US1667730A - of chicago - Google Patents
of chicago Download PDFInfo
- Publication number
- US1667730A US1667730A US1667730DA US1667730A US 1667730 A US1667730 A US 1667730A US 1667730D A US1667730D A US 1667730DA US 1667730 A US1667730 A US 1667730A
- Authority
- US
- United States
- Prior art keywords
- wire
- stitching
- steel
- width
- chicago
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910000975 Carbon steel Inorganic materials 0.000 description 3
- 229910001327 Rimmed steel Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005360 mashing Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B15/00—Nails; Staples
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12333—Helical or with helical component
Definitions
- My invention relates to steel wire for stitching and more particularly to flat wires for stitching cardboardboxes, fiber contain ers, and the like. It is desirable to have this wire quite stiff but this stillness must be produced by cold work on comparatively low carbon steels and not through higher carbon or other alloy content. The stiffer the wire the greater thickness of stock it will puncture. The higher the carbon content the quicker the cutter knives in the stitching machine will dull, and only slight dullness is required to leave a burr on the puncturing end of the legs of the stitch or staple thus seriously interfering with driving it through the stock. In addition to these requirements, atleast the outside fibers of the stitching wire must be siiifiiciently ductile to permit the clinching of the stitch without cracking the wire.
- the wire must be flat because it is cousidcred desirable that the wire stitch lay practically flush with the surface of the stock. A round wire would protrude substantially above this surface unless buried in the stock by force and such action would result in weakening the material at the point of stitching thus reducing the carrying capacity of the box or container.
- a characteristic of rimmed steel is the form of the carbide, which is essentially pearlitie in the center portion and globular in the outer or rim portion.
- Carbon steels in which the carbide is in globular form take temper very little with cold work, while those with the carbide in pearlitic form take temper to a marked degree with cold work.
- the mashing flat of a round wire by cold rolling appears to have comparatively little embrittling elfect until the width passes about three times the thickness from which .Applicatien filed January 20, 1927. Serial. No. 162/119.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Preliminary Treatment Of Fibers (AREA)
Description
Patented May 1, 1928.
UNITED STATES PATENT OFFICE.
J BIRCHARD GREEN, OIE CIIICAGO, ILLINOIS, ASSIGNOR 'I'O CHICAGO STEEL & WIRE COMPANY, OF CHICAGO, ILLINOIE, A CORPORATION OF ILLINOIS.
STITCI'IING WIRE.
No Drawing.
My invention relates to steel wire for stitching and more particularly to flat wires for stitching cardboardboxes, fiber contain ers, and the like. It is desirable to have this wire quite stiff but this stillness must be produced by cold work on comparatively low carbon steels and not through higher carbon or other alloy content. The stiffer the wire the greater thickness of stock it will puncture. The higher the carbon content the quicker the cutter knives in the stitching machine will dull, and only slight dullness is required to leave a burr on the puncturing end of the legs of the stitch or staple thus seriously interfering with driving it through the stock. In addition to these requirements, atleast the outside fibers of the stitching wire must be siiifiiciently ductile to permit the clinching of the stitch without cracking the wire.
These several requirements have been met in the past by using what is known a rimmed steel of about 08% carbon content, cold-drawing it as a round wire according to well-known wire-mill practice to give the correct temper and then flattening it by cold rolling to about .103 width and a variety of thicknesses from .023 to .017 inclusive and occasionally as light as .0887 such as will permit satisfactorily stitching in the range of work met with in practice.
The wire must be flat because it is cousidcred desirable that the wire stitch lay practically flush with the surface of the stock. A round wire would protrude substantially above this surface unless buried in the stock by force and such action would result in weakening the material at the point of stitching thus reducing the carrying capacity of the box or container.
A characteristic of rimmed steel is the form of the carbide, which is essentially pearlitie in the center portion and globular in the outer or rim portion. Carbon steels in which the carbide is in globular form take temper very little with cold work, while those with the carbide in pearlitic form take temper to a marked degree with cold work. The mashing flat of a round wire by cold rolling appears to have comparatively little embrittling elfect until the width passes about three times the thickness from which .Applicatien filed January 20, 1927. Serial. No. 162/119.
point it increases rapidly and at about five times becomes very pronounced. This ac counts for the necessity of using rimmed steel for stitching wires approximately .103 in width and .023" or less in thickness. It permits producing a wire with. a stiff center and a ductile shell or surface. If a steel. essentially pearlitic were employed, it is commercially impossible to produce the desired stiffness and surface ductility at the same time. Either can be produced alone but not both coincidenti-illy.
The wire characteristics and proportion above described have always been recognized in the industry as the fixed standards for wire used for stitching card board boxes, fiber containers, and the like.
I have discovered that by combining the use of low carbon steel of .520 points or less carbon, the resultant carbide being essentially in pearlitic form, with wire dimensions such that the ratio of width to thickness does not substantially exceed four to one nor substantially less than one and three quarters to one, that all the requirements of be}; stitching wire can readily be met. I find that widths from .050" to .070 are satisfactory, and I prefer to use .000 as the most desirable width.
In this manner ll can prmlure a box-stitching wire of substantially the same cross-sectional area as that heretofore in couuuon use and consequently the same number of feet per pound but with far greater puncturing power, or ll an hold the puncturing power substantially the same as that of the wire heretofore in common use and, by re ducingthe cross-sectional area so that its moment of inertia corresponi'lsto a size heretofore in common use, produce a wire with far more lineal feet per pound.
I claim:
As an article of manufacture, a that carbon steel stitching wire, the carbide being essentially in pearlitic form, and the ratio of width to thickness not substantially exceeding three to one or substantially less than.
one and three-quarters to one.
In testnnony whereof I have hereunto subscrlbed my name.
J BIRCHARD GREEN.
Publications (1)
Publication Number | Publication Date |
---|---|
US1667730A true US1667730A (en) | 1928-05-01 |
Family
ID=3415080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US1667730D Expired - Lifetime US1667730A (en) | of chicago |
Country Status (1)
Country | Link |
---|---|
US (1) | US1667730A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5690666A (en) * | 1992-11-18 | 1997-11-25 | Target Therapeutics, Inc. | Ultrasoft embolism coils and process for using them |
US6090125A (en) * | 1995-04-20 | 2000-07-18 | Musc Foundation For Research Development | Anatomically shaped vasoocclusive device and method of making the same |
US6102932A (en) * | 1998-12-15 | 2000-08-15 | Micrus Corporation | Intravascular device push wire delivery system |
US6136015A (en) * | 1998-08-25 | 2000-10-24 | Micrus Corporation | Vasoocclusive coil |
US6149664A (en) * | 1998-08-27 | 2000-11-21 | Micrus Corporation | Shape memory pusher introducer for vasoocclusive devices |
US6159165A (en) * | 1997-12-05 | 2000-12-12 | Micrus Corporation | Three dimensional spherical micro-coils manufactured from radiopaque nickel-titanium microstrand |
US6165140A (en) * | 1998-12-28 | 2000-12-26 | Micrus Corporation | Composite guidewire |
US6165194A (en) * | 1998-07-24 | 2000-12-26 | Micrus Corporation | Intravascular flow modifier and reinforcement device |
US6168570B1 (en) | 1997-12-05 | 2001-01-02 | Micrus Corporation | Micro-strand cable with enhanced radiopacity |
US6168615B1 (en) | 1998-05-04 | 2001-01-02 | Micrus Corporation | Method and apparatus for occlusion and reinforcement of aneurysms |
US6171326B1 (en) | 1998-08-27 | 2001-01-09 | Micrus Corporation | Three dimensional, low friction vasoocclusive coil, and method of manufacture |
US6221066B1 (en) | 1999-03-09 | 2001-04-24 | Micrus Corporation | Shape memory segmented detachable coil |
US6241691B1 (en) | 1997-12-05 | 2001-06-05 | Micrus Corporation | Coated superelastic stent |
US6293960B1 (en) | 1998-05-22 | 2001-09-25 | Micrus Corporation | Catheter with shape memory polymer distal tip for deployment of therapeutic devices |
US6352531B1 (en) | 1999-03-24 | 2002-03-05 | Micrus Corporation | Variable stiffness optical fiber shaft |
US6383204B1 (en) | 1998-12-15 | 2002-05-07 | Micrus Corporation | Variable stiffness coil for vasoocclusive devices |
US20020173839A1 (en) * | 1998-07-24 | 2002-11-21 | Leopold Eric W. | Intravascular flow modifier and reinforcement device with connected segments |
US20030191521A1 (en) * | 1998-07-24 | 2003-10-09 | Denardo Andrew J. | Intravascular flow modifier and reinforcement device |
US6638291B1 (en) | 1995-04-20 | 2003-10-28 | Micrus Corporation | Three dimensional, low friction vasoocclusive coil, and method of manufacture |
US20050027287A1 (en) * | 1999-03-24 | 2005-02-03 | O'connor Michael J. | Variable stiffness heating catheter |
US20060079926A1 (en) * | 2004-10-07 | 2006-04-13 | Rupesh Desai | Vasoocclusive coil with biplex windings to improve mechanical properties |
US20060241686A1 (en) * | 1995-04-20 | 2006-10-26 | Ferrera David A | Three dimensional, low friction vasoocclusive coil, and method of manufacture |
US20060241682A1 (en) * | 2003-12-08 | 2006-10-26 | Kurz Daniel R | Intravascular device push wire delivery system |
US20090069836A1 (en) * | 2007-08-17 | 2009-03-12 | Micrus Endovascular Corporation | Twisted primary coil for vascular therapy |
US20100069948A1 (en) * | 2008-09-12 | 2010-03-18 | Micrus Endovascular Corporation | Self-expandable aneurysm filling device, system and method of placement |
-
0
- US US1667730D patent/US1667730A/en not_active Expired - Lifetime
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6458119B1 (en) | 1992-11-18 | 2002-10-01 | Target Therapeutics, Inc. | Ultrasoft embolism devices and process for using them |
US5718711A (en) * | 1992-11-18 | 1998-02-17 | Target Therapeutics, Inc. | Ultrasoft embolism devices and process for using them |
US5826587A (en) * | 1992-11-18 | 1998-10-27 | Target Therapeutics, Inc. | Ultrasoft embolism coils and process for using them |
US5690666A (en) * | 1992-11-18 | 1997-11-25 | Target Therapeutics, Inc. | Ultrasoft embolism coils and process for using them |
US6090125A (en) * | 1995-04-20 | 2000-07-18 | Musc Foundation For Research Development | Anatomically shaped vasoocclusive device and method of making the same |
US8790363B2 (en) | 1995-04-20 | 2014-07-29 | DePuy Synthes Products, LLC | Three dimensional, low friction vasoocclusive coil, and method of manufacture |
US6638291B1 (en) | 1995-04-20 | 2003-10-28 | Micrus Corporation | Three dimensional, low friction vasoocclusive coil, and method of manufacture |
US20060241686A1 (en) * | 1995-04-20 | 2006-10-26 | Ferrera David A | Three dimensional, low friction vasoocclusive coil, and method of manufacture |
US7316701B2 (en) | 1995-04-20 | 2008-01-08 | Micrus Endovascular Corporation | Three dimensional, low friction vasoocclusive coil, and method of manufacture |
US6168570B1 (en) | 1997-12-05 | 2001-01-02 | Micrus Corporation | Micro-strand cable with enhanced radiopacity |
US20070016233A1 (en) * | 1997-12-05 | 2007-01-18 | Ferrera David A | Vasoocclusive device for treatment of aneurysms |
US6159165A (en) * | 1997-12-05 | 2000-12-12 | Micrus Corporation | Three dimensional spherical micro-coils manufactured from radiopaque nickel-titanium microstrand |
US7070608B2 (en) | 1997-12-05 | 2006-07-04 | Micrus Corporation | Vasoocclusive coil |
US6241691B1 (en) | 1997-12-05 | 2001-06-05 | Micrus Corporation | Coated superelastic stent |
US7326225B2 (en) | 1997-12-05 | 2008-02-05 | Micrus Endovascular Corporation | Vasoocclusive device for treatment of aneurysms |
US20040243168A1 (en) * | 1997-12-05 | 2004-12-02 | Ferrera David A. | Vasoocclusive device for treatment of aneurysms |
US6616617B1 (en) | 1997-12-05 | 2003-09-09 | Micrus Corporation | Vasoocclusive device for treatment of aneurysms |
US6497671B2 (en) | 1997-12-05 | 2002-12-24 | Micrus Corporation | Coated superelastic stent |
US6475169B2 (en) | 1997-12-05 | 2002-11-05 | Micrus Corporation | Micro-strand cable with enhanced radiopacity |
US6168615B1 (en) | 1998-05-04 | 2001-01-02 | Micrus Corporation | Method and apparatus for occlusion and reinforcement of aneurysms |
USRE42758E1 (en) | 1998-05-04 | 2011-09-27 | Micrus Corporation | Expandable curvilinear strut arrangement for deployment with a catheter to repair an aneurysm |
US6293960B1 (en) | 1998-05-22 | 2001-09-25 | Micrus Corporation | Catheter with shape memory polymer distal tip for deployment of therapeutic devices |
US6416541B2 (en) | 1998-07-24 | 2002-07-09 | Micrus Corporation | Intravascular flow modifier and reinforcement device |
US20020173839A1 (en) * | 1998-07-24 | 2002-11-21 | Leopold Eric W. | Intravascular flow modifier and reinforcement device with connected segments |
US6165194A (en) * | 1998-07-24 | 2000-12-26 | Micrus Corporation | Intravascular flow modifier and reinforcement device |
US6913618B2 (en) | 1998-07-24 | 2005-07-05 | Micrus Corporation | Intravascular flow modifier and reinforcement device |
US20030191521A1 (en) * | 1998-07-24 | 2003-10-09 | Denardo Andrew J. | Intravascular flow modifier and reinforcement device |
US6855155B2 (en) | 1998-07-24 | 2005-02-15 | Micrus Corporation | Intravascular flow modifier and reinforcement device |
US6656218B1 (en) | 1998-07-24 | 2003-12-02 | Micrus Corporation | Intravascular flow modifier and reinforcement device |
US6306153B1 (en) | 1998-08-25 | 2001-10-23 | Micrus Corporation | Vasoocclusive coil |
US6136015A (en) * | 1998-08-25 | 2000-10-24 | Micrus Corporation | Vasoocclusive coil |
US6149664A (en) * | 1998-08-27 | 2000-11-21 | Micrus Corporation | Shape memory pusher introducer for vasoocclusive devices |
US6171326B1 (en) | 1998-08-27 | 2001-01-09 | Micrus Corporation | Three dimensional, low friction vasoocclusive coil, and method of manufacture |
US6872218B2 (en) | 1998-12-15 | 2005-03-29 | Micrus Corporation | Variable stiffness coil for vasoocclusive devices |
US6679903B2 (en) | 1998-12-15 | 2004-01-20 | Micrus Corporation | Intravascular device push wire delivery system |
US6102932A (en) * | 1998-12-15 | 2000-08-15 | Micrus Corporation | Intravascular device push wire delivery system |
US6656201B2 (en) | 1998-12-15 | 2003-12-02 | Micrus Corporation | Variable stiffness coil for vasoocclusive devices |
US6319267B1 (en) | 1998-12-15 | 2001-11-20 | Micrus Corporation | Intravascular device push wire delivery system |
US6383204B1 (en) | 1998-12-15 | 2002-05-07 | Micrus Corporation | Variable stiffness coil for vasoocclusive devices |
US20040122502A1 (en) * | 1998-12-15 | 2004-06-24 | Kurz Daniel R. | Intravascular device push wire delivery system |
US7147618B2 (en) | 1998-12-15 | 2006-12-12 | Micrus Endovascular Corporation | Intravascular device push wire delivery system |
US6595932B2 (en) | 1998-12-28 | 2003-07-22 | Micrus Corporation | Composite guidewire |
US6165140A (en) * | 1998-12-28 | 2000-12-26 | Micrus Corporation | Composite guidewire |
US7014616B2 (en) | 1998-12-28 | 2006-03-21 | Micrus Corporation | Composite guidewire |
US6432066B1 (en) | 1998-12-28 | 2002-08-13 | Micrus Corporation | Composite guidewire |
US6551305B2 (en) | 1999-03-09 | 2003-04-22 | Micrus Corporation | Shape memory segmented detachable coil |
US6221066B1 (en) | 1999-03-09 | 2001-04-24 | Micrus Corporation | Shape memory segmented detachable coil |
US20060265036A1 (en) * | 1999-03-24 | 2006-11-23 | O'connor Michael J | Variable stiffness heating catheter |
US7066931B2 (en) | 1999-03-24 | 2006-06-27 | Micrus Corporation | Variable stiffness heating catheter |
US6352531B1 (en) | 1999-03-24 | 2002-03-05 | Micrus Corporation | Variable stiffness optical fiber shaft |
US6887235B2 (en) | 1999-03-24 | 2005-05-03 | Micrus Corporation | Variable stiffness heating catheter |
US20050027287A1 (en) * | 1999-03-24 | 2005-02-03 | O'connor Michael J. | Variable stiffness heating catheter |
US7645275B2 (en) | 1999-03-24 | 2010-01-12 | Micrus Corporation | Variable stiffness heating catheter |
US8282677B2 (en) | 1999-03-24 | 2012-10-09 | Micrus Corporation | Variable stiffness heating catheter |
US20100114270A1 (en) * | 1999-03-24 | 2010-05-06 | Micrus Corporation | Variable stiffness heating catheter |
US20060241682A1 (en) * | 2003-12-08 | 2006-10-26 | Kurz Daniel R | Intravascular device push wire delivery system |
US20060079926A1 (en) * | 2004-10-07 | 2006-04-13 | Rupesh Desai | Vasoocclusive coil with biplex windings to improve mechanical properties |
US8535345B2 (en) | 2004-10-07 | 2013-09-17 | DePuy Synthes Products, LLC | Vasoocclusive coil with biplex windings to improve mechanical properties |
US8888806B2 (en) | 2004-10-07 | 2014-11-18 | DePuy Synthes Products, LLC | Vasoocclusive coil with biplex windings to improve mechanical properties |
US20090069836A1 (en) * | 2007-08-17 | 2009-03-12 | Micrus Endovascular Corporation | Twisted primary coil for vascular therapy |
US8870908B2 (en) | 2007-08-17 | 2014-10-28 | DePuy Synthes Products, LLC | Twisted primary coil for vascular therapy |
US20100069948A1 (en) * | 2008-09-12 | 2010-03-18 | Micrus Endovascular Corporation | Self-expandable aneurysm filling device, system and method of placement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1667730A (en) | of chicago | |
US3411208A (en) | Cutting strips, cutting die knives, cutting rules and the like | |
US5795411A (en) | Ferritic stainless steel wire and steel wool | |
US3834878A (en) | Stainless steel | |
DE1533184A1 (en) | Objects with a welded wear layer | |
US2170727A (en) | Production of spindle blades | |
US2268772A (en) | Method of making ring travelers | |
DE60309275T2 (en) | Composition of a steel packaging tape and manufacturing process | |
US2209622A (en) | High speed steel | |
DE669659C (en) | Emulsions for enhancing brown coal briquettes | |
DE676430C (en) | Pad for punching leather | |
DE561506C (en) | Device for cutting threads from metal webs | |
US2110765A (en) | Drinking cup | |
US1445793A (en) | Method of preparing strands for weaving rugs and the like | |
DE925747C (en) | Process for the production of composite sheets with different layer thicknesses in zones | |
US1862348A (en) | Apparatus for skiving strip material | |
US1603755A (en) | Saw and method of making the same | |
US1912129A (en) | Treatment of silicon steel | |
CH379125A (en) | Phosphorus bronze containing manganese | |
JPS5933662B2 (en) | Steel wire rod with excellent machinability | |
US1734738A (en) | merrick | |
US2829046A (en) | Stainless steel | |
GB379858A (en) | Improvements in knives | |
DE2125108A1 (en) | Extensible zinc fiber | |
US700122A (en) | Lacing-hook. |