US1605933A - Duplex telegraph system - Google Patents

Duplex telegraph system Download PDF

Info

Publication number
US1605933A
US1605933A US748658A US74865824A US1605933A US 1605933 A US1605933 A US 1605933A US 748658 A US748658 A US 748658A US 74865824 A US74865824 A US 74865824A US 1605933 A US1605933 A US 1605933A
Authority
US
United States
Prior art keywords
telegraph system
line
impedance
relay
duplex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US748658A
Inventor
Danforth K Gannett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
American Telephone and Telegraph Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Telephone and Telegraph Co Inc filed Critical American Telephone and Telegraph Co Inc
Priority to US748658A priority Critical patent/US1605933A/en
Application granted granted Critical
Publication of US1605933A publication Critical patent/US1605933A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1407Artificial lines or their setting

Definitions

  • the prin cipa'l object of my invention is to provide a new and improved duplex telegraph system.
  • Another; object of my inven-- tron is to provide a telegraph system with bridge arms of such relative impedance values that the received energy shall go in large measure to the receiving element.
  • Another object of my invention is 130 provide a differential polar system with certain parts proportioned so that the received currents shalll b e highly effective in the production of signals.
  • this is a diagram showing my invention embodied in a differential duplex system.
  • a metallic line is shown extending to the right and having the impedance Z.
  • the symbol S designates a polar receiving relay, with windings connected as shown, the various connections of the windings having the respective number of turns indicated by the letters n and nzKn where K is a properly chosen constant of value less than unity.
  • the transmitter T is connected to the relay S differentially as shown in the drawing.
  • the relations indicated in the drawing are the conditions for exact balance. It has been a common practice to make K equal approximately to unity. However, according to my invention, K is made less than unity and thereby the efiective power available in the relay for receiving is increased. The truth of this statement will become apparent from the following discussion.
  • K is made equal to .2, for example, the power available for the relay is increased 67 per cent. as compared with K l. It is not practicable to make K infinitely small but a large proportion of the theoretical maximum increase in power indicated by the formula when K O, is realizable without exceeding practical limits.
  • the polar receiving relay S is always balanced for electromotive forces applied by the transmitter T, but the received electromotive forces coming in over the line set up fluxes in the relay core with an eifect which is substantially cumulative in the various parts of the windings, so that the received current gives a substantial development of power in the receiving relay.
  • an artificial line having its ratio to the geographical line different from unity and in combinationtwo inductance windings having their turns in the same ratio whereby the transmitting element 01" the system is balancedin its elfect on the adjacent receiving element.
  • an artificial line andv inductance elements having unequal values related (as compared with equal values) to increase the proportion of received power inthe receiving element, but to preserve the balance of the transmitting element on the receiving element.
  • an artificial line having its ratio to the geographical line different from unity, and the receiving element comprising inductances having their windings inthis same ratio;
  • an artificial line having its; impedance in: a ratio to the geographical line different from unity, and a receiving element comprising inductances having impedance values in the same ratio.
  • an artificial line having the ratio of its impedance to the impedance of. the geographical line a real number different from unity, and a receiving element having two inductances with their turns in. the same ratio;

Description

*Nov. 9 1926.
D. K. GANNETT- I DUPLEJ C TELEGRAPH SYSTEM Original Filed Dec. 24, 192;
INVENTOR E Gan/4626 BY 6 ATTORN-EY Patented Nov. 9, 192a fuairsosraras ea'raar assess.
v DANFORTH. K. GANNETT, OF JACKSON HEIGHTS, NEW YORK, ASSIGNOP1 TO AMERICAN TELEPHONE AND TELEGRAPH COMPANY, A CORPORATION OF NEW YORK.
ntirnnx TELEGRAPH SYSTEM.
gorig'inal applieation filed December 24, 1921, Serial lfi'o. 524,671. Divided and this application'iiled November 8, 1924.
The prin cipa'l object of my invention is to provide a new and improved duplex telegraph system. Another; object of my inven-- tron is to provide a telegraph system with bridge arms of such relative impedance values that the received energy shall go in large measure to the receiving element. Another object of my invention is 130 provide a differential polar system with certain parts proportioned so that the received currents shalll b e highly effective in the production of signals. These and other objects of my invention will become apparent on consideration of an example which I will disclose by way of illustration. It will be understood that the invention is defined in the appended claims and the following description will refer specifically to this example of the invention.
Referring to the accompanying drawing, this is a diagram showing my invention embodied in a differential duplex system.
A metallic line is shown extending to the right and having the impedance Z. The symbol S designates a polar receiving relay, with windings connected as shown, the various connections of the windings having the respective number of turns indicated by the letters n and nzKn where K is a properly chosen constant of value less than unity.
A balancing artificial line is provided having the impedance Z =KZ.
The transmitter T is connected to the relay S differentially as shown in the drawing. The relations indicated in the drawing are the conditions for exact balance. It has been a common practice to make K equal approximately to unity. However, according to my invention, K is made less than unity and thereby the efiective power available in the relay for receiving is increased. The truth of this statement will become apparent from the following discussion.
Designate as 21 the current transmitted by the transmitting circuit .T to the line whose impedance is Z and designate as i the current transmitted to the artificial line whose impedance is Z Then The magnetizing flux in the relay due to i is A'Z 2n where A is a constant. The flux Serial No. 748,658.
a due to 2' is Ai -2Kn. The negative sign indicates that is of opposite polarity to The resultant flux due to both currents is 1 +ra i-iteaaia-2x. But from (1), i so that I f I "+..=At2n-A%-2Kn=o; 7
maximum power will be absorbed in relay S when the impedance Z of its windings in series 15 equal to the impedance of the connecting circuit, or when Z Z +Z (2) When this relation is true, the power utilized in the relay may be easily shown to be In this expression, 6 is the received voltage of the line, acting in series with Z. From (3) it is evident that the smaller K is made,-
the larger is E. If K is made equal to .2, for example, the power available for the relay is increased 67 per cent. as compared with K l. It is not practicable to make K infinitely small but a large proportion of the theoretical maximum increase in power indicated by the formula when K O, is realizable without exceeding practical limits.
Thus it will be seen that the polar receiving relay S is always balanced for electromotive forces applied by the transmitter T, but the received electromotive forces coming in over the line set up fluxes in the relay core with an eifect which is substantially cumulative in the various parts of the windings, so that the received current gives a substantial development of power in the receiving relay.
This application is a division of my app\lication, Serial No. 524,671, filed December 24;, 1921.
I claim:
1. In aduplex telegraph system, an artificial line having its ratio to the geographical line different from unity and in combinationtwo inductance windings having their turns in the same ratio whereby the transmitting element 01" the system is balancedin its elfect on the adjacent receiving element.
2. In a duplex telegraph system, an artificial line andv inductance elements having unequal values related (as compared with equal values) to increase the proportion of received power inthe receiving element, but to preserve the balance of the transmitting element on the receiving element.
3. In a duplex telegraph system, an" artificial line having its ratio to the geographical line different from unity, and the receiving element comprising inductances having their windings inthis same ratio;
at. In a duplex telegraph system, an artificial line having its; impedance in: a ratio to the geographical line different from unity, and a receiving element comprising inductances having impedance values in the same ratio.
In a duplex telegraph system, an artificial line having the ratio of its impedance to the impedance of. the geographical line a real number different from unity, and a receiving element having two inductances with their turns in. the same ratio;
6. In combination a geographieai line, .a; difierenti-al pole-1" relayv with unequal wind ings and an artificial line-withits; impede I ance; value in the same: ratio to; said; em graphical line as theimpedance ratio-be? tween, S2l/lCl' ,W1I1d1I1gS:, y
In testimony, whereof, I v have si g'nedz I name t0:thi$5 specification; this, 1th: N0vember,"1'924; is H la I I: DANFORTHJK.
US748658A 1921-12-24 1924-11-08 Duplex telegraph system Expired - Lifetime US1605933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US748658A US1605933A (en) 1921-12-24 1924-11-08 Duplex telegraph system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52467121A 1921-12-24 1921-12-24
US748658A US1605933A (en) 1921-12-24 1924-11-08 Duplex telegraph system

Publications (1)

Publication Number Publication Date
US1605933A true US1605933A (en) 1926-11-09

Family

ID=27061570

Family Applications (1)

Application Number Title Priority Date Filing Date
US748658A Expired - Lifetime US1605933A (en) 1921-12-24 1924-11-08 Duplex telegraph system

Country Status (1)

Country Link
US (1) US1605933A (en)

Similar Documents

Publication Publication Date Title
GB481255A (en) Improvements in or relating to magnetic amplifiers
US2510075A (en) Modulator of the dry type
US1605933A (en) Duplex telegraph system
US2244799A (en) Electrical frequency translating device
US2184978A (en) Carrier current telegraphy
US1809839A (en) Transformer and transformer system
US2294735A (en) Carrier current amplifier apparatus
US1584684A (en) Duplex system of telegraphy
US1584682A (en) Duplex telegraph system
US1628983A (en) Electrical network
US1533178A (en) Artificial electric line
US1858037A (en) Zero correcting circuit
US1734113A (en) Telephone repeater circuits
US1880796A (en) Vacuum tube telegraph repeater
US1665683A (en) Telephone system
US1776310A (en) Two-way negative-impedance repeater
US1866261A (en) Signal transmission system
US2116172A (en) Composite set
US1584681A (en) Metallic duplex system of telegraphy
US1809722A (en) Superposed telegraph system
US1501103A (en) Conjugate signaling circuits
US1693653A (en) Battery supply circuit
US1472451A (en) Phantomed signaling circuits
US1472610A (en) Transmission circuits
US1458193A (en) Multiple balancing arrangement for multiplex transmission