A (fr) | 1929-08-22 |
DE518653C (de) | 1931-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2283897A (en) | Antenna system | |
US2298449A (en) | Antenna | |
US2287220A (en) | Transmitting antenna | |
US2245693A (en) | Radial radiating system for shortwave communication | |
US1813143A (en) | Aerial system | |
US1964189A (en) | Directive antenna | |
US2380519A (en) | Directional aerial system | |
US3165748A (en) | Series fed log periodic antenna with coplanar conductor pairs | |
US1910147A (en) | Antenna system | |
US760463A (en) | Guglielmo marooni | |
US1860052A (en) | Transmission line | |
US1821936A (en) | Wireless telegraph and telephone aerial | |
US1805591A (en) | Signaling system | |
US2112269A (en) | Directional antenna | |
GB549085A (en) | Ultra-short wave antenna system | |
US3509573A (en) | Antennas with loop coupled feed system | |
US2105569A (en) | Directional wireless aerial system | |
US1947247A (en) | High frequency transmission system | |
US1775801A (en) | Radio signaling system | |
US1963723A (en) | Impedance transformer | |
US2155955A (en) | Directive antenna system | |
US2194554A (en) | Directive antenna system | |
US2671852A (en) | Resonant antenna | |
US2055100A (en) | Short wave antenna | |
US2080577A (en) | Radio frequency transmitter |