JP4096169B2 - Linear motor continuous transfer device - Google Patents

Linear motor continuous transfer device Download PDF

Info

Publication number
JP4096169B2
JP4096169B2 JP2002218219A JP2002218219A JP4096169B2 JP 4096169 B2 JP4096169 B2 JP 4096169B2 JP 2002218219 A JP2002218219 A JP 2002218219A JP 2002218219 A JP2002218219 A JP 2002218219A JP 4096169 B2 JP4096169 B2 JP 4096169B2
Authority
JP
Japan
Prior art keywords
linear motor
linear
mover
motor
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002218219A
Other languages
Japanese (ja)
Other versions
JP2004059204A (en
Inventor
寛治 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002218219A priority Critical patent/JP4096169B2/en
Publication of JP2004059204A publication Critical patent/JP2004059204A/en
Application granted granted Critical
Publication of JP4096169B2 publication Critical patent/JP4096169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高速搬送機械やその他機械等の高速位置決め制御に適用される搬送装置の応用機械に関し、特に搬送効率を上げるための機械の構造とその制御方法に関する。
【0002】
【従来の技術】
従来、リニアモータを使った搬送機械およびその制御は図4に示すようになっている。図4の(a)はブロック図(イ)と側面図(ロ)、(b)は上面図、(c)は正面図である。図4において30はリニアモータ、31はコントローラ、32はドライバ、33は可動子、34は固定子、35はリニアスケール、36は位置指令設定用表示器である。この例では、36の位置指令設定用表示器で設定した位置指令および速度指令の設定値と、35のリニアスケールからフィードバックされてきた可動子の現在位置を使用して、35のコントローラにて位置制御を行うものである。
この方法により、一方向に製品を搬送する場合は、図4に示すような可動子速度線図を使って位置制御を行っていた。
図4において、可動子33(図4)は動作開始時A点にて搬送すべき製品を受け取り、その後加速し、定常速度に到達してある程度その速度で走行したB点で次工程に製品を渡す。可動子33は製品を受け渡した後に、減速を開始して停止する。その後、指定された速度で次に製品を受け取るA点に戻る。
【0003】
【発明が解決しようとする課題】
ところがこのような従来技術では、短い時間の間に多数の製品を搬送しなければならない場合に、製品を搬送して次の工程に搬送した後に、その次の製品を搬送する場合には、かならず減速、停止して、逆方向に加速、移動、減速、停止し、再度正方向に加速する必要があるため、搬送時間の短縮化をする場合は、リニアモータの容量が大きくなること、速度を上げる必要があるため機械全体の剛性を上げる必要がある等の問題があった。
そこで本発明の目的は、リニアモータの容量をそのままにして搬送効率を上げることにある。
【0004】
【課題を解決するための手段】
上記従来の課題を解決するため、請求項1記載のリニアモータ連続搬送装置の発明は、搬送用可動子と固定子から成るリニアモータを2台表裏に張り合わせたリニアモータ構造体と、当該リニアモータ構造体を半回転させる回転駆動体と、から構成され、前記リニアモータの表側の可動子が一方向に移動している間に裏側の可動子が逆方向に移動し、前記表側の可動子が搬送を終了した瞬間に前記回転駆動体により前記リニアモータ構造体を半回転させて表裏を逆にするリニアモータ連続搬送装置において、求められる搬送速度から、同期指令を生成し、当該同期指令を使った電子カム制御で前記搬送用の複数の可動子と前記回転駆動体としての駆動モータとを位置制御することを特徴とする。
【0005】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて詳細に説明する。
図1は、リニアモータを使った本発明に係る連続搬送装置を示す図で、(a)はブロック図(イ)と側面図(ロ)、(b)は上面図、(c)は正面図である。
図において、10はリニアモータ構造体であり、搬送用可動子と固定子から成るリニアモータを2台表裏に張り合わせて成るものである。11はコントローラ、12はドライバで3台あり、表可動子、裏可動子、固定子回転用モータの中にそれぞれ設けられている。13は固定子回転用モータ、14は固定子、15は表可動子、16は裏可動子、17、17’はリニアスケール、18は位置指令設定用表示器である。位置指令設定用表示器18で設定した位置指令および速度指令の設定値と、リニアスケール17、17’からフィードバックされてきた表可動子15、裏可動子16の現在位置を使用して、コントローラ11にて位置制御を行うものである。
表側の可動子15が一方向に移動している間に裏側の可動子16は逆方向に移動し表側可動子15が搬送を終了した瞬間に固定子回転用モータ(回転駆動体)13によりリニアモータ構造体10を半回転させて表裏を逆にし、次に、裏側可動子16が搬送に寄与することとなる。
【0006】
図2は図1のリニアモータの表可動子15と、裏可動子16と、固定子14を半回転させるモータ13の速度線図である。
表可動子15(図1)は動作開始時A点にて搬送すべき製品を受け取り、その後加速を開始し、定常速度に到達してある程度その速度で走行したB点で次工程に製品を渡す。
表可動子15は製品を受け渡した後に、減速を開始して停止する。
その後指定された速度で次に製品を受け取るA点に戻る動作を行う。このときリニア回転用駆動モータ13により、リニアモータ10を反転させて、裏面でA点に待機している裏可動子16を表面に位置決めする。そして裏面可動子16は製品を受け取り、表可動子15が先ほど行った動作と同じ動作を行い、製品を搬送する。
以下、これを繰り返すことにより、従来はできなかった製品の連続搬送が可能となる。
【0007】
ここで、電子カムの簡単な実施例を示す。
図3は本発明において使用した電子カムの制御の実施例である。
図において、20は電子カム制御器、27はサーボドライブ速度制御回路、28はサーボモータ、29はパルスジェネレータであり、コントローラ20の内部には、カムデータテーブル21、微分器22、PI制御器23が設けられている。
そこで、可動子の位置をθ、リニア回転用モータの位置指令をXとして任意のカムデータテーブル21を生成し、可動子Xを入力、リニア回転用モータの位置指令をXを出力とする関数を使い、可動子の時々刻々の位置に応じたリニア回転用モータの位置指令2を生成することとする。その位置指令2を微分器22で微分して速度指令1を生成し、かつリニア回転用モータのフィードバックされた位置FBパルス3と位置指令2との差を使いPI制御器23でPI制御を行い、補正量を演算して、速度指令1と加えた指令をリニア回転用モータの速度指令としてリニア回転用モータを速度制御することで電子カム制御が実現できる。
以上のように、図1に示した本発明に係るリニアモータ連続搬送装置を用いて、求められる搬送速度から、同期指令を生成し、当該同期指令を使て上記電子カム制御で前記搬送用の複数の可動子と前記回転駆動体としての駆動モータとを位置制御することで、製品の連続搬送を追従性良く高制御精度でしかもカムパターンの調整を簡単に行うことが可能となる。
【0008】
【発明の効果】
以上述べたように、本発明によれば、搬送用可動子15、16と固定子14から成るリニアモータを2台表裏に張り合わせて成るリニアモータ構造体10と、リニアモータ構造体10を半回転させる回転駆動体13と、から構成され、この場合、リニアモータの表側可動子15が一方向に移動している間に裏側可動子16が逆方向に移動し、表側可動子15が搬送を終了した瞬間に回転駆動体13によりリニアモータ構造体10を半回転させて表裏を逆にするようにしたので、従来実現できなかったリニアモータの連続搬送が実現でき、搬送効率を向上させることができる。
【図面の簡単な説明】
【図1】リニアモータを使った本発明に係る搬送機械を示す図で、(a)はブロック図(イ)と側面図(ロ)、(b)は上面図、(c)は正面図である。
【図2】図1のリニアモータ可動子のリニア回転速度パターンを示す図である。
【図3】本発明において使用した電子カムの制御の実施例である。
【図4】リニアモータを使った従来の搬送機械を示す図で、(a)はブロック図(イ)と側面図(ロ)、(b)は上面図、(c)は正面図である。
【図5】図4のリニアモータ可動子のリニア回転速度パターンを示す図である。
【符号の説明】
1 速度指令
2 位置指令
3 フィードバックされた位置FBパルス
10 本発明のリニアモータ構造体
11 コントローラ
12 ドライバ
13 回転用モータ
14 固定子
15 表可動子
16 裏可動子
17 リニアスケール
18 位置指令設定用表示器
20 電子カム制御器
21 カムデータテーブル
22 微分器
23 PI制御器
27 サーボドライブ速度制御回路
28 サーボモータ
29 パルスジェネレータ
30 従来のリニアモータ
31 コントローラ
32 ドライバ
33 可動子
34 固定子
35 リニアスケール
36 位置指令設定用表示器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an application machine of a transfer device applied to high-speed positioning control of a high-speed transfer machine and other machines, and more particularly to a machine structure for increasing transfer efficiency and a control method thereof.
[0002]
[Prior art]
Conventionally, a conveyance machine using a linear motor and its control are as shown in FIG. 4A is a block diagram (A) and a side view (B), FIG. 4B is a top view, and FIG. 4C is a front view. In FIG. 4, 30 is a linear motor, 31 is a controller, 32 is a driver, 33 is a mover, 34 is a stator, 35 is a linear scale, and 36 is a position command setting display. In this example, using the position command and speed command set values set by the 36 position command setting display and the current position of the mover fed back from the 35 linear scale, the position is controlled by 35 controllers. Control is performed.
When a product is transported in one direction by this method, position control is performed using a mover velocity diagram as shown in FIG.
In FIG. 4, the mover 33 (FIG. 4) receives the product to be transported at the point A at the start of operation, then accelerates, reaches the steady speed and travels at a certain speed to the next process at the point B. hand over. After the mover 33 delivers the product, it starts decelerating and stops. Thereafter, the process returns to the point A where the next product is received at the designated speed.
[0003]
[Problems to be solved by the invention]
However, in such a conventional technique, when a large number of products must be transported in a short time, the product must be transported to the next process and then transported to the next product. Since it is necessary to decelerate and stop, accelerate, move, decelerate and stop in the reverse direction and accelerate again in the forward direction, when shortening the transfer time, the capacity of the linear motor must be increased and the speed must be increased. There is a problem that it is necessary to increase the rigidity of the entire machine because it is necessary to increase the rigidity.
Therefore, an object of the present invention is to increase the conveyance efficiency while maintaining the capacity of the linear motor.
[0004]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, the linear motor continuous transfer device according to claim 1 is a linear motor structure in which two linear motors each including a transfer mover and a stator are bonded to each other, and the linear motor. A rotary drive body that rotates the structure half- way, and while the front side mover of the linear motor is moving in one direction, the back side mover is moved in the opposite direction, and the front side mover is In the linear motor continuous transfer device that reverses the front and back by half-rotating the linear motor structure with the rotary drive at the moment when the transfer is completed, a synchronization command is generated from the required transfer speed, and the synchronization command is used. In addition, the position of the plurality of transfer movers and the drive motor as the rotary drive body is controlled by electronic cam control .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a continuous conveyance device according to the present invention using a linear motor, where (a) is a block diagram (a) and a side view (b), (b) is a top view, and (c) is a front view. It is.
In the figure, reference numeral 10 denotes a linear motor structure, in which two linear motors each composed of a transfer mover and a stator are bonded to the front and back. Reference numeral 11 denotes a controller, and 12 denotes a driver, which are provided in a front movable element, a rear movable element, and a stator rotating motor. 13 is a stator rotating motor, 14 is a stator, 15 is a front movable element, 16 is a rear movable element, 17 and 17 'are linear scales, and 18 is a position command setting display. The controller 11 uses the position command and speed command set values set by the position command setting display 18 and the current positions of the front and back movable elements 15 and 16 fed back from the linear scales 17 and 17 '. The position control is performed at.
While the front-side movable element 15 is moving in one direction, the back-side movable element 16 is moved in the opposite direction, and at the moment when the front-side movable element 15 finishes the conveyance, the stator rotation motor (rotation drive body) 13 linearly operates. The motor structure 10 is rotated halfway so that the front and back sides are reversed, and then the back side movable element 16 contributes to the conveyance.
[0006]
FIG. 2 is a velocity diagram of the motor 13 for rotating the front movable piece 15, the back movable piece 16, and the stator 14 half of the linear motor of FIG. 1.
The front movable element 15 (FIG. 1) receives the product to be transported at the point A at the start of the operation, starts acceleration, and reaches the steady speed and passes the product to the next process at the point B that has traveled at that speed to some extent. .
After delivering the product, the front movable element 15 starts to decelerate and stops.
Thereafter, an operation of returning to the point A at which the next product is received is performed at a designated speed. At this time, the linear motor 10 is reversed by the linear rotation drive motor 13, and the back movable element 16 waiting at the point A on the back surface is positioned on the front surface. The back surface movable element 16 receives the product, performs the same operation as the operation performed by the front surface movable element 15 and transports the product.
Hereinafter, by repeating this, it becomes possible to continuously convey products that could not be achieved in the past.
[0007]
Here, a simple embodiment of the electronic cam is shown.
FIG. 3 shows an embodiment of control of the electronic cam used in the present invention.
In the figure, 20 is an electronic cam controller, 27 is a servo drive speed control circuit, 28 is a servo motor, and 29 is a pulse generator. Inside the controller 20 is a cam data table 21, a differentiator 22, and a PI controller 23. Is provided.
Therefore, a function that generates an arbitrary cam data table 21 with θ as the position of the mover and X as the position command of the linear rotation motor, inputs the mover X, and outputs X as the position command of the linear rotation motor. It is assumed that a linear rotation motor position command 2 corresponding to the momentary position of the mover is generated. The position command 2 is differentiated by a differentiator 22 to generate a speed command 1, and PI control is performed by a PI controller 23 using the difference between the fed back position FB pulse 3 and the position command 2 of the linear rotation motor. The electronic cam control can be realized by calculating the correction amount and controlling the speed of the linear rotation motor using the command obtained by adding the speed command 1 as the speed command of the linear rotation motor.
As described above, using the linear motor continuous transfer apparatus according to the present invention shown in FIG. 1, a synchronization command is generated from the required transfer speed, and the transfer command is used for the transfer by the electronic cam control using the synchronization command. By controlling the position of the plurality of movers and the drive motor as the rotary drive body, it is possible to easily adjust the cam pattern with high control accuracy and continuous tracking of products.
[0008]
【The invention's effect】
As described above, according to the present invention, the linear motor structure 10 formed by sticking two linear motors composed of the transfer movers 15 and 16 and the stator 14 to the front and back, and the linear motor structure 10 is rotated halfway. In this case, while the front side mover 15 of the linear motor is moving in one direction, the back side mover 16 is moved in the reverse direction, and the front side mover 15 finishes the conveyance. At this moment, the linear motor structure 10 is rotated halfway by the rotary drive body 13 so that the front and back sides are reversed. Therefore, the continuous conveyance of the linear motor, which could not be realized conventionally, can be realized, and the conveyance efficiency can be improved. .
[Brief description of the drawings]
1A and 1B are diagrams showing a transport machine according to the present invention using a linear motor, wherein FIG. 1A is a block diagram (A), a side view (B), (B) is a top view, and (C) is a front view. is there.
2 is a diagram showing a linear rotation speed pattern of the linear motor movable element in FIG. 1; FIG.
FIG. 3 is an example of control of an electronic cam used in the present invention.
4A and 4B are diagrams showing a conventional transport machine using a linear motor, in which FIG. 4A is a block diagram (A) and a side view (B), FIG. 4B is a top view, and FIG. 4C is a front view.
5 is a diagram showing a linear rotation speed pattern of the linear motor movable element of FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Speed command 2 Position command 3 Position fed back FB pulse 10 Linear motor structure 11 of the present invention 11 Controller 12 Driver 13 Rotating motor 14 Stator 15 Front movable element 16 Back movable element 17 Linear scale 18 Position command setting indicator 20 Electronic Cam Controller 21 Cam Data Table 22 Differentiator 23 PI Controller 27 Servo Drive Speed Control Circuit 28 Servo Motor 29 Pulse Generator 30 Conventional Linear Motor 31 Controller 32 Driver 33 Mover 34 Stator 35 Linear Scale 36 Position Command Setting Indicator

Claims (1)

搬送用可動子と固定子から成るリニアモータを2台表裏に張り合わせたリニアモータ構造体と、当該リニアモータ構造体を半回転させる回転駆動体と、から構成され、前記リニアモータの表側の可動子が一方向に移動している間に裏側の可動子が逆方向に移動し、前記表側の可動子が搬送を終了した瞬間に前記回転駆動体により前記リニアモータ構造体を半回転させて表裏を逆にするリニアモータ連続搬送装置において、
求められる搬送速度から、同期指令を生成し、当該同期指令を使った電子カム制御で前記搬送用の複数の可動子と前記回転駆動体としての駆動モータとを位置制御することを特徴とするリニアモータ連続搬送装置。
A linear motor structure in which two linear motors each composed of a transfer mover and a stator are bonded to the front and back, and a rotary drive body that rotates the linear motor structure half a turn, and a mover on the front side of the linear motor Is moved in one direction, the back side mover moves in the opposite direction, and at the moment when the front side mover finishes transporting, the linear motor structure is rotated halfway by the rotary drive body to turn the front and back sides. In the linear motor continuous transfer device to reverse,
A linear command characterized in that a synchronization command is generated from a required transport speed, and the position of the plurality of transporting movers and the drive motor as the rotary drive body is controlled by electronic cam control using the synchronization command. Motor continuous transfer device.
JP2002218219A 2002-07-26 2002-07-26 Linear motor continuous transfer device Expired - Lifetime JP4096169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218219A JP4096169B2 (en) 2002-07-26 2002-07-26 Linear motor continuous transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218219A JP4096169B2 (en) 2002-07-26 2002-07-26 Linear motor continuous transfer device

Publications (2)

Publication Number Publication Date
JP2004059204A JP2004059204A (en) 2004-02-26
JP4096169B2 true JP4096169B2 (en) 2008-06-04

Family

ID=31939471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218219A Expired - Lifetime JP4096169B2 (en) 2002-07-26 2002-07-26 Linear motor continuous transfer device

Country Status (1)

Country Link
JP (1) JP4096169B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11773541B2 (en) * 2017-07-26 2023-10-03 Mitsubishi Electric Corporation Conveying path switching device and elevator apparatus
CN113748075B (en) * 2019-04-23 2023-06-16 雅马哈发动机株式会社 Linear conveyor system, control method for linear conveyor system, and recording medium

Also Published As

Publication number Publication date
JP2004059204A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
US20060169020A1 (en) Tandem Press Lline, Operation Control Method for Tandem Press Line, and Work Transportation Device for Tandem Press Line
JPH0447415A (en) Method and device for controlling linear motor in work carrying robot
JPH0150490B2 (en)
WO2008053678A1 (en) Servomotor-driven tandem press line
JP4096169B2 (en) Linear motor continuous transfer device
JPS59175947A (en) Transfer device
JP4542862B2 (en) Drive command generation device for work transfer device
JP2559854B2 (en) Conveyor using linear motor
JP2000343294A (en) Transfer press line
JPH0773756B2 (en) Transfer feeder
JP2669696B2 (en) Transfer device
JP4140785B2 (en) Control device for material feeder
JP2839359B2 (en) Motor control method for electronic component supply device
JP3841749B2 (en) Control method of press machine
JP5174078B2 (en) Control method of press machine
JP5980042B2 (en) Conveying apparatus control method and conveying system
JP2005230995A (en) Panel conveying device
JP2547851B2 (en) Transfer device
JP2000152693A (en) Control method and system of servo motor, machine tool, and friction-compressing device
JP4514733B2 (en) Control method of press machine
JP2004249341A (en) Workpiece transporting device for press
JPH10215100A (en) Method for positioning electronic circuit substrate
JP5174079B2 (en) Control method of press machine
JP3697229B2 (en) Control device
JPH0557499A (en) Controller of work transferring robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5