US1657462A - Nonsinging reamplifying circuits - Google Patents
Nonsinging reamplifying circuits Download PDFInfo
- Publication number
- US1657462A US1657462A US639169A US63916923A US1657462A US 1657462 A US1657462 A US 1657462A US 639169 A US639169 A US 639169A US 63916923 A US63916923 A US 63916923A US 1657462 A US1657462 A US 1657462A
- Authority
- US
- United States
- Prior art keywords
- frequency
- circuit
- amplifier
- energy
- feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/46—Reflex amplifiers
- H03F3/48—Reflex amplifiers with tubes only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L7/00—Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
- F23L7/002—Supplying water
- F23L7/005—Evaporated water; Steam
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B19/00—Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B19/00—Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source
- H03B19/06—Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source by means of discharge device or semiconductor device with more than two electrodes
- H03B19/08—Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source by means of discharge device or semiconductor device with more than two electrodes by means of a discharge device
- H03B19/10—Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source by means of discharge device or semiconductor device with more than two electrodes by means of a discharge device using multiplication only
Definitions
- rllhis invention relates to signaling circuits and more particularly to arrangements for amplifying weak signaling currents.
- the .energy to be amplified by passing it Iagain and again through an amplifier successively at different frequencies so that the energy is amplified a plurality of times by a single amplifier. Between each transmissionthrough the amplifier the energy is shifted in frequency in some well known manner, as for example, by modulating it with a carrier frequency.
- the method is peculiarly adapted to signaling systems such as radio receiving circuits or other forms of carrier circuits in which the signaling energy is received at a high frequency and is translated to an ordinary signaling frequency.
- the stepped-down frequency may be passed through the same amplifier each time it is stepped-down.
- the invention is peculiarly adapted to receiving apparatus of a radio or otherl carrier system it may be applied to the sending station of such a system with some economy, especially where the ordinary signaling frequency is stepped-up to a radio frequency by a plurality of steps of modulation.
- An amplier may be capable of amplifying the input energy iinpressed upon it a given number of times independently of the amount of input energy impressed upon it. If, however, the amplifler is used only to amplify a very Weak current and actually capable of amplifying an equal number of times a much larger current, it is at once apparent that a method by which the full working capacity of the amplifier may be utilized will be advantageous. Heretofore. it has been proposed to amplify very Weak signaling energy by passing it through a number of successions of amplifying devices until the output energy is great enough for the practical purposes of receiving or transmitting, as the case may be. In such a system only the last amplifier of the series, if any, will be opern ieee. serial no. 639,169.
- the entire process of several stages of amplification inay be accomplished with a single amplifier.
- the only instance in which it has been proposed to use the saine amplifier for successive ame plifications has been where a radio signal is passed through an amplifier at the receiving station, then detected, and the detected signal passed through the same amplifier. This method is limited, however, to tWo steps of aniplilication through the Same amplifier because the signal is translated from the radio frequency to the detected frequency in a single step.
- the limit of the eiiiciency of the proposed method ofv amplification is, of course, the power carrying capacity of the amplifying tube circuit. Roughly, it may be stated'that the sum of the energy of all the vsuccessive frequencies combined must not exceed the carrying capacity of the tube. 0f course, if the tube is overloaded the currents of the several frequencies passing through it will be modulated together and interfering dis toi-ted components ⁇ Will be set up.,
- ML designates a receiving circuit over which modulated carrierY or radio frequencies, for example, may be received.
- a iilter F is provided in said circuit, said lter being designed to transmit a carrier-frequency of 1,000,000 cycles plus or minus a band of 2,000 cycles representing the voice signaling wave in accordance with which the carrier is modulated.
- This total band of 4,000 cycles is impressed upon a circuit 20 leading to an amplifier fi, of any well lrnown type such as, for example, a three-element vacuum tube amplifier.
- the received band after being amplified by the amplifier A, ie
- Thismodulator may be of the usual vacuum tube type ⁇ and is-so arranged that in addition to the amplified signalmg band of 1,000,000-cycles plus or minus 2,000 cycles impressed upon its input circuit there will be a local frequency of, say,
- a second branch of the circuit 21 is provided with a filter F2 which'selects the band of frequencies represented by 100,000 cycles of 100,000 cycles.
- the input and output transformers of the amplifier A may be assumed to be any type of arrangement capable of transmitting a wide range of frequencies. Owing to the difficulty of designing transformers capable of efficient transmission over a wide range, it will be understood that the windings conventionally indicated in the drawing may represent, in actual practice, a multiple transformer arrangement of 'which the component units are each etlicient over a particular frequency range narrower than that over which the whole transformer operates.
- An amplifying system comprising an amplifier, an incomin circuit and an outgoing circuit, a plura ity of feed-back connections between said incoming and outgoin circuits, means in each of said feed-bac connections for producing a change in the frequency of energy transmitted thereover which is different from that of each of the other connections, and means in each of said feed-back connections for selecting a given frequency from the outgoing circuit and im pressing a different frequency upon the incoming circuit.
- An amplifying system comprising an amplifier, an incoming circuit and an out going circuit, a plura ity of feed-back connections between said incoming and outgoing circuits, means in each of said feed-back connections for producing a change in the frequency of energy transmitted thereover which is different from that of each of the other connections, and wave filters in each ill) of said feed-back connections for selecting a given frequency from the outgoing circuit and impressing a different frequency upon the incoming circuit.
- An amplifying system comprising an amplifier, an incoming and an outgoing circuit, means to impress high frequency signais of small energy upon said incoming circuitfa feed-back connection from said outgoing circuit to said incoming circuit, means in said feed-hack connection to step down lthe amplified energy to an intermediate frequency stage, means in said feed-back connection to impress the intermediate frequency energy upon said amplifier for furt er amplification, a second feed-back connection from said outgoing circuit to said incoming circuit, means in said second feedhack connection to further 'step down the frequency after the second stage of amplification to a third frequency, and means to impress the re-stepped-down energy upon the incoming circuit of said amplifier.
- An amplifying system comprising an amplifier, an incoming circuit and an outgoing circuit, means to impress high fre ⁇ quency signals of small energy upon said incoming circuit of said amplifier, a feedback connection from said outgoing circuit to said incoming circuit, means in said feedhack circuit to beat the amplified high frequency signal energy with energy of another frequency to produce a signal Wave of lower frequency than the original signal wave,
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Amplifiers (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US639169A US1657462A (en) | 1923-05-15 | 1923-05-15 | Nonsinging reamplifying circuits |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US639169A US1657462A (en) | 1923-05-15 | 1923-05-15 | Nonsinging reamplifying circuits |
US639176A US1646438A (en) | 1923-05-15 | 1923-05-15 | Harmonic generator |
Publications (1)
Publication Number | Publication Date |
---|---|
US1657462A true US1657462A (en) | 1928-01-31 |
Family
ID=24563041
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US639169A Expired - Lifetime US1657462A (en) | 1923-05-15 | 1923-05-15 | Nonsinging reamplifying circuits |
US639176A Expired - Lifetime US1646438A (en) | 1923-05-15 | 1923-05-15 | Harmonic generator |
US154772A Expired - Lifetime US1646439A (en) | 1923-05-15 | 1926-12-14 | Harmonic generator |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US639176A Expired - Lifetime US1646438A (en) | 1923-05-15 | 1923-05-15 | Harmonic generator |
US154772A Expired - Lifetime US1646439A (en) | 1923-05-15 | 1926-12-14 | Harmonic generator |
Country Status (3)
Country | Link |
---|---|
US (3) | US1657462A (ru) |
DE (1) | DE216132C (ru) |
FR (2) | FR581301A (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2710920A (en) * | 1951-05-18 | 1955-06-14 | Lenkurt Electric Co Inc | Multichannel frequency generator |
US2748267A (en) * | 1952-05-16 | 1956-05-29 | Hazeltine Research Inc | Superregenerative superheterodyne wave-signal receiver |
US2770722A (en) * | 1955-06-30 | 1956-11-13 | Rca Corp | Time shift re-entrant amplifier system for carrier pulses |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2698385A (en) * | 1948-06-04 | 1954-12-28 | Sylvania Electric Prod | Frequency multiplication system |
US2664510A (en) * | 1950-10-12 | 1953-12-29 | Rca Corp | Frequency multiplier circuit |
-
0
- DE DENDAT216132D patent/DE216132C/de active Active
-
1923
- 1923-05-15 US US639169A patent/US1657462A/en not_active Expired - Lifetime
- 1923-05-15 US US639176A patent/US1646438A/en not_active Expired - Lifetime
-
1924
- 1924-05-05 FR FR581301D patent/FR581301A/fr not_active Expired
- 1924-05-09 FR FR29091D patent/FR29091E/fr not_active Expired
-
1926
- 1926-12-14 US US154772A patent/US1646439A/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2710920A (en) * | 1951-05-18 | 1955-06-14 | Lenkurt Electric Co Inc | Multichannel frequency generator |
US2748267A (en) * | 1952-05-16 | 1956-05-29 | Hazeltine Research Inc | Superregenerative superheterodyne wave-signal receiver |
US2770722A (en) * | 1955-06-30 | 1956-11-13 | Rca Corp | Time shift re-entrant amplifier system for carrier pulses |
Also Published As
Publication number | Publication date |
---|---|
FR29091E (fr) | 1925-05-20 |
US1646438A (en) | 1927-10-25 |
US1646439A (en) | 1927-10-25 |
FR581301A (fr) | 1924-11-26 |
DE216132C (ru) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2405765A (en) | Radio repeater | |
US1657462A (en) | Nonsinging reamplifying circuits | |
US2151464A (en) | Restricted frequency transmission | |
US1361488A (en) | Plural modulation system | |
US2220689A (en) | Oscillatory circuits | |
US2210968A (en) | Split side band amplifier circuit | |
US2397157A (en) | Wave length modulation system | |
US3002161A (en) | Transmitter | |
US1836594A (en) | Radio signaling system | |
US3648186A (en) | Amplification system | |
US2507178A (en) | Single side band modulator | |
US2525151A (en) | Wave-signal receiver | |
US2315442A (en) | Negative feedback detector | |
US1763751A (en) | Radio receiving system | |
US1517057A (en) | Vacuum-tube amplifier | |
US2241933A (en) | Utilization of broadcast waves for obtaining high frequency carrier | |
US1502815A (en) | High-frequency multiplex signaling system | |
US2005084A (en) | Transmission system | |
US1677797A (en) | System of reception for modulated-wave telegraphy and telephony | |
US2223188A (en) | Signaling system | |
US1674696A (en) | Radio receiving system | |
US1994048A (en) | Single side band transmission | |
US2230232A (en) | Phase and frequency modulation | |
US1403841A (en) | Frequency-control system | |
US1738000A (en) | Means for and method of volume control of transmission |