US11773541B2 - Conveying path switching device and elevator apparatus - Google Patents

Conveying path switching device and elevator apparatus Download PDF

Info

Publication number
US11773541B2
US11773541B2 US16/623,396 US201816623396A US11773541B2 US 11773541 B2 US11773541 B2 US 11773541B2 US 201816623396 A US201816623396 A US 201816623396A US 11773541 B2 US11773541 B2 US 11773541B2
Authority
US
United States
Prior art keywords
conveying path
conveying
base
path
stators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/623,396
Other versions
US20200173115A1 (en
Inventor
Masaoki Iwase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Assigned to MITSUBISHI ELECTRIC CORPORATION reassignment MITSUBISHI ELECTRIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IWASE, Masaoki
Publication of US20200173115A1 publication Critical patent/US20200173115A1/en
Application granted granted Critical
Publication of US11773541B2 publication Critical patent/US11773541B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles
    • E01B25/34Switches; Frogs; Crossings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/03Electric propulsion by linear motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/04Monorail systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/0407Driving gear ; Details thereof, e.g. seals actuated by an electrical linear motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides
    • B66B7/022Guideways; Guides with a special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/02Kinds or types of lifts in, or associated with, buildings or other structures actuated mechanically otherwise than by rope or cable

Definitions

  • the present invention relates to a conveying path switching device provided in a conveying apparatus, and an elevator apparatus using the conveying path switching device.
  • a conveying apparatus including a base and a conveying carriage moving on the base, which includes a linear motor configured by a stator provided in the base and a mover provided in the conveying carriage and controls power supply to the stator or the mover to generate thrust, thereby driving the conveying carriage.
  • Tracks for this conveying carriage include a straight track, a curved track, and a branch track. A plurality of adjacent tracks are provided in the traveling direction of the conveying carriage on the branch track. This branch track is switched to be connected to any one of the plural tracks before approach of the conveying carriage.
  • Patent Literature 1 discloses a point machine for a magnetic levitation track.
  • the point machine includes a plurality of supports including a stator called a reaction rail and a motor that causes each support to rotate about a rotation axis extending in parallel to or perpendicularly to the traveling direction, and causes the supports to rotate.
  • the stators are correspondingly required for each of a plurality of branch tracks. Therefore, there is a problem that it is necessary to provide the stators the number of which corresponds to the number of branches.
  • the present invention has been achieved in view of the above problem, and an object of the present invention is to provide a conveying path switching device capable of reducing the number of provided stators.
  • An aspect of the present invention provides a conveying path switching device provided in a conveying apparatus that drives a conveying carriage by stators and by a mover in the conveying carriage.
  • the conveying path switching device includes: a base; the stators arranged along conveying paths for branching for the conveying carriage; a first conveying path provided on the base; and a second conveying path that is provided on the base and is different from the first conveying path.
  • the first conveying path and the second conveying path are switchable by rotation.
  • the stators are used for both the first conveying path and the second conveying path in a shared manner.
  • FIG. 1 is a diagram illustrating a configuration of a conveying apparatus including a conveying-path rotary switching unit that is a conveying path switching device according to a first embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the conveying-path rotary switching unit in the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration of a driving unit in the first embodiment.
  • FIG. 4 is a diagram illustrating a track in a case where a first conveying path is a track surface of the conveying-path rotary switching unit in the first embodiment.
  • FIG. 5 is a diagram illustrating a track in a case where a second conveying path is the track surface of the conveying-path rotary switching unit in the first embodiment.
  • FIG. 6 is a diagram illustrating a configuration of a conveying-path rotary switching unit that is a conveying path switching device according to a second embodiment.
  • FIG. 7 is a top view illustrating a configuration of a conveying apparatus including a conveying-path rotary switching unit that is a conveying path switching device according to a third embodiment.
  • FIG. 8 is a diagram illustrating a configuration of an elevator apparatus according to a fourth embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a conveying apparatus 100 including a conveying-path rotary switching unit 200 that is a conveying path switching device according to a first embodiment.
  • the conveying apparatus 100 illustrated in FIG. 1 is generally divided into the conveying-path rotary switching unit 200 and a driving unit 300 .
  • FIG. 2 is a diagram illustrating a configuration of the conveying-path rotary switching unit 200 in the first embodiment.
  • the conveying-path rotary switching unit 200 in the form of a cuboid illustrated in FIG. 2 includes a base 200 a , a plurality of stators 1 , rails 2 a and 2 b , and shafts 3 a and 3 b .
  • the rail 2 a is provided on the base 200 a .
  • the rail 2 a is provided on the base 200 a to configure a first conveying path 101 provided on a first track.
  • the rail 2 b is provided on a different surface of the base 200 a from the first conveying path 101 .
  • the rail 2 b is provided on the base 200 a to configure a second conveying path 102 provided on a second track.
  • the rails 2 a and 2 b each serve as a conveying path for branching when being connected to a rail of a post-branching conveying path and a rail of a pre-branching conveying path which are to be described later.
  • the shafts 3 a and 3 b are driven to rotate about a rotation axis 20 , when the first track and the second track are switched to each other in the conveying-path rotary switching unit 200 .
  • the shape of each of the shafts 3 a and 3 b is cylindrical.
  • Each of the stators 1 is a permanent magnet or an electromagnet.
  • the stators 1 are arranged along the rails 2 a and 2 b serving as the conveying paths for branching.
  • the stators 1 can configure a linear motor together with a mover provided in a conveying carriage (not illustrated in FIG. 1 ) that travels on the conveying apparatus 100 . All the stators 1 penetrate through the conveying-path rotary switching unit 200 and serve as stators on both surfaces of the conveying-path rotary switching unit 200 .
  • the rail 2 a supports the conveying carriage traveling on the conveying apparatus 100 , on the first conveying path 101 on the conveying-path rotary switching unit 200 in such a manner that the conveying carriage is movable in the conveying direction.
  • the rail 2 b supports the conveying carriage traveling on the conveying apparatus 100 , on the second conveying path 102 on the conveying-path rotary switching unit 200 in such a manner that the conveying carriage is movable in the conveying direction.
  • FIG. 3 is a diagram illustrating a configuration of the driving unit 300 in the first embodiment.
  • the driving unit 300 illustrated in FIG. 3 includes the bearings 4 a and 4 b , a support member 5 , a motor 6 , a belt 7 , a connecting rail 8 , and a support member 9 .
  • the bearing 4 a supports the shaft 3 a of the conveying-path rotary switching unit 200 in a rotatable manner.
  • the bearing 4 b supports the shaft 3 b of the conveying-path rotary switching unit 200 in a rotatable manner.
  • the support member 5 supports the bearing 4 a .
  • the motor 6 drives the shaft 3 a to rotate when the conveying-path rotary switching unit 200 is switched.
  • the belt 7 connects the shaft 3 a and the motor 6 to each other.
  • the connecting rail 8 is connected to a pre-branching conveying path (not illustrated in FIG. 3 ) on the opposite side to the conveying-path rotary switching unit 200 .
  • the support member 9 has a track surface on which the connecting rail 8 is provided, and supports the bearing 4 b.
  • FIG. 4 is a diagram illustrating a track in a case where the first conveying path 101 is a track surface of the conveying-path rotary switching unit 200 in the first embodiment.
  • FIG. 5 is a diagram illustrating a track in a case where the second conveying path 102 is the track surface of the conveying-path rotary switching unit 200 in the first embodiment.
  • the conveying-path rotary switching unit 200 is provided between a pre-branching conveying path 400 , and a first post-branching conveying path 500 a and a second post-branching conveying path 500 b.
  • a rail 2 is provided on a track surface of the pre-branching conveying path 400 .
  • a rail 2 c is provided on a track surface of the first post-branching conveying path 500 a .
  • a rail 2 d is provided on a track surface of the second post-branching conveying path 500 b.
  • the first conveying path 101 becomes a track surface for a conveying carriage (not illustrated in FIG. 4 ), that is, a conveying path on which the conveying carriage is to travel
  • one end of the rail 2 a is connected to the connecting rail 8 and the other end of the rail 2 a is connected to the rail 2 c .
  • the rail 2 of the pre-branching conveying path 400 is connected to the connecting rail 8
  • the connecting rail 8 is connected to the rail 2 a
  • the rail 2 a is connected to the rail 2 c . Therefore, a shape is achieved in which the rail 2 , the connecting rail 8 , the rail 2 a , and the rail 2 c are mutually connected in a line.
  • the second conveying path 102 becomes a track surface for a conveying carriage (not illustrated in FIG. 5 ), that is, a conveying path on which the conveying carriage is to travel
  • one end of the rail 2 b is connected to the connecting rail 8 and the other end of the rail 2 b is connected to the rail 2 d .
  • the rail 2 of the pre-branching conveying path 400 is connected to the connecting rail 8
  • the connecting rail 8 is connected to the rail 2 b
  • the rail 2 b is connected to the rail 2 d . Therefore, a shape is achieved in which the rail 2 , the connecting rail 8 , the rail 2 b , and the rail 2 d are mutually connected in a line.
  • the conveying carriage that has entered from the pre-branching conveying path 400 to the conveying-path rotary switching unit 200 is driven by the stators 1 while being supported by the rail 2 a in the conveying-path rotary switching unit 200 .
  • a track shape formed by centers of end surfaces of the stators 1 on the side of the rail 2 a is designed to be coincident with the rail 2 a so that the conveying carriage on the rail 2 a can be driven.
  • the conveying carriage that has entered from the pre-branching conveying path 400 to the conveying-path rotary switching unit 200 is driven by the stators 1 while being supported by the rail 2 b in the conveying-path rotary switching unit 200 as in the case in FIG. 4 .
  • a track shape formed by centers of end surfaces of the stators 1 on the side of the rail 2 b is designed to be coincident with the rail 2 b so that the conveying carriage on the rail 2 b can be driven.
  • the conveying carriage is driven, on both the rail 2 a and the rail 2 b , by the same stators 1 that penetrate through the conveying-path rotary switching unit 200 as illustrated in FIGS. 4 and 5 . Therefore, the same stators 1 can be used both before and after switching of the conveying-path rotary switching unit 200 . Consequently, the number of components, more specifically, the number of provided stators can be reduced as compared with that in the conventional technique.
  • the present invention is not limited thereto.
  • the shape of the conveying-path rotary switching unit 200 is not limited to a cuboid, as long as the stators 1 can be used in a shared manner for both the first conveying path 101 and the second conveying path 102 that can be switched by rotation.
  • first conveying path 101 and the second conveying path 102 through which the stators 1 penetrate are opposite surfaces to each other
  • present invention is not limited thereto. It is not always necessary that the first conveying path 101 and the second conveying path 102 are provided on the opposite surfaces to each other, as long as both the first conveying path 101 and the second conveying path 102 that can be switched by rotation can share the stators 1 penetrating the first conveying path 101 and the second conveying path 102 .
  • two surfaces are opposite surfaces, when one of the surfaces is assumed as a front surface, the other is a back surface and an angle formed by normal vectors of these surfaces is 180 degrees.
  • the conveying-path rotary switching unit 200 may include a further track surface other than the first conveying path 101 and the second conveying path 102 , as long as all the track surfaces that can be switched by rotation can share the stators 1 penetrating these track surfaces.
  • the rotation axis 20 of the conveying-path rotary switching unit 200 is parallel to the traveling direction in the first embodiment, the present invention is not limited thereto. It suffices that track surfaces for a conveying carriage are switched by rotation and all the track surfaces that can be mutually switched share the stators 1 penetrating the track surfaces, and it is not always necessary that the rotation direction is parallel to the traveling direction.
  • the stators 1 are electromagnets in the first embodiment, it is necessary to lead a power cable. Further, because it is necessary to provide a position detector for a conveying carriage in the conveying-path rotary switching unit 200 , an output cable of the position detector needs to be led. In a case where it is necessary to lead the cable that connects the conveying-path rotary switching unit 200 and outside to each other as described above, it suffices that a portion from the shaft 3 a to the shaft 3 b , which are to rotate, is formed to be hollow and the cable is led through the hollow shafts 3 a and 3 b to outside of the conveying-path rotary switching unit 200 . That is, it suffices that a wiring hole is provided along the rotation axis 20 .
  • the cabling hole is provided along the rotation axis 20 of the conveying-path rotary switching unit 200 , and the hole may be another means.
  • a solid shaft may be provided at the position of the shaft 3 a or the shaft 3 b to cantilever-support the conveying-path rotary switching unit 200
  • the wiring hole may be provided along the rotation axis 20 of the conveying-path rotary switching unit 200 in a different surface from a surface on which the solid shaft is provided.
  • the stators 1 penetrate a plurality of track surfaces of the conveying-path rotary switching unit 200 and the stators 1 can be shared by the track surfaces. Therefore, the number of the provided stators 1 can be reduced.
  • a mode is described in which tracks of conveying paths for branching, formed by center points of end surfaces of stators on the conveying-paths, are symmetric with respect to a plane that passes through a rotation axis of a conveying-path rotary switching unit.
  • FIG. 6 is a diagram illustrating a configuration of a conveying-path rotary switching unit 200 A that is a conveying path switching device according to the second embodiment.
  • FIG. 6 illustrates the rotation axis 20 of the conveying-path rotary switching unit 200 A and a virtual plane 30 that contains the rotation axis 20 and is parallel to conveying surfaces formed on both surfaces of the conveying-path rotary switching unit 200 A.
  • FIG. 6 illustrates the conveying-path rotary switching unit 200 A illustrated in FIG.
  • a rail 2 a A is provided on a first conveying path 101 A of the base 200 a A in place of the rail 2 a of the conveying-path rotary switching unit 200
  • a rail 2 b A is provided on a second conveying path 102 A of the base 200 a A in place of the rail 2 b of the conveying-path rotary switching unit 200 .
  • the second conveying path 102 A is provided on the back surface when the surface on which the first conveying path 101 A is provided is assumed as a front surface, but is not limited thereto. In a case where, assuming that one of surfaces is a front surface, the other is a back surface, an angle formed by normal vectors of these surfaces is 180 degrees.
  • a stator is formed in the form of a cylinder having a bottom surface that is in contact with a conveying surface, in general.
  • each stator 1 A in the form of not only a cylinder but also a frustum with respect to the conveying surface.
  • the stators 1 A can have the same shape as each other and it is therefore possible to manufacture the stators 1 A with less workload.
  • the stators 1 A are formed in the form of cylinders or frustums in a case where the stators 1 A are coils, it is easy to wind the coils parallel to the conveying surface, and winding design and winding work are easy.
  • a mode achieving such a shape that a curvature of a track is continuous is described.
  • constituent elements identical to those illustrated in the first and second embodiments are denoted by like reference signs and explanations thereof are omitted. Explanations of the first and second embodiments are incorporated herein.
  • FIG. 7 is a top view illustrating a configuration of a conveying apparatus 100 B including a conveying-path rotary switching unit 200 B that is a conveying path switching device according to the third embodiment.
  • the conveying-path rotary switching unit 200 B, the pre-branching conveying path 400 adjacent to the conveying-path rotary switching unit 200 B, the first post-branching conveying path 500 a adjacent to the conveying-path rotary switching unit 200 B on the opposite side to the pre-branching conveying path 400 , and a conveying carriage 600 are illustrated in the conveying apparatus 100 B illustrated in FIG. 7 . Illustrations of the second post-branching conveying path 500 b are omitted here.
  • the conveying-path rotary switching unit 200 B is provided to be in contact with both the pre-branching conveying path 400 and the first post-branching conveying path 500 a.
  • the conveying carriage 600 travels from the rail 2 to the rail 2 c via the connecting rail 8 and a rail 2 a B.
  • the shape of a track 10 a B for the conveying carriage 600 is such a shape that a curvature is continuous from the rail 2 to the rail 2 c via the connecting rail 8 and the rail 2 a B.
  • a centrifugal force F acting on the rail 2 a B is calculated here.
  • the track 10 a B is formed to have such a shape that the curvature is continuous from the rail 2 to the rail 2 c via the connecting rail 8 and the rail 2 a B as illustrated in FIG. 7 . With this configuration, it is possible to reduce generation of an impact on the conveying carriage 600 .
  • the third embodiment it is possible to reduce an impact on the conveying carriage 600 and to reduce damage of the conveying carriage 600 and a conveyed object on the conveying carriage 600 .
  • the third embodiment can be combined with the first and second embodiments.
  • a mode is described in which any of the conveying path switching devices described in the first to third embodiments is applied as a hoistway switching device of an elevator apparatus.
  • a conventional elevator apparatus is configured in such a manner that a car and a counterweight are provided in a hoistway, are coupled to each other with a main rope, and are driven to be raised and lowered by a hoisting motor installed in a machine room.
  • a rope-less elevator apparatus which drives a car by thrust generated between a primary coil of a linear motor provided in a hoistway and a permanent magnet that is provided in the car and configures a secondary side of the linear motor.
  • an elevator apparatus capable of moving both vertically and horizontally which can move not only in a single hoistway but also to a different hoistway.
  • this elevator apparatus capable of moving both vertically and horizontally a car is moved horizontally to switch hoistways.
  • FIG. 8 is a diagram illustrating a configuration of an elevator apparatus according to the fourth embodiment.
  • the elevator apparatus according to the fourth embodiment is an elevator apparatus that drives a car by thrust generated between a primary coil of a linear motor provided in a hoistway and a permanent magnet that is provided in the car and configures a secondary side of the linear motor, and that uses any of the conveying path switching devices described in the first to third embodiments for switching conveying paths.
  • a car 800 is provided on the conveying carriage 600 via a rotary joint 700 in the elevator apparatus according to the fourth embodiment.
  • the conveying carriage 600 that has entered a hoistway switching device 200 C from a pre-branching hoistway 810 is driven by the stators 1 while being supported by the rail 2 a in the hoistway switching device 200 C.
  • a shape of a track formed by centers of end surfaces of the stators 1 on the side of the rail 2 a is designed to be coincident with the rail 2 a so that the conveying carriage 600 on the rail 2 a can be driven.
  • the conveying carriage 600 travels on the first conveying path 101 and the second conveying path 102 that are hoistways for branching, it is necessary that the posture of a car, on which a passenger or a cargo is to be loaded, with respect to the ground is constant. Therefore, the car 800 is provided via the rotary joint 700 as illustrated in FIG. 8 , so that the posture of the car 800 with respect to the ground is kept constant. In a case where the posture of the car 800 with respect to the ground is not stable because of friction with a contact portion of the rotary joint 700 or the like, it suffices to solve this problem by employing a configuration in which a rotary actuator and its control device are added or providing a mechanical locking mechanism to keep the posture of the car 800 with respect to the ground constant, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Automation & Control Theory (AREA)
  • Non-Mechanical Conveyors (AREA)
  • Linear Motors (AREA)
  • Types And Forms Of Lifts (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Branching, Merging, And Special Transfer Between Conveyors (AREA)

Abstract

A conveying-path rotary switching unit that is a conveying path switching device includes a base, stators arranged along conveying paths for branching for a conveying carriage, a first conveying path provided on the base, and a second conveying path that is provided on the base and is different from the first conveying path. As for a conveying path on which the conveying carriage travels, the first conveying path and the second conveying path are switchable by rotation. The stators are used for both the first conveying path and the second conveying path in a shared manner.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application is based on PCT filing PCT/JP2018/027236, filed Jul. 20, 2018, which claims priority to JP 2017-144420, filed Jul. 26, 2017, the entire contents of each are incorporated herein by reference.
FIELD
The present invention relates to a conveying path switching device provided in a conveying apparatus, and an elevator apparatus using the conveying path switching device.
BACKGROUND
Conventionally, there is known a conveying apparatus including a base and a conveying carriage moving on the base, which includes a linear motor configured by a stator provided in the base and a mover provided in the conveying carriage and controls power supply to the stator or the mover to generate thrust, thereby driving the conveying carriage. Tracks for this conveying carriage include a straight track, a curved track, and a branch track. A plurality of adjacent tracks are provided in the traveling direction of the conveying carriage on the branch track. This branch track is switched to be connected to any one of the plural tracks before approach of the conveying carriage.
Patent Literature 1 discloses a point machine for a magnetic levitation track. The point machine includes a plurality of supports including a stator called a reaction rail and a motor that causes each support to rotate about a rotation axis extending in parallel to or perpendicularly to the traveling direction, and causes the supports to rotate.
CITATION LIST Patent Literature
  • Patent Literature 1: Japanese Patent Application Laid-open No. S50-111707
SUMMARY Technical Problem
However, according to the conventional technique described above, the stators are correspondingly required for each of a plurality of branch tracks. Therefore, there is a problem that it is necessary to provide the stators the number of which corresponds to the number of branches.
The present invention has been achieved in view of the above problem, and an object of the present invention is to provide a conveying path switching device capable of reducing the number of provided stators.
Solution to Problem
An aspect of the present invention provides a conveying path switching device provided in a conveying apparatus that drives a conveying carriage by stators and by a mover in the conveying carriage. The conveying path switching device includes: a base; the stators arranged along conveying paths for branching for the conveying carriage; a first conveying path provided on the base; and a second conveying path that is provided on the base and is different from the first conveying path. As for a conveying path on which the conveying carriage travels, the first conveying path and the second conveying path are switchable by rotation. The stators are used for both the first conveying path and the second conveying path in a shared manner.
Advantageous Effects of Invention
According to the present invention, an effect is obtained wherein the number of provided stators can be reduced.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a diagram illustrating a configuration of a conveying apparatus including a conveying-path rotary switching unit that is a conveying path switching device according to a first embodiment.
FIG. 2 is a diagram illustrating a configuration of the conveying-path rotary switching unit in the first embodiment.
FIG. 3 is a diagram illustrating a configuration of a driving unit in the first embodiment.
FIG. 4 is a diagram illustrating a track in a case where a first conveying path is a track surface of the conveying-path rotary switching unit in the first embodiment.
FIG. 5 is a diagram illustrating a track in a case where a second conveying path is the track surface of the conveying-path rotary switching unit in the first embodiment.
FIG. 6 is a diagram illustrating a configuration of a conveying-path rotary switching unit that is a conveying path switching device according to a second embodiment.
FIG. 7 is a top view illustrating a configuration of a conveying apparatus including a conveying-path rotary switching unit that is a conveying path switching device according to a third embodiment.
FIG. 8 is a diagram illustrating a configuration of an elevator apparatus according to a fourth embodiment.
DESCRIPTION OF EMBODIMENTS
A conveying path switching device and an elevator apparatus according to embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The present invention is not limited to the following embodiments.
First Embodiment
FIG. 1 is a diagram illustrating a configuration of a conveying apparatus 100 including a conveying-path rotary switching unit 200 that is a conveying path switching device according to a first embodiment. The conveying apparatus 100 illustrated in FIG. 1 is generally divided into the conveying-path rotary switching unit 200 and a driving unit 300.
FIG. 2 is a diagram illustrating a configuration of the conveying-path rotary switching unit 200 in the first embodiment. The conveying-path rotary switching unit 200 in the form of a cuboid illustrated in FIG. 2 includes a base 200 a, a plurality of stators 1, rails 2 a and 2 b, and shafts 3 a and 3 b. The rail 2 a is provided on the base 200 a. The rail 2 a is provided on the base 200 a to configure a first conveying path 101 provided on a first track. The rail 2 b is provided on a different surface of the base 200 a from the first conveying path 101. The rail 2 b is provided on the base 200 a to configure a second conveying path 102 provided on a second track. The rails 2 a and 2 b each serve as a conveying path for branching when being connected to a rail of a post-branching conveying path and a rail of a pre-branching conveying path which are to be described later. The shafts 3 a and 3 b are driven to rotate about a rotation axis 20, when the first track and the second track are switched to each other in the conveying-path rotary switching unit 200. The shape of each of the shafts 3 a and 3 b is cylindrical.
Each of the stators 1 is a permanent magnet or an electromagnet. The stators 1 are arranged along the rails 2 a and 2 b serving as the conveying paths for branching. The stators 1 can configure a linear motor together with a mover provided in a conveying carriage (not illustrated in FIG. 1 ) that travels on the conveying apparatus 100. All the stators 1 penetrate through the conveying-path rotary switching unit 200 and serve as stators on both surfaces of the conveying-path rotary switching unit 200.
The rail 2 a supports the conveying carriage traveling on the conveying apparatus 100, on the first conveying path 101 on the conveying-path rotary switching unit 200 in such a manner that the conveying carriage is movable in the conveying direction. The rail 2 b supports the conveying carriage traveling on the conveying apparatus 100, on the second conveying path 102 on the conveying-path rotary switching unit 200 in such a manner that the conveying carriage is movable in the conveying direction.
The shaft 3 a is supported to be rotatable by a bearing 4 a of the driving unit 300 described later on one side surface of the conveying-path rotary switching unit 200. The shaft 3 b is provided on a back surface of the conveying-path rotary switching unit 200 when the side surface on which the shaft 3 a is provided is assumed as a front surface, and is supported to be rotatable by a bearing 4 b of the driving unit 300 described later. FIG. 3 is a diagram illustrating a configuration of the driving unit 300 in the first embodiment. The driving unit 300 illustrated in FIG. 3 includes the bearings 4 a and 4 b, a support member 5, a motor 6, a belt 7, a connecting rail 8, and a support member 9. The bearing 4 a supports the shaft 3 a of the conveying-path rotary switching unit 200 in a rotatable manner. The bearing 4 b supports the shaft 3 b of the conveying-path rotary switching unit 200 in a rotatable manner. The support member 5 supports the bearing 4 a. The motor 6 drives the shaft 3 a to rotate when the conveying-path rotary switching unit 200 is switched. The belt 7 connects the shaft 3 a and the motor 6 to each other. The connecting rail 8 is connected to a pre-branching conveying path (not illustrated in FIG. 3 ) on the opposite side to the conveying-path rotary switching unit 200. The support member 9 has a track surface on which the connecting rail 8 is provided, and supports the bearing 4 b.
FIG. 4 is a diagram illustrating a track in a case where the first conveying path 101 is a track surface of the conveying-path rotary switching unit 200 in the first embodiment. FIG. 5 is a diagram illustrating a track in a case where the second conveying path 102 is the track surface of the conveying-path rotary switching unit 200 in the first embodiment. As illustrated in FIGS. 4 and 5 , the conveying-path rotary switching unit 200 is provided between a pre-branching conveying path 400, and a first post-branching conveying path 500 a and a second post-branching conveying path 500 b.
A rail 2 is provided on a track surface of the pre-branching conveying path 400. A rail 2 c is provided on a track surface of the first post-branching conveying path 500 a. A rail 2 d is provided on a track surface of the second post-branching conveying path 500 b.
As illustrated in FIG. 4 , when the first conveying path 101 becomes a track surface for a conveying carriage (not illustrated in FIG. 4 ), that is, a conveying path on which the conveying carriage is to travel, one end of the rail 2 a is connected to the connecting rail 8 and the other end of the rail 2 a is connected to the rail 2 c. Subsequently, the rail 2 of the pre-branching conveying path 400 is connected to the connecting rail 8, the connecting rail 8 is connected to the rail 2 a, and the rail 2 a is connected to the rail 2 c. Therefore, a shape is achieved in which the rail 2, the connecting rail 8, the rail 2 a, and the rail 2 c are mutually connected in a line.
As illustrated in FIG. 5 , when the second conveying path 102 becomes a track surface for a conveying carriage (not illustrated in FIG. 5 ), that is, a conveying path on which the conveying carriage is to travel, one end of the rail 2 b is connected to the connecting rail 8 and the other end of the rail 2 b is connected to the rail 2 d. Subsequently, the rail 2 of the pre-branching conveying path 400 is connected to the connecting rail 8, the connecting rail 8 is connected to the rail 2 b, and the rail 2 b is connected to the rail 2 d. Therefore, a shape is achieved in which the rail 2, the connecting rail 8, the rail 2 b, and the rail 2 d are mutually connected in a line.
In a case where one end of the rail 2 a is connected to the connecting rail 8 and the other end of the rail 2 a is connected to the rail 2 c as illustrated in FIG. 4 , the conveying carriage that has entered from the pre-branching conveying path 400 to the conveying-path rotary switching unit 200 is driven by the stators 1 while being supported by the rail 2 a in the conveying-path rotary switching unit 200. A track shape formed by centers of end surfaces of the stators 1 on the side of the rail 2 a is designed to be coincident with the rail 2 a so that the conveying carriage on the rail 2 a can be driven.
In a case where one end of the rail 2 b is connected to the connecting rail 8 and the other end of the rail 2 b is connected to the rail 2 d as illustrated in FIG. 5, the conveying carriage that has entered from the pre-branching conveying path 400 to the conveying-path rotary switching unit 200 is driven by the stators 1 while being supported by the rail 2 b in the conveying-path rotary switching unit 200 as in the case in FIG. 4 . A track shape formed by centers of end surfaces of the stators 1 on the side of the rail 2 b is designed to be coincident with the rail 2 b so that the conveying carriage on the rail 2 b can be driven.
In the conventional technique, it is necessary to provide stators the number of which corresponds to the number of conveying paths for branching. Meanwhile, according to the first embodiment, the conveying carriage is driven, on both the rail 2 a and the rail 2 b, by the same stators 1 that penetrate through the conveying-path rotary switching unit 200 as illustrated in FIGS. 4 and 5 . Therefore, the same stators 1 can be used both before and after switching of the conveying-path rotary switching unit 200. Consequently, the number of components, more specifically, the number of provided stators can be reduced as compared with that in the conventional technique.
Although a cuboid has been exemplified as the shape of the conveying-path rotary switching unit 200 in the first embodiment, the present invention is not limited thereto. The shape of the conveying-path rotary switching unit 200 is not limited to a cuboid, as long as the stators 1 can be used in a shared manner for both the first conveying path 101 and the second conveying path 102 that can be switched by rotation.
Further, although a mode in which the first conveying path 101 and the second conveying path 102 through which the stators 1 penetrate are opposite surfaces to each other has been exemplified in the first embodiment, the present invention is not limited thereto. It is not always necessary that the first conveying path 101 and the second conveying path 102 are provided on the opposite surfaces to each other, as long as both the first conveying path 101 and the second conveying path 102 that can be switched by rotation can share the stators 1 penetrating the first conveying path 101 and the second conveying path 102. In a case where two surfaces are opposite surfaces, when one of the surfaces is assumed as a front surface, the other is a back surface and an angle formed by normal vectors of these surfaces is 180 degrees.
Furthermore, although the stators 1 penetrate two track surfaces in the first embodiment, the present invention is not limited thereto. The conveying-path rotary switching unit 200 may include a further track surface other than the first conveying path 101 and the second conveying path 102, as long as all the track surfaces that can be switched by rotation can share the stators 1 penetrating these track surfaces.
Further, although the rotation axis 20 of the conveying-path rotary switching unit 200 is parallel to the traveling direction in the first embodiment, the present invention is not limited thereto. It suffices that track surfaces for a conveying carriage are switched by rotation and all the track surfaces that can be mutually switched share the stators 1 penetrating the track surfaces, and it is not always necessary that the rotation direction is parallel to the traveling direction.
In a case where the stators 1 are electromagnets in the first embodiment, it is necessary to lead a power cable. Further, because it is necessary to provide a position detector for a conveying carriage in the conveying-path rotary switching unit 200, an output cable of the position detector needs to be led. In a case where it is necessary to lead the cable that connects the conveying-path rotary switching unit 200 and outside to each other as described above, it suffices that a portion from the shaft 3 a to the shaft 3 b, which are to rotate, is formed to be hollow and the cable is led through the hollow shafts 3 a and 3 b to outside of the conveying-path rotary switching unit 200. That is, it suffices that a wiring hole is provided along the rotation axis 20. According to this configuration, it is possible to suppress a relative behavior of the cable with respect to the conveying-path rotary switching unit 200, caused by rotation of the conveying-path rotary switching unit 200, and to suppress disconnection of the cable. It suffices that the cabling hole is provided along the rotation axis 20 of the conveying-path rotary switching unit 200, and the hole may be another means. For example, a solid shaft may be provided at the position of the shaft 3 a or the shaft 3 b to cantilever-support the conveying-path rotary switching unit 200, and the wiring hole may be provided along the rotation axis 20 of the conveying-path rotary switching unit 200 in a different surface from a surface on which the solid shaft is provided.
As described above, according to the first embodiment, the stators 1 penetrate a plurality of track surfaces of the conveying-path rotary switching unit 200 and the stators 1 can be shared by the track surfaces. Therefore, the number of the provided stators 1 can be reduced.
Second Embodiment
In a second embodiment, a mode is described in which tracks of conveying paths for branching, formed by center points of end surfaces of stators on the conveying-paths, are symmetric with respect to a plane that passes through a rotation axis of a conveying-path rotary switching unit.
FIG. 6 is a diagram illustrating a configuration of a conveying-path rotary switching unit 200A that is a conveying path switching device according to the second embodiment. FIG. 6 illustrates the rotation axis 20 of the conveying-path rotary switching unit 200A and a virtual plane 30 that contains the rotation axis 20 and is parallel to conveying surfaces formed on both surfaces of the conveying-path rotary switching unit 200A. In the conveying-path rotary switching unit 200A illustrated in FIG. 6 , a track 10 a of a conveying path for branching and a track 10 b provided on a back surface when the surface of the track 10 a is assumed as a front surface, which are formed by center points of end surfaces of stators 1A that penetrate through a base 200 aA, are symmetric with respect to the virtual plane 30. A rail 2 aA is provided on a first conveying path 101A of the base 200 aA in place of the rail 2 a of the conveying-path rotary switching unit 200, and a rail 2 bA is provided on a second conveying path 102A of the base 200 aA in place of the rail 2 b of the conveying-path rotary switching unit 200. The second conveying path 102A is provided on the back surface when the surface on which the first conveying path 101A is provided is assumed as a front surface, but is not limited thereto. In a case where, assuming that one of surfaces is a front surface, the other is a back surface, an angle formed by normal vectors of these surfaces is 180 degrees.
Because the track 10 a and the track 10 b are symmetric with respect the virtual plane 30 that passes through the rotation axis 20, the stators 1A penetrate through the base 200 aA in the shortest route. Further, it is preferable that a stator is formed in the form of a cylinder having a bottom surface that is in contact with a conveying surface, in general. However, it is possible to form each stator 1A in the form of not only a cylinder but also a frustum with respect to the conveying surface. In a case where the stators 1A are formed in the form of cylinders or frustums, the stators 1A can have the same shape as each other and it is therefore possible to manufacture the stators 1A with less workload. Further, when the stators 1A are formed in the form of cylinders or frustums in a case where the stators 1A are coils, it is easy to wind the coils parallel to the conveying surface, and winding design and winding work are easy.
According to the second embodiment, it is possible to reduce a process of manufacturing stators.
Third Embodiment
In a third embodiment, a mode achieving such a shape that a curvature of a track is continuous is described. In the third embodiment, constituent elements identical to those illustrated in the first and second embodiments are denoted by like reference signs and explanations thereof are omitted. Explanations of the first and second embodiments are incorporated herein.
FIG. 7 is a top view illustrating a configuration of a conveying apparatus 100B including a conveying-path rotary switching unit 200B that is a conveying path switching device according to the third embodiment. The conveying-path rotary switching unit 200B, the pre-branching conveying path 400 adjacent to the conveying-path rotary switching unit 200B, the first post-branching conveying path 500 a adjacent to the conveying-path rotary switching unit 200B on the opposite side to the pre-branching conveying path 400, and a conveying carriage 600 are illustrated in the conveying apparatus 100B illustrated in FIG. 7 . Illustrations of the second post-branching conveying path 500 b are omitted here. The conveying-path rotary switching unit 200B is provided to be in contact with both the pre-branching conveying path 400 and the first post-branching conveying path 500 a.
The conveying carriage 600 travels from the rail 2 to the rail 2 c via the connecting rail 8 and a rail 2 aB. The shape of a track 10 aB for the conveying carriage 600 is such a shape that a curvature is continuous from the rail 2 to the rail 2 c via the connecting rail 8 and the rail 2 aB.
A centrifugal force F acting on the rail 2 aB is calculated here. Using a curvature ρ of the rail 2 aB, a velocity V of the conveying carriage 600, and a mass M of the conveying carriage 600, F=M×ρ×V2 is established. From this expression, the centrifugal force F is linear with respect to the curvature p. Therefore, the centrifugal force F is discontinuous if the curvature ρ is discontinuous, which causes generation of an impact on the conveying carriage 600. As a result, there is a risk that the conveying carriage 600 or a conveyed object on the conveying carriage 600 is damaged.
Therefore, the track 10 aB is formed to have such a shape that the curvature is continuous from the rail 2 to the rail 2 c via the connecting rail 8 and the rail 2 aB as illustrated in FIG. 7 . With this configuration, it is possible to reduce generation of an impact on the conveying carriage 600.
According to the third embodiment, it is possible to reduce an impact on the conveying carriage 600 and to reduce damage of the conveying carriage 600 and a conveyed object on the conveying carriage 600.
The third embodiment can be combined with the first and second embodiments.
Fourth Embodiment
In a fourth embodiment, a mode is described in which any of the conveying path switching devices described in the first to third embodiments is applied as a hoistway switching device of an elevator apparatus.
As is well known, a conventional elevator apparatus is configured in such a manner that a car and a counterweight are provided in a hoistway, are coupled to each other with a main rope, and are driven to be raised and lowered by a hoisting motor installed in a machine room.
Meanwhile, a rope-less elevator apparatus is known which drives a car by thrust generated between a primary coil of a linear motor provided in a hoistway and a permanent magnet that is provided in the car and configures a secondary side of the linear motor.
Further, an elevator apparatus capable of moving both vertically and horizontally is also known which can move not only in a single hoistway but also to a different hoistway. In this elevator apparatus capable of moving both vertically and horizontally, a car is moved horizontally to switch hoistways.
FIG. 8 is a diagram illustrating a configuration of an elevator apparatus according to the fourth embodiment. The elevator apparatus according to the fourth embodiment is an elevator apparatus that drives a car by thrust generated between a primary coil of a linear motor provided in a hoistway and a permanent magnet that is provided in the car and configures a secondary side of the linear motor, and that uses any of the conveying path switching devices described in the first to third embodiments for switching conveying paths. In FIG. 8 , a car 800 is provided on the conveying carriage 600 via a rotary joint 700 in the elevator apparatus according to the fourth embodiment.
In the state illustrated in FIG. 8 , the conveying carriage 600 that has entered a hoistway switching device 200C from a pre-branching hoistway 810 is driven by the stators 1 while being supported by the rail 2 a in the hoistway switching device 200C. A shape of a track formed by centers of end surfaces of the stators 1 on the side of the rail 2 a is designed to be coincident with the rail 2 a so that the conveying carriage 600 on the rail 2 a can be driven. As a result of this configuration, it is possible to cause the conveying carriage 600 to enter a first post-branching hoistway 820 a.
Further, although not illustrated, it is possible to cause the conveying carriage 600 to enter a second post-branching hoistway 820 b by switching a conveying path in a rotating manner as in FIG. 5 of the first embodiment.
Next, advantageous effects of the fourth embodiment are described. In the above-described conventional elevator capable of moving both vertically and horizontally, it is necessary to stop a car once in order to move it to a different hoistway. On the other hand, in a case of the hoistway switching device 200C according to the fourth embodiment, it is unnecessary to stop the car when the car moves to the different hoistway. Further, it is possible to reduce the number of components, more specifically, the number of provided stators, as compared with a case where the technique of Patent Literature 1 described as a prior art document of the present application is applied to the conventional elevator capable of moving both vertically and horizontally as it is.
While the conveying carriage 600 travels on the first conveying path 101 and the second conveying path 102 that are hoistways for branching, it is necessary that the posture of a car, on which a passenger or a cargo is to be loaded, with respect to the ground is constant. Therefore, the car 800 is provided via the rotary joint 700 as illustrated in FIG. 8 , so that the posture of the car 800 with respect to the ground is kept constant. In a case where the posture of the car 800 with respect to the ground is not stable because of friction with a contact portion of the rotary joint 700 or the like, it suffices to solve this problem by employing a configuration in which a rotary actuator and its control device are added or providing a mechanical locking mechanism to keep the posture of the car 800 with respect to the ground constant, for example.
The configurations described in the above embodiments are only examples of the content of the present invention. The configurations can be combined with other well-known techniques, and part of each of the configurations can be omitted or modified without departing from the scope of the present invention.
REFERENCE SIGNS LIST
    • 1, 1A stator, 2, 2 a, 2 aA, 2 aB, 2 b, 2 bA, 2 c, 2 d rail, 3 a, 3 b shaft, 4 a, 4 b bearing, 5 support member, 6 motor, 7 belt, 8 connecting rail, 9 support member, 10 a, 10 aB, 10 b track, 20 rotation axis, 30 virtual plane, 100, 100B conveying apparatus, 101, 101A first conveying path, 102, 102A second conveying path, 200, 200A, 200B conveying-path rotary switching unit, 200C hoistway switching device, 200 a, 200 aA base, 300 driving unit, 400 pre-branching conveying path, 500 a first post-branching conveying path, 500 b second post-branching conveying path, 600 conveying carriage, 700 rotary joint, 800 car, 810 pre-branching hoistway, 820 a first post-branching hoistway, 820 b second post-branching hoistway.

Claims (20)

The invention claimed is:
1. A conveying path switching device provided in a conveying apparatus that drives a conveying carriage, comprising:
a base;
stators along conveying paths for branching for the conveying carriage;
a first conveying path on the base; and
a second conveying path that is on the base and is different from the first conveying path, wherein
as for a conveying path on which the conveying carriage travels, the first conveying path and the second conveying path are switchable by rotation thereof,
the stators are shared for both the first conveying path and the second conveying path, and
the first conveying path is on a first side of the base and the second conveying path is on a second side of the base opposite the first side.
2. The conveying path switching device according to claim 1, wherein the stators penetrate through the base from the first conveying path to the second conveying path.
3. The conveying path switching device according to claim 2, wherein a curvature of each of the first conveying path and the second conveying path is shaped such that an adjacent pre-branching conveying path and an adjacent post-branching conveying path are connected contiguously via the first conveying path or the second conveying path.
4. The conveying path switching device according to claim 2, wherein respective distinct tracks of the conveying paths for branching that are imaginal lines connecting center points of both end surfaces of the stators on the conveying paths, are symmetric with respect to each other across a rotation axis of the rotation.
5. The conveying path switching device according to claim 4, wherein a curvature of each of the first conveying path and the second conveying path is shaped such that an adjacent pre-branching conveying path and an adjacent post-branching conveying path are connected contiguously via the first conveying path or the second conveying path.
6. The conveying path switching device according to claim 1, wherein a wiring hole is in a shaft for the rotation.
7. The conveying path switching device according to claim 1, wherein respective distinct tracks of the conveying paths for branching, that are imaginal lines connecting center points of both end surfaces of the stators on the conveying paths, are symmetric with respect to each other across a rotation axis of the rotation.
8. The conveying path switching device according to claim 7, wherein a curvature of each of the first conveying path and the second conveying path is shaped such that an adjacent pre-branching conveying path and an adjacent post-branching conveying path are connected contiguously via the first conveying path or the second conveying path.
9. The conveying path switching device according to claim 1, wherein a curvature of each of the first conveying path and the second conveying path is shaped such that an adjacent pre-branching conveying path and an adjacent post-branching conveying path are connected contiguously via the first conveying path or the second conveying path.
10. The conveying path switching device according to claim 1, wherein at least one of the stators extends through a rotation axis for rotation of the base.
11. The conveying path switching device according to claim 1, wherein the stators penetrate through the base from the first side of the base to the second side of the base.
12. An elevator apparatus that drives a car by thrust generated between a primary coil of a linear motor provided in a hoistway and a magnet that is provided in the car and configures a secondary side of the linear motor, comprising a conveying path switching device for switching conveying paths, the conveying path switching device including:
a base;
stators along the conveying paths for branching for a conveying carriage;
a first conveying path on the base; and
a second conveying path that is on the base and is different from the first conveying path, wherein
as for a conveying path on which the conveying carriage travels, the first conveying path and the second conveying path are switchable by rotation of the base,
the stators are shared for both the first conveying path and the second conveying path, and
the first conveying path is on a first side of the base and the second conveying path is on a second side of the base opposite the first side.
13. The elevator apparatus according to claim 12, wherein the stators penetrate through the base from the first conveying path to the second conveying path.
14. The elevator apparatus according to claim 12, wherein respective distinct tracks of the conveying paths for branching that are imaginal lines connecting center points of both end surfaces of the stators on the conveying paths, are symmetric with respect to each other across a rotation axis of the rotation.
15. The elevator apparatus according to claim 12, wherein a curvature of each of the first conveying path and the second conveying path is shaped such that an adjacent pre-branching conveying path and an adjacent post-branching conveying path are connected contiguously via the first conveying path or the second conveying path.
16. The elevator apparatus according to claim 12, wherein a wiring hole is in a shaft for the rotation.
17. The elevator apparatus according to claim 12, wherein at least one of the stators extends through a rotation axis for rotation of the base.
18. The elevator apparatus according to claim 12, wherein the stators penetrate through the base from the first side of the base to the second side of the base.
19. A conveying path switching device provided in a conveying apparatus that drives a conveying carriage, comprising:
a base;
stators along conveying paths for branching for the conveying carriage;
a first conveying path on the base; and
a second conveying path that is on the base and is different from the first conveying path, wherein
as for a conveying path on which the conveying carriage travels, the first conveying path and the second conveying path are switchable by rotation thereof, and
the stators are shared for both the first conveying path and the second conveying path, and
the stators penetrate through the base from the first conveying path to the second conveying path.
20. An elevator apparatus that drives a car by thrust generated between a primary coil of a linear motor provided in a hoistway and a magnet that is provided in the car and configures a secondary side of the linear motor, comprising the conveying path switching device according to claim 19 for switching conveying paths.
US16/623,396 2017-07-26 2018-07-20 Conveying path switching device and elevator apparatus Active 2041-01-26 US11773541B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017144420 2017-07-26
JP2017-144420 2017-07-26
PCT/JP2018/027236 WO2019021950A1 (en) 2017-07-26 2018-07-20 Conveying path switching device and elevator device

Publications (2)

Publication Number Publication Date
US20200173115A1 US20200173115A1 (en) 2020-06-04
US11773541B2 true US11773541B2 (en) 2023-10-03

Family

ID=65039741

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/623,396 Active 2041-01-26 US11773541B2 (en) 2017-07-26 2018-07-20 Conveying path switching device and elevator apparatus

Country Status (5)

Country Link
US (1) US11773541B2 (en)
JP (1) JP6742522B2 (en)
KR (1) KR102364538B1 (en)
DE (1) DE112018003804T5 (en)
WO (1) WO2019021950A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019201511A1 (en) * 2019-02-06 2020-08-06 Thyssenkrupp Ag Transfer arrangement for an elevator system

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760739A (en) * 1970-06-15 1973-09-25 J Benner Conveyor track switch actuated by a linear motor
JPS50111707A (en) 1972-11-17 1975-09-02
JPS6424668U (en) 1987-08-04 1989-02-10
JPH01291605A (en) 1988-05-18 1989-11-24 Shinko Electric Co Ltd Rail brancher in linear motor type carrying system
US4919054A (en) * 1984-03-26 1990-04-24 Kabushiki Kaisha Toshiba Conveying apparatus
US5094172A (en) * 1988-10-05 1992-03-10 Magnetbahn Gmbh Rail switch for vehicle tracking systems, particularly for magnetic levitation train tracking systems
DE4142914A1 (en) * 1991-12-24 1993-07-01 Noell Gmbh Railway points with pliable tongues - are esp. used for suspended railway and incorporate swivelling frog to change route
US5499583A (en) * 1993-12-18 1996-03-19 Magnetbahn Gmbh Railway switch
KR19990075002A (en) 1998-03-17 1999-10-05 이노마다 시게오 Transfer facility with branch track
US6371418B1 (en) * 1996-12-23 2002-04-16 Vae Aktiengesellschaft Curve path of a switch, and track joint using this type of curve path
US6450103B2 (en) 1996-05-07 2002-09-17 Einar Svensson Monorail system
US20030154878A1 (en) * 2000-06-30 2003-08-21 Karl Fichtner Moveable track connection
US6784572B1 (en) 1991-03-17 2004-08-31 Anorad Corporation Path arrangement for a multi-track linear motor system and method to control same
US20070186799A1 (en) 2006-02-14 2007-08-16 Asyst Shinko, Inc. Direction change device
US20090095846A1 (en) * 2007-10-10 2009-04-16 The Texas A&M University System Guideway Switching Mechanism
US7781993B1 (en) * 1998-02-26 2010-08-24 Anorad Corporation Path module for a linear motor, modular linear motor system and method to control the same
US20110062901A1 (en) * 2007-08-16 2011-03-17 Dorma Gmbh + Co. Kg Arrangement of Stator Modules in a Linear Motor
US20130074724A1 (en) * 2009-01-23 2013-03-28 Magnemotion, Inc. Transport system powered by short block linear synchronous motors and switching mechanism
DE102011056249A1 (en) 2011-12-09 2013-06-13 Thyssenkrupp Transrapid Gmbh Linear synchronous motor
KR20130133071A (en) 2011-05-16 2013-12-05 무라다기카이가부시끼가이샤 Carriage system having track
CN105755914A (en) * 2016-03-24 2016-07-13 西南交通大学 Mechanical turnout applied to high-temperature super conducting magnetic floating system and steering method
US20180334362A1 (en) * 2017-05-17 2018-11-22 Kone Corporation Wireless power transfer arrangement for an elevator car and an elevator
US20190077277A1 (en) * 2017-09-14 2019-03-14 B&R Industrial Automation GmbH Long stator linear motor
US20190177125A1 (en) * 2016-07-01 2019-06-13 Thyssenkrupp Elevator Ag Elevator system
US20200095072A1 (en) * 2017-05-18 2020-03-26 Krones Ag Magnet switch for a transport system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100511A (en) * 1975-03-03 1976-09-04 Tsubakimoto Chain Co FUKUGOKAITENKIDOSOCHI
JPH0515463Y2 (en) * 1987-02-25 1993-04-23
JPH02159906A (en) * 1988-12-09 1990-06-20 Sumitomo Electric Ind Ltd Rail branch for magnetic levitation carrier
JPH0522807A (en) * 1991-07-10 1993-01-29 Hitachi Ltd Track turnout for magnetic levitation railroad
JP2987020B2 (en) * 1992-12-25 1999-12-06 株式会社竹中工務店 Elevator equipment
JPH08265910A (en) * 1995-03-23 1996-10-11 Shinko Electric Co Ltd Track switcher for linear transfer system
JP4096169B2 (en) * 2002-07-26 2008-06-04 株式会社安川電機 Linear motor continuous transfer device
US8020493B2 (en) * 2008-12-29 2011-09-20 Universal City Studios Llc Track-switching device and method

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760739A (en) * 1970-06-15 1973-09-25 J Benner Conveyor track switch actuated by a linear motor
JPS50111707A (en) 1972-11-17 1975-09-02
US3905303A (en) 1972-11-17 1975-09-16 Siemens Ag Switch for a magnetic suspension railroad
US4919054A (en) * 1984-03-26 1990-04-24 Kabushiki Kaisha Toshiba Conveying apparatus
JPS6424668U (en) 1987-08-04 1989-02-10
JPH01291605A (en) 1988-05-18 1989-11-24 Shinko Electric Co Ltd Rail brancher in linear motor type carrying system
US5094172A (en) * 1988-10-05 1992-03-10 Magnetbahn Gmbh Rail switch for vehicle tracking systems, particularly for magnetic levitation train tracking systems
US6784572B1 (en) 1991-03-17 2004-08-31 Anorad Corporation Path arrangement for a multi-track linear motor system and method to control same
DE4142914A1 (en) * 1991-12-24 1993-07-01 Noell Gmbh Railway points with pliable tongues - are esp. used for suspended railway and incorporate swivelling frog to change route
US5499583A (en) * 1993-12-18 1996-03-19 Magnetbahn Gmbh Railway switch
US6450103B2 (en) 1996-05-07 2002-09-17 Einar Svensson Monorail system
US6371418B1 (en) * 1996-12-23 2002-04-16 Vae Aktiengesellschaft Curve path of a switch, and track joint using this type of curve path
US7781993B1 (en) * 1998-02-26 2010-08-24 Anorad Corporation Path module for a linear motor, modular linear motor system and method to control the same
KR19990075002A (en) 1998-03-17 1999-10-05 이노마다 시게오 Transfer facility with branch track
US20030154878A1 (en) * 2000-06-30 2003-08-21 Karl Fichtner Moveable track connection
DE60220990T2 (en) 2001-02-02 2008-03-06 Einar Bend Svensson MONORAIL SYSTEM
US20070186799A1 (en) 2006-02-14 2007-08-16 Asyst Shinko, Inc. Direction change device
KR20070082052A (en) 2006-02-14 2007-08-20 아시스트 신꼬, 인코포레이티드 Direction change device
US20110062901A1 (en) * 2007-08-16 2011-03-17 Dorma Gmbh + Co. Kg Arrangement of Stator Modules in a Linear Motor
US20090095846A1 (en) * 2007-10-10 2009-04-16 The Texas A&M University System Guideway Switching Mechanism
US20130074724A1 (en) * 2009-01-23 2013-03-28 Magnemotion, Inc. Transport system powered by short block linear synchronous motors and switching mechanism
US20140090575A1 (en) 2011-05-16 2014-04-03 Murata Machinery, Ltd. Rail guided vehicle system
KR20130133071A (en) 2011-05-16 2013-12-05 무라다기카이가부시끼가이샤 Carriage system having track
DE102011056249A1 (en) 2011-12-09 2013-06-13 Thyssenkrupp Transrapid Gmbh Linear synchronous motor
US20140368062A1 (en) 2011-12-09 2014-12-18 Thyssenkrupp Elevator Ag Linear synchronous motor
CN105755914A (en) * 2016-03-24 2016-07-13 西南交通大学 Mechanical turnout applied to high-temperature super conducting magnetic floating system and steering method
US20190177125A1 (en) * 2016-07-01 2019-06-13 Thyssenkrupp Elevator Ag Elevator system
US20180334362A1 (en) * 2017-05-17 2018-11-22 Kone Corporation Wireless power transfer arrangement for an elevator car and an elevator
US20200095072A1 (en) * 2017-05-18 2020-03-26 Krones Ag Magnet switch for a transport system
US20190077277A1 (en) * 2017-09-14 2019-03-14 B&R Industrial Automation GmbH Long stator linear motor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
International Search Report and Written Opinion dated Oct. 16, 2018 for PCT/JP2018/027236 filed on Jul. 20, 2018, 8 pages including English Translation of the International Search Report.
Office Action dated Jan. 24, 2022 in German Patent Application No. 11 2018 003 804.1, 12 pages.
Office Action dated May 12, 2021, in corresponding Korean patent Application No. 10-2019-7037793, 6 pages.

Also Published As

Publication number Publication date
KR102364538B1 (en) 2022-02-17
DE112018003804T5 (en) 2020-05-20
KR20200010434A (en) 2020-01-30
JP6742522B2 (en) 2020-08-19
WO2019021950A1 (en) 2019-01-31
JPWO2019021950A1 (en) 2019-12-26
US20200173115A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP6979883B2 (en) Electric linear motor
JP4531067B2 (en) Magnetic levitation device
JP4846237B2 (en) Magnetic suspension system
JP2007217188A (en) Elevator facility having linear driving system and linear driving system for the elevator facility
JP2002509420A (en) Operation device of transfer device with magnetic levitation vehicle
EP2994406B1 (en) Connecting cars in a multicar elevator system
US20180022575A1 (en) Wireless communication for self-propelled elevator system
JP2019176720A (en) Electric linear motor
KR20170067088A (en) Pallet Transporting System and Transporting Route Changing Method thereof
US11509206B2 (en) Linear-motor type transport device for transporting material for absorbent article and method for manufacturing absorbent article
US10618750B2 (en) Transport device in the form of a long-stator linear motor having a turnaround portion
US11773541B2 (en) Conveying path switching device and elevator apparatus
WO2018139098A1 (en) Article transferring device
CN114430727B (en) Lifting conveying device
EP3715303B1 (en) Multi-shaft power charging
KR20120059931A (en) Magnetic levitation conveyance system having enhaced curve driving performance
US10023436B2 (en) Drive with multiple looping for an elevator installation
JP2019216591A (en) Linear motor, transfer device, and production device
KR20120004865A (en) Magnetic levitation conveyance system having spring
Appunn et al. Modern high speed elevator systems for skyscrapers
EP3666704B1 (en) Car to car wireless power transfer
US20200361747A1 (en) Inclined elevator and method for manufacturing thereof
JP7325690B1 (en) Linear transfer device
EP3988490A1 (en) A direction changing arrangement for a multi-motor configuration linear motor conveyor system, linear motor system and a conveyor system
CN109484946B (en) Elevator and control method of elevator

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE