US1668883A - Internal-combustion engine - Google Patents

Internal-combustion engine Download PDF

Info

Publication number
US1668883A
US1668883A US168710A US16871027A US1668883A US 1668883 A US1668883 A US 1668883A US 168710 A US168710 A US 168710A US 16871027 A US16871027 A US 16871027A US 1668883 A US1668883 A US 1668883A
Authority
US
United States
Prior art keywords
cylinder
piston
brake ring
engine
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US168710A
Other languages
English (en)
Inventor
Allwill Stephen Seymour
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALLWILL VARIABLE COMPRESSION E
ALLWILL VARIABLE COMPRESSION ENGINE CO Ltd
Original Assignee
ALLWILL VARIABLE COMPRESSION E
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALLWILL VARIABLE COMPRESSION E filed Critical ALLWILL VARIABLE COMPRESSION E
Priority to US168710A priority Critical patent/US1668883A/en
Priority to FR647332D priority patent/FR647332A/fr
Priority to DEA52878D priority patent/DE496103C/de
Priority to GB69/28A priority patent/GB285423A/en
Application granted granted Critical
Publication of US1668883A publication Critical patent/US1668883A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/041Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of cylinder or cylinderhead positioning
    • F02B75/042Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of cylinder or cylinderhead positioning the cylinderhead comprising a counter-piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F02B75/285Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders comprising a free auxiliary piston

Definitions

  • This invention has been devised in order to provide improvements in the construction of internal combustion engines, by the adoption of which, provision is made for the degree of compression of the explosive charges being automatically maintained at a constant, no matter what the volume of the charges drawn into the engine may be.
  • the present invention has been devised with the object of overcoming this drawback and to provide that equal compression may be obtained automatically upon all variations of the charges, that is, a small charge will receive compression to the same de .gree as a large charge, and thus better power results are obtained.
  • the invention provides for this degree of compression being fixedito accord with the I nature of the oil fuel employed, as it is well known that the different grades of fuel give best'results when their resultant gases are compressed to certain degrees of compression.
  • one degree of com pression may be fixed as the constant, for
  • the invention may be carried out by providing each engine cylinder with a movable head arranged to move in and out within the cylinder, with relation to the travel of .the piston, so as to vary the area. of the 1 space betwen the piston and such head, and
  • the pressure on the outside of the movable head will tend to force it inward to a normal position with respect to the inward travel of the piston, which forms the minimum space required for the compression chamber of the cylinder. Then as the piston moves in on its compression stroke and the charge is compressed, the movable head will remain stationary while the compression on its inside increases to that on its outside, and then will move back as the pressure correspondingly increases, to enlarge the compression' chamber to hold the greater quantity and without increasing itspressure.
  • the head willmove automatically to ensure thatthe compression chamber area be varied to suit the different amounts of the explosion charges and to ensure the uniform compression thereof.
  • the said fluid pressure upon the outside of the movable head is obtained by the working of the engine itself.
  • the invention has, for its object to provide a mechanical lock for the floating piston to securely lock the piston in its upper position or during the firing
  • Fig. 3 is a topview of the brake ring
  • Fig, 4 is abottomview of the brake ring
  • Fig. 5 is a side view of the brake ring
  • Fig.6 is a top view of the floating lock piston
  • Fig. 7 is a bottom view of the floating lock piston
  • Fig. 8 is a side view of the floating lock piston
  • Fig. 9 is a cross section through the cylinder on the line 99 of Fig. 1, showing the teeth increased in thickness
  • Fig. 10 is a detail showing the teeth and double grooves in the cylinder wall.
  • the engine illustrated is a four cylinder four cycle engine having cylinders 1 to 4 with a. power piston 5 in each of them.
  • Each cylinder comprises a cylinder wall 27 which is water jacketed, and an outer housing 34 surrounds the walls.
  • the upper port-ion of the engine is provided with a cover 23 which closes the fluid chamber 32 extending over the entire top of the cylinders. Fluid pressure is maintained in the chamber by any suitable means which enters through pipe 35.
  • Each cylinder is provided with a floating piston which comprises two parts, the lower of which is the floating lock piston 9 and the upper is the floating brake ring 13.
  • piston 9 may be provided with piston rings 10 to prevent leakage and it is provided with a shoulder comprising a tapered portion 11 which is adapted to seat on the shoulder 12 in the cylinder when the piston is in its lowermost position. Ports 6 may be provided in the portion 11 in order to provide a cushion efl'ect for the piston.
  • the floating brake ring 13 comprises a groove 14 in its upper periphery in which a brake band 26 is provided having operating lugs 15. This band 26 is operated by means of alever 25 pivoted in the cylinder wall at 40 and which is adapted to actuateone of the lugs by means of a rod 41 secured to the lever.
  • the lever is actuated by means of a cam projection 24 on the main cam 18, and the cams 18, one for. each floating piston, are mounted on'a shaft 22 which is'rotated by any suitable means such as a chain or gear wheels from the crank shaft of the engine.
  • the lower portion of the brake ring 13 and the upper portion of the lock piston 9 are provided with a plurality of grooves 42 on the outside thereof formed byteeth 43.
  • grooves are cut into the sides of the piston and ring and are angularly arranged, and, as shown in Fig. 1, they are so arranged that they oppose one another.
  • the cylinder walls of each cylinder are provided with two sets of teeth 17 formed by cutting the grooves 17 as clearly indicated in Fig. 10. These teethcooperate with the grooves 42 and it will be clearly seen from Fig. 1 that a reciprocating movement of the floating piston, that is the brake ring and the lock piston, will cause these parts to rotate in opposite directions, due to the opposed arrangement of the grooves 42.
  • the floating pistons will be filled with a.
  • Fig. 1 shows the four cycles of operation of which 1 is the beginning of the firing stroke, 2 the compression stroke, 3 the exhaust stroke, and 4 the suction or intake stroke. In 1 the floating piston has receded away from the piston 5 to allow for the gas mixture between the two pistons.
  • a spark plug may be inserted in the side of the cylinder, as indicated by 29.
  • the inlet and exhaust ports may be located in the sides of the cylinders as at 47 and 48, which are suitably controlled by valves.
  • the brake band 26 may be placed in the cylinder wall, thereby eliminating the groove 14-. In this way the brake band will be stationary.
  • An internal combustion engine comprising a cylinder; a power piston in said cylinder; a floating piston in said cylinder adapted to provide an approximately constant pressure of the compressed fuel charge; and means in said cylinder and on said floating piston for mechanically locking said-floating piston in the cylinder during the firing stroke of the engine.
  • An internal combustion engine comprising a cyllnder; a power piston 1n said cylinder; a floating piston in said cylinder adapt-- ed to provide an approximately constant pressure of the compressed fuel charge, said floating piston provided with teeth and grooves; and means in said cylinder cooperating with said teeth and grooves for mechanically locking said floating piston in the cylinder during the firing stroke of the engine.
  • An internal combustion engine comprising a cylinder; :1 power piston in said cylinder; a floating piston in saidcylinder adapt ed to provide an approximately constant pressure of the compressed fuel charge, said floating piston consisting of a brake ring and a lock piston; and means on said brake ring, lock piston and cylinder for mechanically locking said floating piston in the cylinder during the firing stroke of the engine.
  • An internal combustion engine comprising a cylinder; a power piston in said cylinder; a floating piston in said cylinder adapted to provide an approximately constant pressure of the compressed fuel charge
  • said floating piston consisting of a brake ring and a lock piston; a plurality of projections on the inside wall of the cylinder; and means on said brake ring and lock piston cooperating With said projections for mechanically locking said floating piston in the cylinder during the firing stroke of the engine,
  • An internal combustion engine comprising a cylinder; a power piston in said cylinder; a floating piston in said cylinder adapted to provide an approximately constant pressure of the compressed fuel charge, said floating piston consisting of a brake ring and a lock piston; a brake mechanism for the brake ring; means for actuating said brake mechanism during the firing stroke of the engine; and means on said brake ring, lock piston and cylinder for supplying rotary motion to the lock piston and brake ring in opposite directions to each other upon reciprocation thereof, said brake mechanism when actuated preventing the brake ring from rotatirig thereby mechanically locking said floating piston in the cylinder during the firing stroke of the engine.
  • An internal combustion engine comprising a cylinder; a power piston in said cylinder; a floating piston in said cylinder adapt ed to provide an approximately constant pressure of the compressed fuel charge, said floating piston consisting of a brake ring and a lock piston; a brake mechanism for the brake ring; mechanism during the firing stroke of the engine; and means on said brake ring, lock piston andcylinder for supplying rotary mo tions to the lock piston and brake ring in opposite directions to each other upon reciprocation thereof, said brake mechanism when actuated preventing the brake ring from rotating thereby mechanically locking said floating piston in the cylinder during the firing stroke of the engine.
  • An internal combustion engine comprising a cylinder; a power piston in said cylinder; a floating piston in said cylinder adapted to provide an approximately constant pressure of the compressed fuel charge, said floating piston consisting of a brake ring and a lock piston; a brake mechanism for the brake ring; a cam for actuating said brake mechanism during the firing stroke of the engine; a second cam for forcing the brake ring downwardly during the exhaust stroke of the engine; and means on said brake ring, lock piston and cylinder for supplying rotary motions to the lock piston and brake ring in opposite directions to each other upon reciprocation thereof, said brake mechanism a cam for actuating said brake ing the brake ring downwardly during the exhaust stroke of the engine; levers cooperating with the first-named cam for actuating said brake mechanism; and means on said brake ring, lock piston and cylinder for supplying rotary motions to the lock piston and brake ring in opposite directions to each other upon reciprocation thereof, said brake mechanism when actuated preventing the brake ring from rotating thereby mechanically locking said floating
  • An internal combustion engine comprising a cylinder; a power piston in said cylinder; a floating piston in said cylinder adapted to provide an approximately constantprcssure of the compressed fuel charge, said floating piston consisting of two parts each having a plurality of inclined grooves therein; and means on one of said parts of the floating piston and on the wall of the cylinder for mechanically locking said floating piston in the cylinder during the firing stroke of the engine.
  • An internal combustion engine comprising a cylinder; a power piston in said cylinder; a floating piston in said cylinder adapted to provide an approximately constant pressure of the compressed fuel charge, said floating piston consisting of two parts each having a plurality of inclined grooves therein; a plurality of teeth on the wall of the cylinder cooperating with the grooves in the two two parts of the floating piston to impart rotary motions to the parts in opposite directions to each other upon reciprocation of the floating piston; and means for preventing rotation of one of the parts of the floating piston for mechanicall locking said floating piston during the firlng stroke of the engine.
  • An internal combustion engine comprising a cylinder; a'power piston in said cylinder; a float-ing piston in said cylinder adapted to provide an approximately constant pressure of the compressed fuel charge, said floating piston consisting of two parts each having a plurality of inclined grooves therein; a plurality of teeth on the wall of stant pressure of the compressed fuel charge, said floating piston consisting of a brake ring and a lock piston each having a plumesses rality of inclined grooves therein which are inclined in opposite directions from each other; and means on the brake ring and on the wall ofthe cylinder for mechanically locking'said floating piston in the cylinder during the firing stroke of the engine.
  • An internal combustion engine comprising a cylinder; a power piston in said cylinder; a floating piston in said cylinder adapted to provide an approximately constant pressure of the compressed fuel charge, said floating piston consistin of a brake ring and a lock piston each aving a plurality of inclined grooves therein which are inclined in opposite directions from each other; a plurality of teeth oil the wall 'of the cylinder cooperating with the grooves of the lock piston and brake ring to impart rotary motions thereto in opposite directions from each other upon reciprocation; and means on the brake ring for preventing rotation thereof to mechanically lock said floating piston in the cylinder during the firingstroke of the engine.
  • An internal combustion engine comprising a cylinder; a power piston in said cylinder; a floating piston in said cylinder adapted to provide 'anapproximately constant pressure of the compressed fuel charge, said floating piston consistin of abrake ring and a lock piston each 1% rality of inclined grooves therein which are inclined in opposite directions from each other; a plurality of teeth on the wall of the cylinder cooperating with the grooves of the lock piston and brake ring to impart rotary motions thereto in opposite directions from each other upon reciprocation; a brake mechanism on the brake ring for preventing rotation thereof and means for actuating said mechanism during the firing stroke of the engine to mechanically lock the floating piston in the cylinder.
  • An internal combustion engine comprising a cylinder; a power piston in said.
  • a floating piston in said cylinder adapted to provide an approximately constant pressure of the compressed fuel charge
  • said floating piston consisting of a brake ring and a lock piston each having a plurality of inclined grooves therein which are inclined in opposite directions from each other; a plurality of teeth on the wall of the cylinder cooperating with the grooves of the lock piston and brakering to impart rotary motions thereto in opposite directions from each other upon reciprocation; a brake mechanism on the brake ring for preventing rotation thereof; and a cam for actuating said mechanism during the firing stroke of the engine to mechanically lock the floating piston in the cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Braking Arrangements (AREA)
US168710A 1927-02-16 1927-02-16 Internal-combustion engine Expired - Lifetime US1668883A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US168710A US1668883A (en) 1927-02-16 1927-02-16 Internal-combustion engine
FR647332D FR647332A (fr) 1927-02-16 1927-12-31 Perfectionnements dans les moteurs à combustion interne
DEA52878D DE496103C (de) 1927-02-16 1928-01-01 Brennkraftmaschine mit freifliegendem Hilfskolben
GB69/28A GB285423A (en) 1927-02-16 1928-01-02 Improvements in means for controlling the compression in the cylinders of internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US168710A US1668883A (en) 1927-02-16 1927-02-16 Internal-combustion engine

Publications (1)

Publication Number Publication Date
US1668883A true US1668883A (en) 1928-05-08

Family

ID=22612627

Family Applications (1)

Application Number Title Priority Date Filing Date
US168710A Expired - Lifetime US1668883A (en) 1927-02-16 1927-02-16 Internal-combustion engine

Country Status (4)

Country Link
US (1) US1668883A (fr)
DE (1) DE496103C (fr)
FR (1) FR647332A (fr)
GB (1) GB285423A (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE953293C (de) * 1953-09-06 1956-11-29 Diesel Engine Company Of Texas Gemischverdichtende, selbstzuendende Brennkraftmaschine

Also Published As

Publication number Publication date
DE496103C (de) 1930-04-15
GB285423A (en) 1928-06-28
FR647332A (fr) 1928-11-22

Similar Documents

Publication Publication Date Title
US5146884A (en) Engine with an offset crankshaft
US1829780A (en) Internal combustion engine
US3522797A (en) Supercharged engine
US2894496A (en) Internal combustion engine
US1668883A (en) Internal-combustion engine
US2937630A (en) Compound internal combustion engine
GB234088A (en) Improvements in internal combustion engines
US3710767A (en) Eight cycle twin chambered engine
US2206571A (en) Internal combustion engine
US1732011A (en) Internal-combustion engine
US1286435A (en) Internal-combustion engine.
US2508391A (en) Two-cycle internal-combustion engine
US1754410A (en) Variable-compression internal-combustion engine
US808336A (en) Internal-combustion heat-engine.
US1541207A (en) Internal-combustion engine
US1640958A (en) Internal-combustion engine
US3177856A (en) Internal combustion engine
US1848597A (en) Internal combustion engine
US2041074A (en) Internal combustion engine
US2400747A (en) Automatic compression control for internal-combustion engines
US2852007A (en) Rotary piston engine
SU1035256A1 (ru) Способ работы карбюраторного двигател внутреннего сгорани и карбюраторный двигатель внутреннего сгорани
US2139266A (en) Two-cycle combustion engine
US1429078A (en) Two-cycle internal-combustion engine
US1442596A (en) Rotary two-cycle superinduction engine