US11874159B2 - Ultrasonic sensor - Google Patents

Ultrasonic sensor Download PDF

Info

Publication number
US11874159B2
US11874159B2 US17/616,985 US202017616985A US11874159B2 US 11874159 B2 US11874159 B2 US 11874159B2 US 202017616985 A US202017616985 A US 202017616985A US 11874159 B2 US11874159 B2 US 11874159B2
Authority
US
United States
Prior art keywords
acoustic matching
matching layer
piezoelectric element
ultrasonic sensor
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/616,985
Other versions
US20220163378A1 (en
Inventor
Tomoki Masuda
Yudai Ishizaki
Hidetomo Nagahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Assigned to PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. reassignment PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISHIZAKI, YUDAI, MASUDA, TOMOKI, NAGAHARA, HIDETOMO
Publication of US20220163378A1 publication Critical patent/US20220163378A1/en
Application granted granted Critical
Publication of US11874159B2 publication Critical patent/US11874159B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present disclosure mainly relates to an ultrasonic sensor that transmits and receives ultrasonic waves.
  • the difference in acoustic impedance (the product of the density of each substance and the speed of sound) between different substances is small, the ultrasonic waves propagates through an interface between the two substances, but if the difference in acoustic impedance is large, a ratio of the ultrasonic waves being reflected at the interface becomes higher than that of propagating. Therefore, as the difference in acoustic impedance decreases, energy is propagated with higher efficiency.
  • piezoelectric elements used for ultrasonic sensors are generally made of ceramics (having a high density and a high acoustic velocity), and the density and the speed of sound in gas such as air in which the ultrasonic waves propagate are significantly smaller than those of ceramics. Therefore, the energy propagation efficiency from the piezoelectric element to the gas is significantly low.
  • Z1 is an acoustic impedance of the piezoelectric element
  • Z2 is an acoustic impedance of the acoustic matching layer
  • Z3 is an acoustic impedance of the gas in which the ultrasonic waves propagate.
  • an energy loss of the ultrasonic waves propagating through the acoustic matching layer needs to be suppressed low.
  • a factor of the energy loss of the ultrasonic wave propagating inside the acoustic matching layer is that the acoustic matching layer is plastically deformed and the energy is dissipated as heat. Therefore, the substance used for the acoustic matching layer is required to be highly elastic.
  • the acoustic impedance Z2 of the acoustic matching layer needs to reduce the acoustic impedance such that the acoustic impedance is brought close to the acoustic impedance Z3 of the gas.
  • Substances exhibiting a low acoustic impedance mean that the speed of sound is low or the density is low, and in general, many such substances are easily deformed and are not suitable for the acoustic matching layer.
  • the acoustic impedance of the solid piezoelectric element differs from the acoustic impedance of the gas by about five orders of magnitude, and in order to satisfy the formula (1), the acoustic impedance of the acoustic matching layer needs to be lowered to about three orders of magnitude of the acoustic impedance of the piezoelectric element.
  • Z1 is an acoustic impedance of the piezoelectric element
  • Z2 is an acoustic impedance of the first acoustic matching layer
  • Z3 is an acoustic impedance of the second acoustic matching layer
  • Z4 is an acoustic impedance of the gas.
  • the second acoustic matching layer that makes ultrasonic waves propagate to the gas is desirably made of a very lightweight and hard material, and a foamed resin having relatively high elasticity has been used (see, for example, PTL 1).
  • a resin material is used as a first acoustic matching layer and a foamed resin material is used as a second acoustic matching layer in order to improve characteristics of an ultrasonic sensor.
  • the first acoustic matching layer is made of resin material and has a very large difference in expansion coefficient from a sensor housing made of inorganic material such as metal, peeling occurs at a bonding interface due to a temperature change, and deterioration of reliability characteristics of an ultrasonic sensor becomes a problem.
  • the density of the first acoustic matching layer is controlled by densely filling a thermosetting material such as an epoxy resin with hollow filler such as glass balloons, and meanwhile, a ratio of resin is reduced to achieve low thermal expansion to thereby solve the bonding problem.
  • a thermosetting material such as an epoxy resin
  • hollow filler such as glass balloons
  • the epoxy resin for obtaining the first acoustic matching layer has a density of about 1 g/cm 3 , but a density of less than 1 g/cm 3 can be obtained by dispersing a large amount of hollow filler.
  • the density becomes very difficult to be achieved.
  • the present disclosure provides an ultrasonic sensor that achieves both excellent sensor characteristics and durability while securing bonding properties with a first acoustic matching layer having a density exceeding 1 g/cm 3 .
  • An ultrasonic sensor of the present disclosure includes: a piezoelectric element; and a plurality of acoustic matching layers including a first acoustic matching layer laminated and bonded to the piezoelectric element, in which the first acoustic matching layer includes a thermoplastic resin, and the thermoplastic resin is injected to the first acoustic matching layer from a thickness direction of the first acoustic matching layer.
  • the first acoustic matching layer is made of the thermoplastic resin injected from the thickness direction of the first acoustic matching layer, a coefficient of thermal expansion is reduced in a flow direction of the resin.
  • this flow direction with the longitudinal direction of the piezoelectric element and then performing bonding, stress applied to the piezoelectric element generated in a course of temperature change such as thermal shock can be reduced, and the ultrasonic sensor having excellent characteristics can be provided.
  • FIG. 1 is a schematic cross-sectional view of an ultrasonic sensor according to an exemplary embodiment.
  • FIG. 2 is a plan view illustrating a bonding direction of a piezoelectric element and one acoustic matching layer of the ultrasonic sensor according to the exemplary embodiment.
  • FIG. 1 is a cross-sectional view of an ultrasonic sensor according to the exemplary embodiment.
  • Ultrasonic sensor 1 includes piezoelectric element 7 and a plurality of acoustic matching layers including first acoustic matching layer 2 laminated and bonded to piezoelectric element 7 .
  • first acoustic matching layer 2 , second acoustic matching layer 5 , and piezoelectric element 7 are provided.
  • Piezoelectric element 7 is made of piezoelectric ceramics and is polarized in the thickness direction. Piezoelectric element 7 is bonded to the inside of top plate 6 a of metal housing 6 which is bottomed and has a tubular shape. Further, piezoelectric element 7 is a rectangular parallelepiped having a rectangular bonding surface with top plate 6 a.
  • First acoustic matching layer 2 includes skin 3 and core 4 , and is bonded to the outer surface of top plate 6 a of metal housing 6 , and second acoustic matching layer 5 is bonded to first acoustic matching layer 2 .
  • first acoustic matching layer 2 As a material suitable for first acoustic matching layer 2 in the present disclosure, a density of 1.0 g/cm 3 or more and 1.5 g/cm 3 or less is essential for matching acoustic impedance thereof with that of second acoustic matching layer 5 and reducing the internal loss. Furthermore, in order to reduce peeling of the bonding interface due to a difference in the coefficients of thermal expansion and the stress applied to piezoelectric element 7 , the flow direction of the molded resin of first acoustic matching layer 2 needs to be in parallel in bonding with the longitudinal direction (a direction in which thermal expansion is large) of piezoelectric element 7 formed in a rectangular parallelepiped.
  • first acoustic matching layer 2 In order to satisfy these requirements, it is required to mold first acoustic matching layer 2 from the thickness direction and to perform bonding and fixing in a manner that the flow direction of first acoustic matching layer 2 from an injection port is parallel with the longitudinal direction of piezoelectric element 7 .
  • metal housing 6 is interposed between piezoelectric element 7 and first acoustic matching layer 2 , but because the difference in the coefficients of thermal expansion between piezoelectric element 7 and metal housing 6 is substantially the same, the relationship between piezoelectric element 7 and first acoustic matching layer 2 is described including the case where metal housing 6 is not provided.
  • FIG. 2 is a plan view illustrating a state in which piezoelectric element 7 and first acoustic matching layer 2 are bonded to metal housing 6 .
  • First acoustic matching layer 2 includes skin 3 and core 4 as illustrated in FIG. 1 , and here, a state is illustrated in which the flow direction of the resin generated in skin 3 and indicated by arrows 9 is aligned with the longitudinal direction of piezoelectric element 7 .
  • first acoustic matching layer 2 As a material of first acoustic matching layer 2 , a molding material that can create an orientation state caused by the resin flow at the time of molding is required. During this molding, the resin is injected from the thickness direction of first acoustic matching layer 2 , and a molded body having a flow direction can be obtained.
  • the material include resins such as a hard urethane resin, a polyphenylene sulfide (PPS) resin, a polyoxymethylene (POM) resin, an acrylonitrile butadiene styrene (ABS) resin, a liquid crystal polymer, and a polystyrene (PS) resin.
  • glass cloth or hollow filler can be mixed to enable density adjustment of the material.
  • the glass cloth or the hollow filler because bonding properties with an adhesive is enhanced, strong bonding is obtained.
  • the hollow filler include hollow balloons made of glass, ceramics, and resin.
  • examples of a material suitable for second acoustic matching layer 5 include, in consideration of the acoustic impedance matching between the gas and the piezoelectric element, a hard resin foam that is formed of a foamed resin having a closed pore structure and has a configuration including a plurality of holes and walls adjacent thereto.
  • examples of the hard resin foam include a hard acrylic foam, a hard vinyl chloride foam, a hard polypropylene foam, a hard polymethacrylimide foam, and a hard urethane foam.
  • FOAMAC registered trademark
  • NAVICEL registered trademark
  • JFC Inc. is sold as an example of the hard vinyl chloride foam
  • Zetron registered trademark
  • ROHACELL registered trademark
  • Daicel-Evonik Ltd. is sold as an example of the hard polymethacrylimide foam.
  • the ultrasonic sensor of the present exemplary embodiment can be manufactured, for example, by the following procedure.
  • metal housing 6 , piezoelectric element 7 , first acoustic matching layer 2 , and second acoustic matching layer 5 are prepared.
  • First acoustic matching layer 2 and second acoustic matching layer 5 are processed in advance to have desired thicknesses.
  • Piezoelectric element 7 is pasted on the inner surface of the top plate of metal housing 6 with an adhesive or the like.
  • first acoustic matching layer 2 is pasted on the outer surface of the top plate, and second acoustic matching layer 5 is further pasted on first acoustic matching layer 2 .
  • wiring lines 8 a and 8 b are connected to piezoelectric element 7 and metal housing 6 to complete the ultrasonic sensor.
  • ultrasonic sensor 1 was prepared as follows.
  • piezoelectric element 7 lead zirconate titanate having a rectangular parallelepiped shape with a thickness of 2.65 mm, a longitudinal length of 7.4 mm, and a transverse length of 3.55 mm was used. Piezoelectric element 7 has a groove in the longitudinal direction.
  • an adhesive an epoxy adhesive that is liquid at room temperature and solidifies by heating was used.
  • Metal housing 6 made of steel use stainless (SUS) 304 having a thickness of 0.2 mm was used.
  • a polymethacrylimide foamed resin was used as second acoustic matching layer 5 . As this layer, one that has a density of 0.07 g/cm 3 and is processed into a disk shape having a dimension of 10 mm in diameter and 0.75 mm in thickness was used.
  • first acoustic matching layer 2 a liquid crystal polymer obtained by mixing a hollow filler made of glass as a raw material in a low-density portion and a glass fiber in a high-density portion was used.
  • a resin was injected from the thickness direction of first acoustic matching layer 2 to mold first acoustic matching layer 2 into a disk shape having a thickness of 1.0 mm and a diameter of 10 mm.
  • a density of this material was 1.0 g/cm 3 .
  • a resin layer filled with the hollow filler was exposed on the surface, the resin layer having a pore structure derived from the hollow filler and with a diameter of 50 ⁇ m.
  • the bonding to metal housing 6 was performed after the longitudinal direction of piezoelectric element 7 was made parallel with the resin injection direction of first acoustic matching layer 2 .
  • ultrasonic sensor 1 was prepared as follows.
  • piezoelectric element 7 lead zirconate titanate having a rectangular parallelepiped shape with a thickness of 2.65 mm, a longitudinal length of 7.4 mm, and a transverse length of 3.55 mm was used. Piezoelectric element 7 has a groove in the longitudinal direction.
  • an adhesive an epoxy adhesive that is liquid at room temperature and solidifies by heating was used.
  • Metal housing 6 made of steel use stainless (SUS) 304 having a thickness of 0.2 mm was used.
  • a polymethacrylimide foamed resin was used as second acoustic matching layer 5 . As this layer, one that has a density of 0.07 g/cm 3 and is processed into a disk shape having a dimension of 10 mm in diameter and 0.75 mm in thickness was used.
  • first acoustic matching layer 2 a liquid crystal polymer obtained by mixing a hollow filler made of glass as a raw material in a low-density portion and a glass fiber in a high-density portion was used.
  • a resin was injected from the thickness direction of first acoustic matching layer 2 to mold first acoustic matching layer 2 into a disk shape having a thickness of 1.0 mm and a diameter of 10 mm. A density of this material was 1.2 g/cm 3 .
  • a resin layer filled with the hollow filler was exposed on the surface, the resin layer having a pore structure derived from the hollow filler and with a diameter of 50 ⁇ m.
  • the bonding to metal housing 6 was performed after the longitudinal direction of piezoelectric element 7 was made parallel with the resin injection direction of first acoustic matching layer 2 .
  • ultrasonic sensor 1 was prepared as follows.
  • piezoelectric element 7 lead zirconate titanate having a rectangular parallelepiped shape with a thickness of 2.65 mm, a longitudinal length of 7.4 mm, and a transverse length of 3.55 mm was used. Piezoelectric element 7 has a groove in the longitudinal direction.
  • an adhesive an epoxy adhesive that is liquid at room temperature and solidifies by heating was used.
  • Metal housing 6 made of steel use stainless (SUS) 304 having a thickness of 0.2 mm was used.
  • a polymethacrylimide foamed resin was used as second acoustic matching layer 5 . As this layer, one that has a density of 0.07 g/cm 3 and is processed into a disk shape having a dimension of 10 mm in diameter and 0.75 mm in thickness was used.
  • first acoustic matching layer 2 a liquid crystal polymer obtained by mixing a hollow filler made of glass as a raw material in a low-density portion and a glass fiber in a high-density portion was used.
  • a resin was injected from the thickness direction of first acoustic matching layer 2 to mold first acoustic matching layer 2 into a disk shape having a thickness of 1.0 mm and a diameter of 10 mm. A density of this material was 1.5 g/cm 3 .
  • a resin layer filled with the hollow filler was exposed on the surface, the resin layer having a pore structure derived from the hollow filler and with a diameter of 50 ⁇ m.
  • the bonding to metal housing 6 was performed after the longitudinal direction of piezoelectric element 7 was made parallel with the resin injection direction of first acoustic matching layer 2 .
  • ultrasonic sensor 1 was prepared as follows.
  • piezoelectric element 7 lead zirconate titanate having a rectangular parallelepiped shape with a thickness of 2.65 mm, a longitudinal length of 7.4 mm, and a transverse length of 3.55 mm was used. Piezoelectric element 7 has a groove in the longitudinal direction.
  • an adhesive an epoxy adhesive that is liquid at room temperature and solidifies by heating was used.
  • Metal housing 6 made of steel use stainless (SUS) 304 having a thickness of 0.2 mm was used.
  • a polymethacrylimide foamed resin was used as second acoustic matching layer 5 . As this layer, one that has a density of 0.07 g/cm 3 and is processed into a disk shape having a dimension of 10 mm in diameter and 0.75 mm in thickness was used.
  • first acoustic matching layer 2 a liquid crystal polymer obtained by mixing a hollow filler made of glass as a raw material in a low-density portion and a glass fiber in a high-density portion was used.
  • a resin was injected from the thickness direction of first acoustic matching layer 2 to mold first acoustic matching layer 2 into a disk shape having a thickness of 1.0 mm and a diameter of 10 mm.
  • a density of this material was 1.0 g/cm 3 .
  • a resin layer filled with the hollow filler was exposed on the surface, the resin layer having a pore structure derived from the hollow filler and with a diameter of 50 ⁇ m.
  • the bonding to metal housing 6 was performed after the resin injection direction of first acoustic matching layer 2 was rotated by 90° with respect to the longitudinal direction of piezoelectric element 7 .
  • ultrasonic sensor 1 was prepared as follows.
  • piezoelectric element 7 lead zirconate titanate having a rectangular parallelepiped shape with a thickness of 2.65 mm, a longitudinal length of 7.4 mm, and a transverse length of 3.55 mm was used. Piezoelectric element 7 has a groove in the longitudinal direction.
  • an adhesive an epoxy adhesive that is liquid at room temperature and solidifies by heating was used.
  • Metal housing 6 made of steel use stainless (SUS) 304 having a thickness of 0.2 mm was used.
  • a polymethacrylimide foamed resin was used as second acoustic matching layer 5 . As this layer, one that has a density of 0.07 g/cm 3 and is processed into a disk shape having a dimension of 10 mm in diameter and 0.75 mm in thickness was used.
  • first acoustic matching layer 2 a liquid crystal polymer obtained by mixing a hollow filler made of glass as a raw material in a low-density portion and a glass fiber in a high-density portion was used.
  • a resin was injected from the thickness direction of first acoustic matching layer 2 to mold first acoustic matching layer 2 into a disk shape having a thickness of 1.0 mm and a diameter of 10 mm. A density of this material was 1.2 g/cm 3 .
  • a resin layer filled with the hollow filler was exposed on the surface, the resin layer having a pore structure derived from the hollow filler and with a diameter of 50 ⁇ m.
  • the bonding to metal housing 6 was performed after the resin injection direction of first acoustic matching layer 2 was rotated by 90° with respect to the longitudinal direction of piezoelectric element 7 .
  • ultrasonic sensor 1 was prepared as follows.
  • piezoelectric element 7 lead zirconate titanate having a rectangular parallelepiped shape with a thickness of 2.65 mm, a longitudinal length of 7.4 mm, and a transverse length of 3.55 mm was used. Piezoelectric element 7 has a groove in the longitudinal direction.
  • an adhesive an epoxy adhesive that is liquid at room temperature and solidifies by heating was used.
  • Metal housing 6 made of steel use stainless (SUS) 304 having a thickness of 0.2 mm was used.
  • a polymethacrylimide foamed resin was used as second acoustic matching layer 5 . As this layer, one that has a density of 0.07 g/cm 3 and is processed into a disk shape having a dimension of 10 mm in diameter and 0.75 mm in thickness was used.
  • first acoustic matching layer 2 a liquid crystal polymer obtained by mixing a hollow filler made of glass as a raw material in a low-density portion and a glass fiber in a high-density portion was used.
  • a resin was injected from the thickness direction of first acoustic matching layer 2 to mold first acoustic matching layer 2 into a disk shape having a thickness of 1.0 mm and a diameter of 10 mm. A density of this material was 1.5 g/cm 3 .
  • a resin layer filled with the hollow filler was exposed on the surface, the resin layer having a pore structure derived from the hollow filler and with a diameter of 50 ⁇ m.
  • the bonding to metal housing 6 was performed after the resin injection direction of first acoustic matching layer 2 was rotated by 90° with respect to the longitudinal direction of piezoelectric element 7 .
  • ultrasonic sensor 1 was prepared as follows.
  • piezoelectric element 7 lead zirconate titanate having a rectangular parallelepiped shape with a thickness of 2.65 mm, a longitudinal length of 7.4 mm, and a transverse length of 3.55 mm was used. Piezoelectric element 7 has a groove in the longitudinal direction.
  • an adhesive an epoxy adhesive that is liquid at room temperature and solidifies by heating was used.
  • Metal housing 6 made of steel use stainless (SUS) 304 having a thickness of 0.2 mm was used.
  • a polymethacrylimide foamed resin was used as second acoustic matching layer 5 . As this layer, one that has a density of 0.07 g/cm 3 and is processed into a disk shape having a dimension of 10 mm in diameter and 0.75 mm in thickness was used.
  • a glass balloon-filled epoxy resin which is an epoxy resin filled with hollow filler made of glass as a raw material was used.
  • the density of this material was 0.5 g/cm 3 , and the material was processed into a disk shape having a thickness of 1.0 mm and a diameter of 10 mm and used. Note that the material has, on the surface, a pore structure derived from the hollow filler and with a diameter of 50 ⁇ m.
  • the characteristics of each of the prepared ultrasonic sensors 1 were measured.
  • the pair of prepared ultrasonic sensors 1 were opposed to each other, and ultrasonic waves were transmitted and received using one of the pair as a transmitter and the other as a receiver. Relative values with respect to the characteristics of the comparative example, which is set to 1, are shown.
  • the sensor was subjected to 200 cycles of a thermal shock test in which the environment of ⁇ 40° C. for 30 minutes and the environment of 80° C. for 30 minutes were set as 1 cycle, the characteristics of the sensor after the test were compared with the initial characteristics of the sensor, and a rate of change thereof was confirmed.
  • the sample in which the density of first acoustic matching layer 2 is in the range of 1.0 g/cm 3 to 1.5 g/cm 3 exhibits high characteristics. This is considered to be because, from the viewpoint of the impedance matching of piezoelectric element 7 and second acoustic matching layer 5 and the transmission efficiency of the ultrasonic waves in first acoustic matching layer 2 , the sensor is in an appropriate range regarding hardness and impedance matching. In particular, in the case where the density of first acoustic matching layer 2 is 1.5 g/cm 3 , high characteristics are exhibited.
  • an ultrasonic sensor includes: a piezoelectric element; and a plurality of acoustic matching layers including a first acoustic matching layer laminated and bonded to the piezoelectric element, in which the first acoustic matching layer includes a thermoplastic resin, and the thermoplastic resin is injected to the first acoustic matching layer from a thickness direction of the first acoustic matching layer.
  • the piezoelectric element may be a rectangular parallelepiped having a rectangular bonding surface
  • the first acoustic matching layer may have a flow direction caused by injection of the thermoplastic resin, and the flow direction may be matched in parallel with a longitudinal direction of the piezoelectric element before laminating and bonding are performed.
  • the first acoustic matching layer may have an average density of 1.0 g/cm 3 or more and 1.5 g/cm 3 or less.
  • the ultrasonic waves can be transmitted with high efficiency from the piezoelectric element to the acoustic matching layer bonded to the first acoustic matching layer, so that the characteristics of the ultrasonic sensor are improved.
  • the first acoustic matching layer may have an average density of 1.0 g/cm 3 or more and 1.5 g/cm 3 or less.
  • the ultrasonic waves can be transmitted with high efficiency from the piezoelectric element to the acoustic matching layer bonded to the first acoustic matching layer, so that the characteristics of the ultrasonic sensor are improved.
  • the first acoustic matching layer may include, as a constituent component, a material filled with hollow spheres made of glass, ceramic, or resin. Because the hollow spheres have a very low density and become voids when appearing on the surface by polishing, cutting, or the like, an anchor effect can be easily obtained at the time of bonding.
  • the first acoustic matching layer may have a thickness set to approximately 1 ⁇ 4 of the speed of sound.
  • the first acoustic matching layer may have a thickness set to approximately 1 ⁇ 4 of the speed of sound.
  • the ultrasonic sensor of the present disclosure is suitable for use in flow rate meters for measuring various fluids.
  • the sensor is suitably used for applications requiring excellent durability in use environments such as high temperature and low temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Ultrasonic sensor (1) includes piezoelectric element (7), first acoustic matching layer (2), and second acoustic matching layer (5) which are laminated and bonded together, piezoelectric element (7) having a rectangular bonding surface. First acoustic matching layer (2), which is adjacent to piezoelectric element (7), is bonded to piezoelectric element (7) using thermoplastic resin injected from a thickness direction of first acoustic matching layer (2) in a manner that a flow direction of the thermoplastic resin matches a longitudinal direction of piezoelectric element (7). With this configuration, ultrasonic sensor (1) that exhibits excellent temperature characteristics against such as thermal shock is provided.

Description

TECHNICAL FIELD
The present disclosure mainly relates to an ultrasonic sensor that transmits and receives ultrasonic waves.
BACKGROUND ART
If the difference in acoustic impedance (the product of the density of each substance and the speed of sound) between different substances is small, the ultrasonic waves propagates through an interface between the two substances, but if the difference in acoustic impedance is large, a ratio of the ultrasonic waves being reflected at the interface becomes higher than that of propagating. Therefore, as the difference in acoustic impedance decreases, energy is propagated with higher efficiency.
However, piezoelectric elements used for ultrasonic sensors are generally made of ceramics (having a high density and a high acoustic velocity), and the density and the speed of sound in gas such as air in which the ultrasonic waves propagate are significantly smaller than those of ceramics. Therefore, the energy propagation efficiency from the piezoelectric element to the gas is significantly low.
In order to solve this problem, measures have been taken to increase the energy propagation efficiency by interposing, between the piezoelectric element and the gas, an acoustic matching layer having a smaller acoustic impedance than the piezoelectric element and a larger acoustic impedance than the gas.
From a viewpoint of the acoustic impedance, the ultrasonic waves most efficiently propagate from the piezoelectric element to the gas through the acoustic matching layer, when
Z22 =ZZ3  (1)
is satisfied.
Here, Z1 is an acoustic impedance of the piezoelectric element, Z2 is an acoustic impedance of the acoustic matching layer, and Z3 is an acoustic impedance of the gas in which the ultrasonic waves propagate.
Furthermore, in order to make the ultrasonic waves generated by the piezoelectric element propagate through the gas with high efficiency, an energy loss of the ultrasonic waves propagating through the acoustic matching layer needs to be suppressed low. A factor of the energy loss of the ultrasonic wave propagating inside the acoustic matching layer is that the acoustic matching layer is plastically deformed and the energy is dissipated as heat. Therefore, the substance used for the acoustic matching layer is required to be highly elastic.
However, as can be seen from the formula (1), the acoustic impedance Z2 of the acoustic matching layer needs to reduce the acoustic impedance such that the acoustic impedance is brought close to the acoustic impedance Z3 of the gas. Substances exhibiting a low acoustic impedance mean that the speed of sound is low or the density is low, and in general, many such substances are easily deformed and are not suitable for the acoustic matching layer. Specifically, the acoustic impedance of the solid piezoelectric element differs from the acoustic impedance of the gas by about five orders of magnitude, and in order to satisfy the formula (1), the acoustic impedance of the acoustic matching layer needs to be lowered to about three orders of magnitude of the acoustic impedance of the piezoelectric element.
Therefore, studies have been made to make the ultrasonic waves propagate with high efficiency by using two acoustic matching layers. Defining an acoustic matching layer that is in contact with the gas and emits ultrasonic waves as a second acoustic matching layer, and an acoustic matching layer that is in contact with the piezoelectric element as a first acoustic matching layer, from the formula (1), the ultrasonic waves most efficiently propagate from the piezoelectric element to the gas through the acoustic matching layer, when
Z22 =Z1×Z3, and
Z32 =Z2×Z4
is satisfied.
Here, Z1 is an acoustic impedance of the piezoelectric element, Z2 is an acoustic impedance of the first acoustic matching layer, Z3 is an acoustic impedance of the second acoustic matching layer, and Z4 is an acoustic impedance of the gas.
In order to achieve the low acoustic impedance and the high propagation efficiency, the second acoustic matching layer that makes ultrasonic waves propagate to the gas is desirably made of a very lightweight and hard material, and a foamed resin having relatively high elasticity has been used (see, for example, PTL 1).
CITATION LIST Patent Literature
  • PTL 1: Unexamined Japanese Patent Publication No. 2018-61209
SUMMARY OF THE INVENTION
In PTL 1, a resin material is used as a first acoustic matching layer and a foamed resin material is used as a second acoustic matching layer in order to improve characteristics of an ultrasonic sensor. Because the first acoustic matching layer is made of resin material and has a very large difference in expansion coefficient from a sensor housing made of inorganic material such as metal, peeling occurs at a bonding interface due to a temperature change, and deterioration of reliability characteristics of an ultrasonic sensor becomes a problem. As a countermeasure, the density of the first acoustic matching layer is controlled by densely filling a thermosetting material such as an epoxy resin with hollow filler such as glass balloons, and meanwhile, a ratio of resin is reduced to achieve low thermal expansion to thereby solve the bonding problem.
In this method, the epoxy resin for obtaining the first acoustic matching layer has a density of about 1 g/cm3, but a density of less than 1 g/cm3 can be obtained by dispersing a large amount of hollow filler. However, in order to further improve the sensor characteristics, in the case of requiring a density design exceeding 1 g/cm3 at the time of laminating the second acoustic matching layer on the upper part, the density becomes very difficult to be achieved.
The present disclosure provides an ultrasonic sensor that achieves both excellent sensor characteristics and durability while securing bonding properties with a first acoustic matching layer having a density exceeding 1 g/cm3.
An ultrasonic sensor of the present disclosure includes: a piezoelectric element; and a plurality of acoustic matching layers including a first acoustic matching layer laminated and bonded to the piezoelectric element, in which the first acoustic matching layer includes a thermoplastic resin, and the thermoplastic resin is injected to the first acoustic matching layer from a thickness direction of the first acoustic matching layer. With this configuration, the performance of the ultrasonic sensor can be improved.
According to the present disclosure, because the first acoustic matching layer is made of the thermoplastic resin injected from the thickness direction of the first acoustic matching layer, a coefficient of thermal expansion is reduced in a flow direction of the resin. In addition, by matching this flow direction with the longitudinal direction of the piezoelectric element and then performing bonding, stress applied to the piezoelectric element generated in a course of temperature change such as thermal shock can be reduced, and the ultrasonic sensor having excellent characteristics can be provided.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a schematic cross-sectional view of an ultrasonic sensor according to an exemplary embodiment.
FIG. 2 is a plan view illustrating a bonding direction of a piezoelectric element and one acoustic matching layer of the ultrasonic sensor according to the exemplary embodiment.
DESCRIPTION OF EMBODIMENT
Hereinafter, an exemplary embodiment of an ultrasonic sensor of the present disclosure is described in detail with reference to the drawings. Note that the present disclosure is not limited to the present exemplary embodiment described above.
Exemplary Embodiment
FIG. 1 is a cross-sectional view of an ultrasonic sensor according to the exemplary embodiment. Ultrasonic sensor 1 includes piezoelectric element 7 and a plurality of acoustic matching layers including first acoustic matching layer 2 laminated and bonded to piezoelectric element 7. In the present exemplary embodiment, first acoustic matching layer 2, second acoustic matching layer 5, and piezoelectric element 7 are provided. Piezoelectric element 7 is made of piezoelectric ceramics and is polarized in the thickness direction. Piezoelectric element 7 is bonded to the inside of top plate 6 a of metal housing 6 which is bottomed and has a tubular shape. Further, piezoelectric element 7 is a rectangular parallelepiped having a rectangular bonding surface with top plate 6 a.
Among electrodes 7 a and 7 b constituted on both surfaces of piezoelectric element 7, one electrode 7 a is drawn out by wiring line 8 a connected to piezoelectric element 7, and another electrode 7 b is drawn out by wiring line 8 b through metal housing 6. First acoustic matching layer 2 includes skin 3 and core 4, and is bonded to the outer surface of top plate 6 a of metal housing 6, and second acoustic matching layer 5 is bonded to first acoustic matching layer 2.
As a material suitable for first acoustic matching layer 2 in the present disclosure, a density of 1.0 g/cm3 or more and 1.5 g/cm3 or less is essential for matching acoustic impedance thereof with that of second acoustic matching layer 5 and reducing the internal loss. Furthermore, in order to reduce peeling of the bonding interface due to a difference in the coefficients of thermal expansion and the stress applied to piezoelectric element 7, the flow direction of the molded resin of first acoustic matching layer 2 needs to be in parallel in bonding with the longitudinal direction (a direction in which thermal expansion is large) of piezoelectric element 7 formed in a rectangular parallelepiped. In order to satisfy these requirements, it is required to mold first acoustic matching layer 2 from the thickness direction and to perform bonding and fixing in a manner that the flow direction of first acoustic matching layer 2 from an injection port is parallel with the longitudinal direction of piezoelectric element 7.
In the present exemplary embodiment, metal housing 6 is interposed between piezoelectric element 7 and first acoustic matching layer 2, but because the difference in the coefficients of thermal expansion between piezoelectric element 7 and metal housing 6 is substantially the same, the relationship between piezoelectric element 7 and first acoustic matching layer 2 is described including the case where metal housing 6 is not provided.
FIG. 2 is a plan view illustrating a state in which piezoelectric element 7 and first acoustic matching layer 2 are bonded to metal housing 6. First acoustic matching layer 2 includes skin 3 and core 4 as illustrated in FIG. 1 , and here, a state is illustrated in which the flow direction of the resin generated in skin 3 and indicated by arrows 9 is aligned with the longitudinal direction of piezoelectric element 7.
As a material of first acoustic matching layer 2, a molding material that can create an orientation state caused by the resin flow at the time of molding is required. During this molding, the resin is injected from the thickness direction of first acoustic matching layer 2, and a molded body having a flow direction can be obtained. Examples of the material include resins such as a hard urethane resin, a polyphenylene sulfide (PPS) resin, a polyoxymethylene (POM) resin, an acrylonitrile butadiene styrene (ABS) resin, a liquid crystal polymer, and a polystyrene (PS) resin. In addition, for density adjustment, glass cloth or hollow filler can be mixed to enable density adjustment of the material. In the case of using the glass cloth or the hollow filler, because bonding properties with an adhesive is enhanced, strong bonding is obtained. Examples of the hollow filler include hollow balloons made of glass, ceramics, and resin.
In addition, examples of a material suitable for second acoustic matching layer 5 include, in consideration of the acoustic impedance matching between the gas and the piezoelectric element, a hard resin foam that is formed of a foamed resin having a closed pore structure and has a configuration including a plurality of holes and walls adjacent thereto. Examples of the hard resin foam include a hard acrylic foam, a hard vinyl chloride foam, a hard polypropylene foam, a hard polymethacrylimide foam, and a hard urethane foam.
FOAMAC (registered trademark) available from Sekisui Kasei Co., Ltd. is sold as an example of the hard acrylic foam, NAVICEL (registered trademark) available from JFC Inc. is sold as an example of the hard vinyl chloride foam, Zetron (registered trademark) available from Sekisui Chemical Co., Ltd. is sold as an example of the hard polypropylene foam, and ROHACELL (registered trademark) available from Daicel-Evonik Ltd. is sold as an example of the hard polymethacrylimide foam.
The ultrasonic sensor of the present exemplary embodiment can be manufactured, for example, by the following procedure.
First, metal housing 6, piezoelectric element 7, first acoustic matching layer 2, and second acoustic matching layer 5 are prepared. First acoustic matching layer 2 and second acoustic matching layer 5 are processed in advance to have desired thicknesses. Piezoelectric element 7 is pasted on the inner surface of the top plate of metal housing 6 with an adhesive or the like. In addition, first acoustic matching layer 2 is pasted on the outer surface of the top plate, and second acoustic matching layer 5 is further pasted on first acoustic matching layer 2. Thereafter, wiring lines 8 a and 8 b are connected to piezoelectric element 7 and metal housing 6 to complete the ultrasonic sensor.
EXAMPLES
Hereinafter, the results of preparing the ultrasonic sensor according to the exemplary embodiment and examining the characteristics are described.
1. Preparation of Sample First Example
In the present exemplary embodiment, ultrasonic sensor 1 was prepared as follows.
As piezoelectric element 7, lead zirconate titanate having a rectangular parallelepiped shape with a thickness of 2.65 mm, a longitudinal length of 7.4 mm, and a transverse length of 3.55 mm was used. Piezoelectric element 7 has a groove in the longitudinal direction. As an adhesive, an epoxy adhesive that is liquid at room temperature and solidifies by heating was used. Metal housing 6 made of steel use stainless (SUS) 304 having a thickness of 0.2 mm was used. A polymethacrylimide foamed resin was used as second acoustic matching layer 5. As this layer, one that has a density of 0.07 g/cm3 and is processed into a disk shape having a dimension of 10 mm in diameter and 0.75 mm in thickness was used.
As first acoustic matching layer 2, a liquid crystal polymer obtained by mixing a hollow filler made of glass as a raw material in a low-density portion and a glass fiber in a high-density portion was used. In the molding process using this material, a resin was injected from the thickness direction of first acoustic matching layer 2 to mold first acoustic matching layer 2 into a disk shape having a thickness of 1.0 mm and a diameter of 10 mm. A density of this material was 1.0 g/cm3. A resin layer filled with the hollow filler was exposed on the surface, the resin layer having a pore structure derived from the hollow filler and with a diameter of 50 μm. The bonding to metal housing 6 was performed after the longitudinal direction of piezoelectric element 7 was made parallel with the resin injection direction of first acoustic matching layer 2.
Second Example
In the present exemplary embodiment, ultrasonic sensor 1 was prepared as follows.
As piezoelectric element 7, lead zirconate titanate having a rectangular parallelepiped shape with a thickness of 2.65 mm, a longitudinal length of 7.4 mm, and a transverse length of 3.55 mm was used. Piezoelectric element 7 has a groove in the longitudinal direction. As an adhesive, an epoxy adhesive that is liquid at room temperature and solidifies by heating was used. Metal housing 6 made of steel use stainless (SUS) 304 having a thickness of 0.2 mm was used. A polymethacrylimide foamed resin was used as second acoustic matching layer 5. As this layer, one that has a density of 0.07 g/cm3 and is processed into a disk shape having a dimension of 10 mm in diameter and 0.75 mm in thickness was used.
As first acoustic matching layer 2, a liquid crystal polymer obtained by mixing a hollow filler made of glass as a raw material in a low-density portion and a glass fiber in a high-density portion was used. In the molding process using this material, a resin was injected from the thickness direction of first acoustic matching layer 2 to mold first acoustic matching layer 2 into a disk shape having a thickness of 1.0 mm and a diameter of 10 mm. A density of this material was 1.2 g/cm3. A resin layer filled with the hollow filler was exposed on the surface, the resin layer having a pore structure derived from the hollow filler and with a diameter of 50 μm. The bonding to metal housing 6 was performed after the longitudinal direction of piezoelectric element 7 was made parallel with the resin injection direction of first acoustic matching layer 2.
Third Example
In the present exemplary embodiment, ultrasonic sensor 1 was prepared as follows.
As piezoelectric element 7, lead zirconate titanate having a rectangular parallelepiped shape with a thickness of 2.65 mm, a longitudinal length of 7.4 mm, and a transverse length of 3.55 mm was used. Piezoelectric element 7 has a groove in the longitudinal direction. As an adhesive, an epoxy adhesive that is liquid at room temperature and solidifies by heating was used. Metal housing 6 made of steel use stainless (SUS) 304 having a thickness of 0.2 mm was used. A polymethacrylimide foamed resin was used as second acoustic matching layer 5. As this layer, one that has a density of 0.07 g/cm3 and is processed into a disk shape having a dimension of 10 mm in diameter and 0.75 mm in thickness was used.
As first acoustic matching layer 2, a liquid crystal polymer obtained by mixing a hollow filler made of glass as a raw material in a low-density portion and a glass fiber in a high-density portion was used. In the molding process using this material, a resin was injected from the thickness direction of first acoustic matching layer 2 to mold first acoustic matching layer 2 into a disk shape having a thickness of 1.0 mm and a diameter of 10 mm. A density of this material was 1.5 g/cm3. A resin layer filled with the hollow filler was exposed on the surface, the resin layer having a pore structure derived from the hollow filler and with a diameter of 50 μm. The bonding to metal housing 6 was performed after the longitudinal direction of piezoelectric element 7 was made parallel with the resin injection direction of first acoustic matching layer 2.
First Comparative Example
In the present exemplary embodiment, ultrasonic sensor 1 was prepared as follows.
As piezoelectric element 7, lead zirconate titanate having a rectangular parallelepiped shape with a thickness of 2.65 mm, a longitudinal length of 7.4 mm, and a transverse length of 3.55 mm was used. Piezoelectric element 7 has a groove in the longitudinal direction. As an adhesive, an epoxy adhesive that is liquid at room temperature and solidifies by heating was used. Metal housing 6 made of steel use stainless (SUS) 304 having a thickness of 0.2 mm was used. A polymethacrylimide foamed resin was used as second acoustic matching layer 5. As this layer, one that has a density of 0.07 g/cm3 and is processed into a disk shape having a dimension of 10 mm in diameter and 0.75 mm in thickness was used.
As first acoustic matching layer 2, a liquid crystal polymer obtained by mixing a hollow filler made of glass as a raw material in a low-density portion and a glass fiber in a high-density portion was used. In the molding process using this material, a resin was injected from the thickness direction of first acoustic matching layer 2 to mold first acoustic matching layer 2 into a disk shape having a thickness of 1.0 mm and a diameter of 10 mm. A density of this material was 1.0 g/cm3. A resin layer filled with the hollow filler was exposed on the surface, the resin layer having a pore structure derived from the hollow filler and with a diameter of 50 μm. The bonding to metal housing 6 was performed after the resin injection direction of first acoustic matching layer 2 was rotated by 90° with respect to the longitudinal direction of piezoelectric element 7.
Second Comparative Example
In the present exemplary embodiment, ultrasonic sensor 1 was prepared as follows.
As piezoelectric element 7, lead zirconate titanate having a rectangular parallelepiped shape with a thickness of 2.65 mm, a longitudinal length of 7.4 mm, and a transverse length of 3.55 mm was used. Piezoelectric element 7 has a groove in the longitudinal direction. As an adhesive, an epoxy adhesive that is liquid at room temperature and solidifies by heating was used. Metal housing 6 made of steel use stainless (SUS) 304 having a thickness of 0.2 mm was used. A polymethacrylimide foamed resin was used as second acoustic matching layer 5. As this layer, one that has a density of 0.07 g/cm3 and is processed into a disk shape having a dimension of 10 mm in diameter and 0.75 mm in thickness was used.
As first acoustic matching layer 2, a liquid crystal polymer obtained by mixing a hollow filler made of glass as a raw material in a low-density portion and a glass fiber in a high-density portion was used. In the molding process using this material, a resin was injected from the thickness direction of first acoustic matching layer 2 to mold first acoustic matching layer 2 into a disk shape having a thickness of 1.0 mm and a diameter of 10 mm. A density of this material was 1.2 g/cm3. A resin layer filled with the hollow filler was exposed on the surface, the resin layer having a pore structure derived from the hollow filler and with a diameter of 50 μm. The bonding to metal housing 6 was performed after the resin injection direction of first acoustic matching layer 2 was rotated by 90° with respect to the longitudinal direction of piezoelectric element 7.
Third Comparative Example
In the present exemplary embodiment, ultrasonic sensor 1 was prepared as follows.
As piezoelectric element 7, lead zirconate titanate having a rectangular parallelepiped shape with a thickness of 2.65 mm, a longitudinal length of 7.4 mm, and a transverse length of 3.55 mm was used. Piezoelectric element 7 has a groove in the longitudinal direction. As an adhesive, an epoxy adhesive that is liquid at room temperature and solidifies by heating was used. Metal housing 6 made of steel use stainless (SUS) 304 having a thickness of 0.2 mm was used. A polymethacrylimide foamed resin was used as second acoustic matching layer 5. As this layer, one that has a density of 0.07 g/cm3 and is processed into a disk shape having a dimension of 10 mm in diameter and 0.75 mm in thickness was used.
As first acoustic matching layer 2, a liquid crystal polymer obtained by mixing a hollow filler made of glass as a raw material in a low-density portion and a glass fiber in a high-density portion was used. In the molding process using this material, a resin was injected from the thickness direction of first acoustic matching layer 2 to mold first acoustic matching layer 2 into a disk shape having a thickness of 1.0 mm and a diameter of 10 mm. A density of this material was 1.5 g/cm3. A resin layer filled with the hollow filler was exposed on the surface, the resin layer having a pore structure derived from the hollow filler and with a diameter of 50 μm. The bonding to metal housing 6 was performed after the resin injection direction of first acoustic matching layer 2 was rotated by 90° with respect to the longitudinal direction of piezoelectric element 7.
Fourth Comparative Example
In the first exemplary embodiment, ultrasonic sensor 1 was prepared as follows.
As piezoelectric element 7, lead zirconate titanate having a rectangular parallelepiped shape with a thickness of 2.65 mm, a longitudinal length of 7.4 mm, and a transverse length of 3.55 mm was used. Piezoelectric element 7 has a groove in the longitudinal direction. As an adhesive, an epoxy adhesive that is liquid at room temperature and solidifies by heating was used. Metal housing 6 made of steel use stainless (SUS) 304 having a thickness of 0.2 mm was used. A polymethacrylimide foamed resin was used as second acoustic matching layer 5. As this layer, one that has a density of 0.07 g/cm3 and is processed into a disk shape having a dimension of 10 mm in diameter and 0.75 mm in thickness was used.
As first acoustic matching layer 2, a glass balloon-filled epoxy resin which is an epoxy resin filled with hollow filler made of glass as a raw material was used. The density of this material was 0.5 g/cm3, and the material was processed into a disk shape having a thickness of 1.0 mm and a diameter of 10 mm and used. Note that the material has, on the surface, a pore structure derived from the hollow filler and with a diameter of 50 μm.
2. Evaluation of Characteristics
The characteristics of each of the prepared ultrasonic sensors 1 were measured. As a measurement method, the pair of prepared ultrasonic sensors 1 were opposed to each other, and ultrasonic waves were transmitted and received using one of the pair as a transmitter and the other as a receiver. Relative values with respect to the characteristics of the comparative example, which is set to 1, are shown. In addition, as a method of confirming the bonding reliability, the sensor was subjected to 200 cycles of a thermal shock test in which the environment of −40° C. for 30 minutes and the environment of 80° C. for 30 minutes were set as 1 cycle, the characteristics of the sensor after the test were compared with the initial characteristics of the sensor, and a rate of change thereof was confirmed.
Regarding the reliability, a sample in which a change in characteristics after the thermal shock test exceeds ±30% is described as “NO GOOD”, a sample in which the change ranges from ±30% to 5% is described as “GOOD”, and a sample in which the change is ±5% or less is described as “VERY GOOD”. These results are collectively shown in Table 1.
TABLE 1
Comparative Comparative Comparative Comparative
Example 1 Example 2 Example 3 example 1 example 2 example 3 example 4
First acoustic matching Liquid Liquid Liquid Liquid Liquid Liquid Epoxy
layer crystal crystal crystal crystal crystal crystal
polymer polymer polymer polymer polymer polymer
Density (g/cm3) 1.0 1.2 1.5 1.0 1.2 1.5 0.5
Flow direction and Parallel Parallel Parallel 90° 90° 90° No
(longitudinal) direction of directivity
piezoelectric element
Second acoustic matching Foamed Foamed Foamed Foamed Foamed Foamedr Foamed
layer resin resin resin resin resin esin resin
Characteristics of 1.8 2.0 2.3 1.8 2.0 2.3 1  
ultrasonic sensor
Reliability Very good Very good Very good No good No good No good Good
3. Discussion of Results
As for the initial characteristics of ultrasonic sensor 1, it has been found that the sample in which the density of first acoustic matching layer 2 is in the range of 1.0 g/cm3 to 1.5 g/cm3 exhibits high characteristics. This is considered to be because, from the viewpoint of the impedance matching of piezoelectric element 7 and second acoustic matching layer 5 and the transmission efficiency of the ultrasonic waves in first acoustic matching layer 2, the sensor is in an appropriate range regarding hardness and impedance matching. In particular, in the case where the density of first acoustic matching layer 2 is 1.5 g/cm3, high characteristics are exhibited.
It has been found that the change in characteristics of ultrasonic sensor 1 before and after the thermal shock test is affected by the bonding direction of first acoustic matching layer 2. In particular, it has been confirmed that the reliability characteristics are improved in the case where the flow direction at the time of molding is parallel with the longitudinal direction of piezoelectric element 7. Because the liquid crystal polymer has a low coefficient of thermal expansion in the flow direction and exhibits high thermal expansion in a direction 90° with respect to the flow direction, it is necessary not to transmit expansion and contraction generated in the course of temperature change to piezoelectric element 7.
In the present disclosure, by matching the flow direction at the time of molding with the longitudinal direction of the piezoelectric element and then performing the pasting to the metal housing, stress due to the expansion and contraction can be relaxed and the reliability has been secured. On the other hand, in the case where the piezoelectric element is pasted in the direction 90° with respect to the flow direction, it is considered that the stress due to the expansion and contraction is transmitted to the piezoelectric element and the reliability has become low.
As described above, an ultrasonic sensor according to the first disclosure includes: a piezoelectric element; and a plurality of acoustic matching layers including a first acoustic matching layer laminated and bonded to the piezoelectric element, in which the first acoustic matching layer includes a thermoplastic resin, and the thermoplastic resin is injected to the first acoustic matching layer from a thickness direction of the first acoustic matching layer.
In the ultrasonic sensor according to the second disclosure, in particular, according to the first disclosure, the piezoelectric element may be a rectangular parallelepiped having a rectangular bonding surface, the first acoustic matching layer may have a flow direction caused by injection of the thermoplastic resin, and the flow direction may be matched in parallel with a longitudinal direction of the piezoelectric element before laminating and bonding are performed.
In the ultrasonic sensor according to the third disclosure, according to the first disclosure, the first acoustic matching layer may have an average density of 1.0 g/cm3 or more and 1.5 g/cm3 or less. By setting the average density of the first acoustic matching layer within this range, the ultrasonic waves can be transmitted with high efficiency from the piezoelectric element to the acoustic matching layer bonded to the first acoustic matching layer, so that the characteristics of the ultrasonic sensor are improved.
In the ultrasonic sensor according to the fourth disclosure, according to the second disclosure, the first acoustic matching layer may have an average density of 1.0 g/cm3 or more and 1.5 g/cm3 or less. By setting the average density of the first acoustic matching layer within this range, the ultrasonic waves can be transmitted with high efficiency from the piezoelectric element to the acoustic matching layer bonded to the first acoustic matching layer, so that the characteristics of the ultrasonic sensor are improved.
In the ultrasonic sensor according to the fifth disclosure, according to any one of the first to fourth disclosures, the first acoustic matching layer may include, as a constituent component, a material filled with hollow spheres made of glass, ceramic, or resin. Because the hollow spheres have a very low density and become voids when appearing on the surface by polishing, cutting, or the like, an anchor effect can be easily obtained at the time of bonding.
In the ultrasonic sensor according to the sixth disclosure, according to any one of the first to fourth disclosures, the first acoustic matching layer may have a thickness set to approximately ¼ of the speed of sound.
In the ultrasonic sensor according to the seventh disclosure, according to the fifth disclosure, the first acoustic matching layer may have a thickness set to approximately ¼ of the speed of sound.
INDUSTRIAL APPLICABILITY
As described above, the ultrasonic sensor of the present disclosure is suitable for use in flow rate meters for measuring various fluids. In particular, the sensor is suitably used for applications requiring excellent durability in use environments such as high temperature and low temperature.
REFERENCE MARKS IN THE DRAWINGS
    • 1 ultrasonic sensor
    • 2 first acoustic matching layer
    • 3 skin
    • 4 core
    • 5 second acoustic matching layer
    • 6 metal housing
    • 7 piezoelectric element

Claims (5)

The invention claimed is:
1. An ultrasonic sensor comprising:
a piezoelectric element; and
a plurality of acoustic matching layers including a first acoustic matching layer laminated and bonded to the piezoelectric element,
wherein the first acoustic matching layer includes a thermoplastic resin, and
the thermoplastic resin is injected to the first acoustic matching layer from a thickness direction of the first acoustic matching layer,
the piezoelectric element is a rectangular parallelepiped having a rectangular bonding surface,
the first acoustic matching layer has a flow direction caused by injection of the thermoplastic resin, and
the piezoelectric element and the first acoustic matching layer are laminated and bonded together with the flow direction being matched in parallel with a longitudinal direction of the piezoelectric element.
2. The ultrasonic sensor according to claim 1, wherein the first acoustic matching layer has an average density of 1.0 g/cm3 or more and 1.5 g/cm3 or less.
3. The ultrasonic sensor according to claim 1, wherein the first acoustic matching layer includes, as a constituent component, a material filled with hollow spheres made of glass, ceramic, or resin.
4. The ultrasonic sensor according to claim 1, wherein the first acoustic matching layer has a thickness set to approximately ¼ of a speed of sound.
5. The ultrasonic sensor according to claim 3, wherein the first acoustic matching layer has a thickness set to approximately ¼ of a speed of sound.
US17/616,985 2019-08-08 2020-07-21 Ultrasonic sensor Active 2040-09-01 US11874159B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019145885A JP7296581B2 (en) 2019-08-08 2019-08-08 ultrasonic sensor
JP2019-145885 2019-08-08
PCT/JP2020/028212 WO2021024790A1 (en) 2019-08-08 2020-07-21 Ultrasonic sensor

Publications (2)

Publication Number Publication Date
US20220163378A1 US20220163378A1 (en) 2022-05-26
US11874159B2 true US11874159B2 (en) 2024-01-16

Family

ID=74504103

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/616,985 Active 2040-09-01 US11874159B2 (en) 2019-08-08 2020-07-21 Ultrasonic sensor

Country Status (5)

Country Link
US (1) US11874159B2 (en)
EP (1) EP4013068A4 (en)
JP (1) JP7296581B2 (en)
CN (1) CN114208211B (en)
WO (1) WO2021024790A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545947B1 (en) * 1999-11-12 2003-04-08 Matsushita Electric Industrial Co., Ltd. Acoustic matching material, method of manufacture thereof, and ultrasonic transmitter using acoustic matching material
US20040113522A1 (en) 2002-01-28 2004-06-17 Hidetomo Nagahara Ultrasonic transmitter-receiver and ultrasonic flowmeter
JP2004184423A (en) 2002-01-28 2004-07-02 Matsushita Electric Ind Co Ltd Ultrasonic transducer and ultrasonic flowmeter
WO2004098234A1 (en) 2003-04-28 2004-11-11 Matsushita Electric Industrial Co., Ltd. Ultrasonic sensor
JP2009005383A (en) 2008-08-04 2009-01-08 Panasonic Corp Ultrasonic wave transmitting/receiving apparatus
WO2012164890A1 (en) 2011-05-27 2012-12-06 パナソニック株式会社 Ultrasonic transmitter/receiver, method for manufacturing same, and ultrasonic flowmeter
JP2018061209A (en) 2016-10-07 2018-04-12 パナソニックIpマネジメント株式会社 Laminate, ultrasonic transducer and ultrasonic flowmeter
US20190025102A1 (en) 2016-06-09 2019-01-24 Panasonic Intellectual Property Management Co., Ltd. Multilayer body that includes piezoelectric body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002058099A (en) 2000-08-11 2002-02-22 Murata Mfg Co Ltd Method for producing acoustic matching layer, acoustic matching layer produced by the method, ultrasonic sensor comprising the layer, and electronic apparatus using the layer
JP4412367B2 (en) * 2007-08-21 2010-02-10 株式会社デンソー Ultrasonic sensor
JP2011077572A (en) * 2009-09-29 2011-04-14 Fujifilm Corp Ultrasonic transducer and producing method thereof, and ultrasonic probe
JP5950860B2 (en) 2013-04-09 2016-07-13 三菱電機株式会社 Aerial ultrasonic sensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545947B1 (en) * 1999-11-12 2003-04-08 Matsushita Electric Industrial Co., Ltd. Acoustic matching material, method of manufacture thereof, and ultrasonic transmitter using acoustic matching material
US20040113522A1 (en) 2002-01-28 2004-06-17 Hidetomo Nagahara Ultrasonic transmitter-receiver and ultrasonic flowmeter
JP2004184423A (en) 2002-01-28 2004-07-02 Matsushita Electric Ind Co Ltd Ultrasonic transducer and ultrasonic flowmeter
WO2004098234A1 (en) 2003-04-28 2004-11-11 Matsushita Electric Industrial Co., Ltd. Ultrasonic sensor
US20050139013A1 (en) 2003-04-28 2005-06-30 Masahiko Hashimoto Ultrasonic sensor
JP2009005383A (en) 2008-08-04 2009-01-08 Panasonic Corp Ultrasonic wave transmitting/receiving apparatus
WO2012164890A1 (en) 2011-05-27 2012-12-06 パナソニック株式会社 Ultrasonic transmitter/receiver, method for manufacturing same, and ultrasonic flowmeter
US20140086017A1 (en) 2011-05-27 2014-03-27 Panasonic Corporation Ultrasonic transmission/reception unit, manufacturing method of ultrasonic transmission/reception unit, and ultrasonic flow meter device
US20190025102A1 (en) 2016-06-09 2019-01-24 Panasonic Intellectual Property Management Co., Ltd. Multilayer body that includes piezoelectric body
JP2018061209A (en) 2016-10-07 2018-04-12 パナソニックIpマネジメント株式会社 Laminate, ultrasonic transducer and ultrasonic flowmeter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Extended European Search Report dated Aug. 2, 2022 in corresponding European Patent Application No. 20850255.9.
International Search Report of PCT application No. PCT/JP2020/028212 dated Oct. 13, 2020.

Also Published As

Publication number Publication date
WO2021024790A1 (en) 2021-02-11
CN114208211B (en) 2024-05-28
EP4013068A1 (en) 2022-06-15
JP2021027532A (en) 2021-02-22
EP4013068A4 (en) 2022-08-31
CN114208211A (en) 2022-03-18
JP7296581B2 (en) 2023-06-23
US20220163378A1 (en) 2022-05-26

Similar Documents

Publication Publication Date Title
US7389569B2 (en) Method for manfacturing an acoustic matching member
JP5665765B2 (en) Ultrasonic transducer for use in fluid media
JP6552644B2 (en) Impedance matching layer for ultrasonic transducers with metallic protective structure
CN105047811B (en) Piezoelectric material layer based on different-thickness stacks PZT (piezoelectric transducer)
JPH0239251B2 (en)
EP1575334A1 (en) Ultrasonic transmitter/receiver, process for producing the same, and ultrasonic flowmeter
US11162829B2 (en) Multilayer body that includes piezoelectric body
US7288878B1 (en) Piezoelectric transducer assembly
US11874159B2 (en) Ultrasonic sensor
JP2020017831A (en) Ultrasonic sensor
US20210208111A1 (en) Ultrasonic sensor
JP2017220844A (en) Laminate, ultrasonic transducer and ultrasonic flowmeter
CN208970560U (en) A kind of piezo-electric ceramic composite material structure applied to energy transducer
JP6751898B2 (en) Laminates, ultrasonic transmitters and receivers and ultrasonic flowmeters
KR20060021026A (en) Acoustic impedance matching layer for high frequency ultrasonic transducer and method for fabricating ultrasonic transducer by using it
US20230077798A1 (en) Ultrasonic sensor
JP2018063114A (en) Acoustic matching layer, ultrasonic transducer and ultrasonic flowmeter
Levassort et al. Characterisation of thin layers of parylene at high frequency using PZT thick film resonators
KR20120112888A (en) Broad band piezoelectric composite manufactured by using hollow sphere and preparation method thereof
JP7029588B2 (en) Ultrasonic sensor
US20040201331A1 (en) Polymer film composite transducer
Fortineau et al. Characterisation and electroacoustic modelling of porous piezoceramics with graded porosity for ultrasonic transducer applications
CN115414068A (en) Matching layer for ultrasonic transducer and preparation method
JP2019193130A (en) Ultrasonic sensor
JP2002214009A (en) Ultrasonic sensor

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MASUDA, TOMOKI;ISHIZAKI, YUDAI;NAGAHARA, HIDETOMO;REEL/FRAME:058883/0294

Effective date: 20211119

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE