US1501078A - High-speed compressor - Google Patents

High-speed compressor Download PDF

Info

Publication number
US1501078A
US1501078A US512269A US51226921A US1501078A US 1501078 A US1501078 A US 1501078A US 512269 A US512269 A US 512269A US 51226921 A US51226921 A US 51226921A US 1501078 A US1501078 A US 1501078A
Authority
US
United States
Prior art keywords
cylinders
suction
valve
low pressure
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US512269A
Inventor
Voss Johann Heinrich Hermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US512269A priority Critical patent/US1501078A/en
Application granted granted Critical
Publication of US1501078A publication Critical patent/US1501078A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/02Multi-stage pumps of stepped piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing
    • F04B39/0292Lubrication of pistons or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members

Definitions

  • My invention relates to high-speed compressors for ammonia, sulphurous acid, metallic chloride, carbonic acid, air and other fluids.
  • My improved compressor comprises a gas tight crank case, high and low pressure cylinders provided with'differential pistons and connected with said crank case and means for forced lubrication through bores in the crank shaft to which are connected bores for supplying lubricant under pressure to the main and crank pin bearings.
  • the connecting rods are provided with bores for supplying the gudgeon pins of the differential pistons with lubricant from the crank pins.
  • compressors comprising a gas tight crank case were exclusively constructed for splash lubrication which, however, has the following drawbacks:
  • the cylinders are so arranged that only the high pressure cylinder is connected with the crank case. In this cylinder, even the suction pressure exceeds the pressure in the crank case.
  • the lubricant which in the old compressors has a tendency to creep into the cylinder through the piston packing, here tends, on the contrary, to flow from the cylinder into the crankcase. This also facilitates greatly the separation of the small quantities of lubricant which are drawn along with the gas.
  • Fig. 2 is a 'cross' section of my improved compressor, taken on line 2-2 of Fig. 1,
  • Fig. 3 is a section of the valve chest on a larger scale, illustrating a modified valve construction.
  • the fluid to be compressed is drawn in through the suction pipe 1 by the low pressure pistons 6.
  • the uid passes a suction valve 2 and a port 3 in the wall of the low pressure cylinders 3 and 4, respectively.
  • the fluid is compressed and forced through the delivery valves 8 of the low pressure cylinders to the suction valves 9 of the high pressure cylinders 7 which it enters through ports 10.
  • the compressed fluid 1s forced into the delivery pipe 12 through the delivery valves 11 of the high pressure cylinders 7.
  • the valves are of the annular plate type and inserted into a sleeve 13 which 1s divided underneath the delivery valve 8 of the low pressure cylinder.
  • valves together with their seats, are inserted into the respective parts of the sleeve 13 connected a common screw bolt and firmly pressed on shoulders formed in said sleeve.
  • the sleeve is ground into the valve chest and held by a yoke 14 on which pressure is e;- erted by means of a screw 15 supported in a threaded portion of the valve chest cover 16.
  • valve arrangement illustrated in Fig. 3 differs from the one just described in that there are only three valvesinstead of four,
  • the low pressure cylinders are insulated so as to maintain the suction gas in a cold and heavy conditionand the low pressure 'stage operates at a good volumetric efiiciency.
  • the high pressure cvlinders are provided with cooling water jackets 19. The water in this jacket does not act on the suction gas which must be prevented, said gas being colder than the cooling water.
  • the compressed gas does not act on the suction gas which must be prevented, said gas being colder than the cooling water.
  • the compressed gas to act on the suction gas and to heat it, as the delivery pipe is at a considerable distance from the suction pipe. As will appear it is prevented by all possible means that the suction gas absorbs heat from the walls which are in contact with the gas compressed to final pressure, which would reduce the volumetric efficiency.
  • differential pistons By the arrangement of differential pistons according to my invention, it is possibleto separate the hot and cold gases by very simple means, prevent heating of the suction gas and remove the heat of compression and friction which remains in the cylinder walls.
  • the rapid removal of heat is particularly important at high speed and very effective in my improved compressor, as the circumference of the high pressure cylinders is completely surrounded by water.
  • crank case 29 is gas tight and provided with covers 30 for inspection.
  • Supported in the case is the crank shaft 20 with the crank pins 22 with which connecting rods 22 are cooperating.
  • a stufling box 23, 24 At the front end of the crank shaft, which, in the present instance, is rotated by an electromotor (not shown) of 20 H. P. at 600 revolutions per minute, is provided a stufling box 23, 24 which is placed on the crank case.
  • the lubricant is supplied under pressure through the neck ring 25.
  • the crank shaft is pro- 'ous modifications will occur to a person skilled in the art.
  • a stage compressor in combination, a low and a high pressure cylinder, a stepped piston in said cylinders, means for reciprocating said pistons, a valve case connected with said cylinders, suction and delivery valves in said case, and means for supplying fluid to, and discharging fluid from said valve case, said low pressure cylinder being rovided with an insulatingjacket, and said high pressure cylinder with a cooling jacket.
  • a stage compressor in combination, a low pressure and a high pressure cylinder, a stepped piston in said cylinders, means for reciprocating said pistons, a valve case connected with said cylinders, suction and delivery valves in said case a cold suction pipe t one end, and a hot delivery pipe at the opposite end of said case, said low pressure cylinder being provided with an insulatin jacket, and said high pressure cylinder with a cooling acket.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

July 15, 1924 1501,5078
J, H. ,H. VOSS I HIGH SPEED COMPRESSOR L Filed Nov. 1921 2 Sheets-Sheet 1 Patented July 15, 1924.
" TED STATES JOHANN HEINRICH HERJIANN VOSS, OF NEW YORK, N. Y.
HIGH-SPEED COMPRESSOR.
Application filed November 2, 1921. Serial No. 512,269.
To all whom it may concern:
Be it known that I, JOHANN HEINRICH HERMANN Voss, a citizen of the United States of America, residing at 154 Nassau Street, New York, N. Y., have invented certain new and useful Improvements in High- Speed Compressors, of which the following is a specification. I
My invention relates to high-speed compressors for ammonia, sulphurous acid, metallic chloride, carbonic acid, air and other fluids.
My improved compressor comprises a gas tight crank case, high and low pressure cylinders provided with'differential pistons and connected with said crank case and means for forced lubrication through bores in the crank shaft to which are connected bores for supplying lubricant under pressure to the main and crank pin bearings. The connecting rods are provided with bores for supplying the gudgeon pins of the differential pistons with lubricant from the crank pins. I
Heretofore, compressors comprising a gas tight crank case were exclusively constructed for splash lubrication which, however, has the following drawbacks:
1. The lubricant becomes frothy by the continuous stirring.
2. It is drawn into the cylinders of the compressor, as during the suction stroke the pressure in the crank case exceeds that in the cylinders.
The consequence is that in compressors the number of revolutions of which is as low as 100 to 150 per minute, troubles through failure of lubrication frequently occur while at higher numbers of revolutions the oil is altogether drawn out of the crank case in a few hours, for instance, at the rate of 7 gallons in 8 hours, and passes into the condensing and vaporizing spaces of the refrigerating machine.
To overcome this drawback, I provide my improved compressor with differential istons which operate in two stages in hlgh by and low pressure cylinders. The cylinders are so arranged that only the high pressure cylinder is connected with the crank case. In this cylinder, even the suction pressure exceeds the pressure in the crank case. In consequence,'the lubricant which in the old compressors has a tendency to creep into the cylinder through the piston packing, here tends, on the contrary, to flow from the cylinder into the crankcase. This also facilitates greatly the separation of the small quantities of lubricant which are drawn along with the gas.
By this combination of differential pistons with high pressure cylinders and forced lubrication, it is possible to provide a high speed compressor which was impracticable heretofore. The same advantage is achieved where my improved compressor is used for compressing air. The high speed, the more effective lubrication and the facilitated separation of the oil are particularly important when compressing air for the purpose of obtaining its constituents, oxygen, etc. In this case, the low pressure cylinder may be provided with a cooling water jacket.
In the drawings aflixed to this specification and forming part thereof, a compressor embodying my invention is illustrated diagrammatically by way of example. In the drawings- Fig. 1 is a longitudinal section,
Fig. 2 is a 'cross' section of my improved compressor, taken on line 2-2 of Fig. 1,
Fig. 3 is a section of the valve chest on a larger scale, illustrating a modified valve construction.
The fluid to be compressed is drawn in through the suction pipe 1 by the low pressure pistons 6. The uid passes a suction valve 2 and a port 3 in the wall of the low pressure cylinders 3 and 4, respectively. Here, the fluid is compressed and forced through the delivery valves 8 of the low pressure cylinders to the suction valves 9 of the high pressure cylinders 7 which it enters through ports 10. The compressed fluid 1s forced into the delivery pipe 12 through the delivery valves 11 of the high pressure cylinders 7. The valves are of the annular plate type and inserted into a sleeve 13 which 1s divided underneath the delivery valve 8 of the low pressure cylinder. The valves, together with their seats, are inserted into the respective parts of the sleeve 13 connected a common screw bolt and firmly pressed on shoulders formed in said sleeve. The sleeve is ground into the valve chest and held by a yoke 14 on which pressure is e;- erted by means of a screw 15 supported in a threaded portion of the valve chest cover 16.
The valve arrangement illustrated in Fig. 3 differs from the one just described in that there are only three valvesinstead of four,
the delivery valve of the low pressure cylinder and the suction valve of the high pressure cylinder being combined into a valve 2'. i
The low pressure cylinders are insulated so as to maintain the suction gas in a cold and heavy conditionand the low pressure 'stage operates at a good volumetric efiiciency. The high pressure cvlinders are provided with cooling water jackets 19. The water in this jacket does not act on the suction gas which must be prevented, said gas being colder than the cooling water. Nor is it possible for the compressed gas to act on the suction gas and to heat it, as the delivery pipe is at a considerable distance from the suction pipe. As will appear it is prevented by all possible means that the suction gas absorbs heat from the walls which are in contact with the gas compressed to final pressure, which would reduce the volumetric efficiency. In high speed ammonia compressors for ice making machines the loss of volumetric efliciency owing to this cause is particularly high as an effective removal of the heat of compression and a reduction of that heat is counteracted by the fact that the cooling water for the compressed gas acts as a heating medium on the suction gas, this again increasing the heat of compression.
By the arrangement of differential pistons according to my invention, it is possibleto separate the hot and cold gases by very simple means, prevent heating of the suction gas and remove the heat of compression and friction which remains in the cylinder walls. The rapid removal of heat is particularly important at high speed and very effective in my improved compressor, as the circumference of the high pressure cylinders is completely surrounded by water.
The crank case 29 is gas tight and provided with covers 30 for inspection. Supported in the case is the crank shaft 20 with the crank pins 22 with which connecting rods 22 are cooperating. At the front end of the crank shaft, which, in the present instance, is rotated by an electromotor (not shown) of 20 H. P. at 600 revolutions per minute, is provided a stufling box 23, 24 which is placed on the crank case. The lubricant is supplied under pressure through the neck ring 25. The crank shaft is pro- 'ous modifications will occur to a person skilled in the art.
I claim:
1. In a stage compressor, in combination, a low and a high pressure cylinder, a stepped piston in said cylinders, means for reciprocating said pistons, a valve case connected with said cylinders, suction and delivery valves in said case, and means for supplying fluid to, and discharging fluid from said valve case, said low pressure cylinder being rovided with an insulatingjacket, and said high pressure cylinder with a cooling jacket.
2. In a stage compressor, in combination, a low pressure and a high pressure cylinder, a stepped piston in said cylinders, means for reciprocating said pistons, a valve case connected with said cylinders, suction and delivery valves in said case a cold suction pipe t one end, and a hot delivery pipe at the opposite end of said case, said low pressure cylinder being provided with an insulatin jacket, and said high pressure cylinder with a cooling acket.
'In testimony whereof I aflix my signature.
I JOHANN HEINRICH HERMANN VOSS.
US512269A 1921-11-02 1921-11-02 High-speed compressor Expired - Lifetime US1501078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US512269A US1501078A (en) 1921-11-02 1921-11-02 High-speed compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US512269A US1501078A (en) 1921-11-02 1921-11-02 High-speed compressor

Publications (1)

Publication Number Publication Date
US1501078A true US1501078A (en) 1924-07-15

Family

ID=24038385

Family Applications (1)

Application Number Title Priority Date Filing Date
US512269A Expired - Lifetime US1501078A (en) 1921-11-02 1921-11-02 High-speed compressor

Country Status (1)

Country Link
US (1) US1501078A (en)

Similar Documents

Publication Publication Date Title
US2427638A (en) Compressor
US3300997A (en) Oil free refrigerant compressor
CA1048463A (en) Compressor for a refrigerant gas
US3455791A (en) Vapor compression distillation with lobe ring compressor
US1501078A (en) High-speed compressor
US2138093A (en) Compressor
US1985240A (en) Force feed cooling system for internal combustion engines
US2517367A (en) Gas compressor
US2899130A (en) Compressor
US2650018A (en) Compressor
US1965198A (en) Compressor lubricating system
US2695132A (en) Compressor
CN209385306U (en) A kind of high revolving speed compressor set of reciprocating-piston
US2293548A (en) Pressure gas generator
US2322874A (en) Compressor oil cooling system
US2211547A (en) Production of liquefied chlorine gas
US1245643A (en) Air-compressor.
KR20220055448A (en) Piston compressor and method for operating the same
US1474549A (en) Internal-combustion engine
US1927497A (en) Pumping mechanism
US938004A (en) Combined air compressor and intercooler.
US545032A (en) Condensing- pump
JP2019027356A (en) Oil-free reciprocating compressor
US2332106A (en) Engine
US2915241A (en) Compressor