US11748923B2 - System and method for providing more readable font characters in size adjusting avionics charts - Google Patents

System and method for providing more readable font characters in size adjusting avionics charts Download PDF

Info

Publication number
US11748923B2
US11748923B2 US17/525,685 US202117525685A US11748923B2 US 11748923 B2 US11748923 B2 US 11748923B2 US 202117525685 A US202117525685 A US 202117525685A US 11748923 B2 US11748923 B2 US 11748923B2
Authority
US
United States
Prior art keywords
character
zoom level
font
font character
flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/525,685
Other versions
US20230154074A1 (en
Inventor
Jeff M. Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockwell Collins Inc
Original Assignee
Rockwell Collins Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwell Collins Inc filed Critical Rockwell Collins Inc
Priority to US17/525,685 priority Critical patent/US11748923B2/en
Assigned to ROCKWELL COLLINS, INC. reassignment ROCKWELL COLLINS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HENRY, JEFF M.
Priority to EP22207047.6A priority patent/EP4180769A1/en
Publication of US20230154074A1 publication Critical patent/US20230154074A1/en
Application granted granted Critical
Publication of US11748923B2 publication Critical patent/US11748923B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/203Drawing of straight lines or curves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/10Text processing
    • G06F40/103Formatting, i.e. changing of presentation of documents
    • G06F40/109Font handling; Temporal or kinetic typography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/206Drawing of charts or graphs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof

Definitions

  • Digital flight charts are usually provided by third-party vendors in a format such as PDF.
  • Text characters in the flight charts are commonly presented as filled characters (e.g., characters drawn using a plurality of filled triangles) which grow in thickness at higher zoom levels (zoomed in) but are hard to read at lower zoom levels (zoomed out).
  • stroked characters e.g., characters drawn using a plurality of line segments
  • Flight charts presented on flight displays require both stroked characters and filled characters depending on the zoom level (sometimes for the same letter).
  • flight charts may be generated off-line when the zoom level is not known.
  • the system comprises a host computing device including one or more processors configured to execute program instructions causing the one or more processors to: detect a respective font character size of one or more font characters in a flight chart file; associate a respective threshold zoom level with each of the font character(s) based on the respective font character size; replace the font character(s) with one or more font character references, wherein each of the font character reference(s) is associated with the respective threshold zoom level; and convert the flight chart file, including the font character reference(s) and the respective threshold zoom level associated with each of the font character reference(s), to a flight chart defined in aircraft display hardware directives.
  • system comprises an aircraft display configured to display the flight chart using the aircraft display hardware directives.
  • the system comprises an aircraft computing device including one or more processors configured to execute program instructions causing the one or more processors to: detect a current zoom level of the aircraft display; responsive to the current zoom level being greater than the respective threshold zoom level of one of the font character reference(s), set a drawing mode of the one of the font character reference(s) as a filled character mode, or, responsive to the current zoom level being less than the respective threshold zoom level of the one of the font character reference(s), set the drawing mode of the one of the font character reference(s) as a stroked character mode; and responsive to the drawing mode being set as the filled character mode, present a referenced character of the one of the font character reference(s) as a filled character on the aircraft display, or, responsive to the drawing mode being set as the stroked character mode, present the referenced character of the one of the font character reference(s) as a stroked character on the aircraft display.
  • a method for flight chart font character scaling is disclosed in accordance with one or more illustrative embodiments of the present disclosure.
  • the method comprises, using a host computing device, detecting a respective font character size of one or more font characters in a flight chart file, associating a respective threshold zoom level with each of the font character(s) based on the respective font character size, replacing the font character(s) with one or more font character references, wherein each of the font character reference(s) is associated with the respective threshold zoom level, converting the flight chart file, including the font character reference(s) and the respective threshold zoom level associated with each of the font character reference(s), to a flight chart defined in aircraft display hardware directives, wherein an aircraft display is configured to display the flight chart using the aircraft display hardware directives.
  • the method comprises, using an aircraft computing device, detecting a current zoom level of the aircraft display, responsive to the current zoom level being greater than the respective threshold zoom level of one of the font character reference(s), setting a drawing mode of the one of the font character reference(s) as a filled character mode, or, responsive to the current zoom level being less than the respective threshold zoom level of the one of the font character reference(s), setting the drawing mode of the one of the font character reference(s) as a stroked character mode; and responsive to the drawing mode being set as the filled character mode, presenting a referenced character of the one of the font character reference(s) as a filled character on the aircraft display, or, responsive to the drawing mode being set as the stroked character mode, presenting the referenced character of the one of the font character reference(s) as a stroked character on the aircraft display.
  • FIG. 1 is a conceptual image illustrating sizes of filled characters and stroked characters at different zoom levels.
  • FIG. 2 is a block diagram illustrating a system for flight chart font character scaling, in accordance with one or more embodiments of the present disclosure
  • FIG. 3 is a conceptual diagram illustrating the program flow of modules configured to draw a font character as filled or stroked, in accordance with one or more embodiments of the present disclosure.
  • FIG. 4 is a flowchart illustrating a method for flight chart font character scaling, in accordance with one or more embodiments of the present disclosure.
  • inventive concepts are not limited in their application to the details of construction and the arrangement of the components or steps or methodologies set forth in the following description or illustrated in the drawings.
  • inventive concepts disclosed herein may be practiced without these specific details.
  • well-known features may not be described in detail to avoid unnecessarily complicating the present disclosure.
  • inventive concepts disclosed herein are capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
  • a letter following a reference numeral is intended to reference an embodiment of the feature or element that may be similar, but not necessarily identical, to a previously described element or feature bearing the same reference numeral (e.g., 1, 1a, 1b).
  • Such shorthand notations are used for purposes of convenience only, and should not be construed to limit the inventive concepts disclosed herein in any way unless expressly stated to the contrary.
  • “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
  • any reference to “one embodiment” or “some embodiments” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the inventive concepts disclosed herein.
  • the appearances of the phrase “in some embodiments” in various places in the specification are not necessarily all referring to the same embodiment, and embodiments of the inventive concepts disclosed may include one or more of the features expressly described or inherently present herein, or any combination or sub-combination of two or more such features, along with any other features which may not necessarily be expressly described or inherently present in the present disclosure.
  • Aeronautical charts are used by pilots to navigate aircraft during departing and landing phases (e.g., using terminal flight charts) and during en-route phases (e.g., using en-route flight charts).
  • flight charts and other tools pilots are able to determine position of the aircraft, safe altitudes for the aircraft, best route to a destination, navigation aids, alternative landing areas in case of an in-flight emergency, and other useful information such as radio frequencies and airspace boundaries.
  • Specific charts are used for each phase of a flight and may vary from a map of a particular airport facility to an overview of the instrument routes covering an entire continent (e.g., global navigation charts).
  • Digital flight charts are usually provided by third-party vendors in a format such as PDF.
  • Text characters in the flight charts are commonly presented as filled characters (e.g., characters drawn using a plurality of filled triangles) which increase in thickness at higher zoom levels (zoomed in) but are hard to read at lower zoom levels (zoomed out).
  • stroked characters e.g., characters drawn using a plurality of line segments
  • Flight charts shown on aircraft displays require both stroked characters and filled characters depending on the zoom level (sometimes for the same letter).
  • due to limited memory resources on an aircraft computing device referencing different fonts for both stroked and filled characters is disadvantageous.
  • flight charts may be generated off-line when the zoom level is not known.
  • it is desirable to solve the above problems by presenting the appropriate character (filled or stroked) at different zoom levels on an aircraft display while conserving aircraft hardware resources.
  • Embodiments of the present disclosure are directed to a system and method for flight chart font character scaling.
  • the present system and method detects the size of a font character in a flight chart, and associates a threshold zoom level based on the font character size. Smaller characters (e.g., 12 point characters) may be set to stroked when the zoom level of an aircraft display is lower than a relatively low threshold zoom level (e.g., 1.25 times the baseline zoom level), whereas larger characters (e.g., 48 point characters) may be set to stroked when the zoom level of the aircraft display is lower than a relatively high zoom level (e.g., 2.0 times the baseline zoom level).
  • a relatively low threshold zoom level e.g., 1.25 times the baseline zoom level
  • larger characters e.g., 48 point characters
  • the association of the threshold zoom level for each size of font character may be performed off-line during the processing of the flight chart on a host computing device, and before the zoom level of the aircraft display is known.
  • the font characters may then be set as filled or stroked at run-time (using an aircraft computing device) based on a comparison of the associated threshold zoom level and a current zoom level of an aircraft display.
  • FIG. 1 is a conceptual image illustrating font character sizes of filled font characters and stroked font characters.
  • the image shows four different font character sizes (large, medium, small and very small) of the letter “A.”
  • the image shows a large filled character 110 a, a large stroked character 110 b, a medium filled character 120 a, a medium stroked character 120 b, a small filled character 130 a, a small stroked character 130 b, a very small filled character 140 a and a very small stroked character 140 b.
  • the large filled character 110 a is more easily discernable (i.e., readable) than the large stroked character 110 b.
  • the medium filled character 120 a is more easily discernable than the medium stroked character 120 b and the small filled character 130 a is more discernable than the small stroked character 130 b.
  • the very small stroked character 140 b is more discernable than the very small filled character 140 a at the same zoom level.
  • FIG. 2 is a block diagram illustrating a system 200 for flight chart font character scaling, in accordance with one or more embodiments of the present disclosure.
  • the system includes a host computing device 202 , and aircraft computing device 218 , and an aircraft display 228 .
  • the host computing device 202 and the aircraft computing device 218 may be controllers (e.g., computers), each respectively including one or more processors 204 , 220 and a memory 206 , 222 .
  • processors e.g., computers
  • the term “processor” or “processing element” may be broadly defined to encompass any device having one or more processing or logic elements, for example, one or more central processing units (CPUs), one or more graphics processing units (GPUs), one or more micro-processor devices, one or more application specific integrated circuit (ASIC) devices, one or more field programmable gate arrays (FPGAs), or one or more digital signal processors (DSPs), etc.
  • CPUs central processing units
  • GPUs graphics processing units
  • ASIC application specific integrated circuit
  • FPGAs field programmable gate arrays
  • DSPs digital signal processors
  • the one or more processors 204 , 220 may include any device configured to execute algorithms and/or instructions (e.g., program instructions or modules stored in memory), and may be configured to perform the method steps described in the present disclosure.
  • the processors 204 may execute the modules 210 , 212 , 212 , 214 and 216
  • the processors 220 may be configured to execute the modules 224 and 226 .
  • the memories 206 , 222 may include any storage medium known in the art suitable for storing program instructions executable by the associated processors 204 , 220 .
  • the memories 206 , 222 may include, but are not limited to, a read-only memory (ROM), a random-access memory (RAM), a magnetic or optical memory device (e.g., hard disk), a magnetic tape, a solid-state drive, and the like.
  • ROM read-only memory
  • RAM random-access memory
  • magnetic or optical memory device e.g., hard disk
  • magnetic tape e.g., a magnetic tape
  • solid-state drive e.g., solid-state drive, and the like.
  • the host computing device 202 may be, for example, a personal computer (PC), a laptop, a smartphone, a tablet, a server, a mainframe, etc. In some embodiments, the host computing device may operate using a Microsoft® Windows® operating system, an Apple® macOS® operating system, a Linux-based operating system, etc. In some embodiments, the host computing device may comprise a plurality of computing devices (e.g., a cloud-based system). It is noted that the host computing device 202 may be a ground-based computing device (e.g., not a part of an aircraft).
  • the aircraft computing device(s) 218 may comprise one or more avionics embedded systems (e.g., an avionics suite), and may include a flight management system (FMS) computing device, a communications computing device, a navigation computing device, a flight display computing device, a flight control computing device, a fuel management computing device, a collision-avoidance computing device, a weather computing device, etc.
  • the aircraft display 228 may be an LCD or CRT monitor, for example, a primary flight display (PFD), a multifunction display (MFD), and may be configured to present a flight chart (e.g., defined in aircraft display hardware directives) to a user of an aircraft.
  • a flight chart e.g., defined in aircraft display hardware directives
  • a flight chart file 208 may be stored on the memory 206 of the host computing device.
  • the flight chart file 208 may be a portable document format (PDF) flight chart file, however the present disclosure is not limited thereto, and it is contemplated that the flight chart file 208 may be any industry standard flight chart file that includes text.
  • PDF portable document format
  • a scalable vector graphics (SVG) file defined in extensible mark-up language (XML) or a comma-separated values (CSV) flight chart file may be converted to generate the flight chart file 208 .
  • the flight chart file 208 may be an image representing terminal flight charts, en-route flight charts, nautical charts, world aeronautical charts, sectional charts, etc.
  • the image may show topographical features such as terrain elevations, ground features identifiable from altitude (rivers, dams, bridges, buildings, airports, beacons, landmarks, etc.), and information related to airspace classes, ground-based navigation aids, radio frequencies, longitude and latitude, navigation waypoints, navigation routes, etc.
  • the flight chart file 208 may be associated with metadata such as flight chart name (e.g., “Omaha Eppley Airfield”), flight chart type (e.g., terminal, en-route, world aeronautical, etc.), flight chart location, etc.
  • a plurality of modules (e.g., program instructions) 210 , 212 , 214 , and 216 stored on the memory 206 may process the flight chart file 208 .
  • the modules 210 , 212 , 214 , and 216 may be submodules of a flight chart processing module.
  • the flight chart processing module may be substantially similar or substantially identical to the Electronic Charts Application Tool Suite developed by Collins Aerospace (Cedar Rapids, IA), and may be configured to convert an original flight chart file (in PDF, CSV, SVG, etc.) to a converted flight chart file (e.g., in PDF or SVG), process and simplify the flight chart file, convert the flight chart file to aircraft display hardware directives, and compress the aircraft display hardware directives.
  • the module 210 may be configured to detect a font character size of one or more font characters (e.g., after the detection of the font character using an image recognition algorithm configured to identify flight chart elements) in the flight chart file 208 .
  • the font character size of each font character may be detected as 12 point, 24 point, 48 point, 72 point, etc.
  • the detected font character size may be of from 1 point to 1638 pixels or more.
  • the module 212 may be configured to associate a threshold zoom level with each font character based on the respective font character size. For example, for a 12 point font character, the associated threshold zoom level may be set to 1.25 times the baseline zoom level (125% magnification, where the baseline zoom level is 100% magnification). In contrast, for larger characters such as a 48 point font character, the associated threshold zoom level may be set to 2.0 times the baseline zoom level (200% magnification).
  • the threshold zoom level associated with each font character may be used to set the respective font character as filled or stroked (determined at run-time on the aircraft computing device 218 ).
  • zoom level may be regarded as the scaling applied to render the flight chart on the aircraft display 228 .
  • each pixel of the flight chart is represented as 100% of a pixel on the display 228 .
  • each pixel of the image is represented as 200% of a pixel on the display 228 (2 pixels vertically and 2 pixels horizontally), and therefore is displayed as 4 pixels on the aircraft display 228 .
  • each pixel of the image is represented as 50% of a screen pixel on the display 228 , such that a single pixel of the aircraft display 228 represents 4 pixels in the image (since the image pixels are scaled 50% horizontally and vertically).
  • the module 214 may be configured to replace the font character(s) with one or more font character references in the flight chart file 208 .
  • Each of the font character reference(s) may be a name or container that calls font character values (e.g., pixel locations and pixel values) stored in the flight chart file 208 .
  • the font character reference(s) may be pointers that store memory addresses, and the memory addresses in turn may store the actual font character values (i.e., indirection).
  • the font character reference(s) reduce the size of the flight chart file 208 and conserve the resources of the memory 222 of the aircraft computing device 218 (e.g., after the flight chart file 208 is converted to aircraft display hardware directives).
  • the font character reference(s) may also be associated with the respective threshold zoom level determined by the module 212 .
  • the module 216 may convert the flight chart file 208 to a flight chart defined in aircraft display hardware directives.
  • Each of the aircraft display hardware directives may have a 32 bit form with 8 bits allocated to an opcode (e.g., that specifies a graphic operation to be performed, such as DRAW, MOVE, SETCOLOR) and 24 bits allocated to pixel data and pixel address (e.g., color of pixel(s), location of pixel(s), etc.).
  • the aircraft display hardware directives may be quickly and easily displayed to a pilot on the aircraft display 228 .
  • the aircraft display hardware directives may decrease loading times and conserve processing and memory resources of the aircraft computing device 218 (since PDF or SVG flight chart files are too large to store on the memory 222 of the aircraft computing device 218 , and may require long loading times to display on the aircraft display 228 ).
  • the flight chart file defined in aircraft display hardware directives may then be loaded on the memory 222 of the aircraft computing device 218 .
  • the module 224 may be configured to detect a current zoom level of the aircraft display 228 .
  • the current zoom level of the aircraft display 228 may be set by a user of the aircraft (for example, using a button, a knob, a mouse, a keyboard, etc.).
  • the module 224 may be configured to compare the respective threshold zoom level of a font character reference to the current zoom level, and based on the comparison, set a drawing mode (of the font character reference) as a filled character mode or a stroked character mode. For example, if the current zoom level is greater than the respective threshold zoom level, the drawing mode of the respective font character reference may be set as a filled character mode. Otherwise, if the current zoom level is less than the respective threshold zoom level, the drawing mode of the respective font character reference may be set as a stroked character mode.
  • the module 226 may be configured to draw a referenced character of a font character reference based on the drawing mode.
  • the referenced character may comprise font character values stored in a memory address on the memory 222 (stored separately from the flight chart). If the drawing mode is set as the filled character mode, the referenced character is presented as a filled character on the aircraft display 228 . Otherwise, if the drawing mode is set as the stroked character mode, the referenced character is presented as a stroked character on the aircraft display 228 .
  • the filled character may be drawn on the flight display 228 using a plurality of filled triangles, and the stroked character may be drawn on the flight display 228 using a plurality of line segments. Additionally or alternatively, the filled character may be drawn using a plurality of lines (for example, wide lines may be used for smaller fill regions instead of the plurality of triangles).
  • FIG. 3 is a conceptual diagram illustrating the program flow of modules 223 , 224 , and 226 that draw a font character as filled or stroked based on a detected font character size, in accordance with one or more embodiments of the present disclosure.
  • the module 223 may first call the module 224 to set the drawing mode of the font character reference. Then, the module 223 may call the module 226 to draw the referenced character as stroked or filled based on the drawing mode of the font character reference.
  • FIG. 4 is a flowchart illustrating a method 300 for flight chart font character scaling, in accordance with one or more embodiments of the present disclosure.
  • the method 300 may be implemented by the system 200 as described with respect to FIGS. 2 and 3 .
  • Steps 310 , 320 , 330 , and 340 may be performed using a host computing device (e.g., host computing device 202 described with respect to FIG. 2 ), and steps 350 , 260 and 370 may be performed using an aircraft computing device (e.g., aircraft computing device 218 described with respect to FIG. 2 )
  • a host computing device e.g., host computing device 202 described with respect to FIG. 2
  • steps 350 , 260 and 370 may be performed using an aircraft computing device (e.g., aircraft computing device 218 described with respect to FIG. 2 )
  • a font character size of one or more font characters may be detected in a flight chart file.
  • the font character size of each font character may be detected as 12 point, 24 point, 48 point, 72 point, etc.
  • the detected font character size may be of from 1 point to 1638 pixels or more.
  • a threshold zoom level may be associated with each font character based on the respective font character size. For example, for a 12 point font character, the associated threshold zoom level may be set to 1.25 times the baseline zoom level (125% magnification, where the baseline zoom level is 100% magnification). In contrast, for larger characters such as a 48 point font character, the associated threshold zoom level may be set to 2.0 times the baseline zoom level (200% magnification).
  • the threshold zoom level associated with each font character may be used to set the respective font character as filled or stroked (determined at run-time on the aircraft computing device).
  • the one or more font characters may be replaced with one or more font character references in the flight chart file.
  • Each of the font character references may be a name or container that calls font character values (e.g., pixel locations and pixel values) stored in the flight chart file.
  • the font character references may be pointers that store memory addresses (in other words, a form of indirection), and the memory addresses in turn may store the actual font character values.
  • the font character reference(s) may also be associated with the respective threshold zoom level determined by the module 212 .
  • the flight chart file may be converted to a flight chart defined in aircraft display hardware directives.
  • Each of the aircraft display hardware directives may have a 32 bit form with 8 bits allocated to an opcode (e.g., that specifies a graphic operation to be performed, such as DRAW, MOVE, SETCOLOR) and 24 bits allocated to pixel data and pixel address (e.g., color of pixel(s), location of pixel(s), etc.).
  • an opcode e.g., that specifies a graphic operation to be performed, such as DRAW, MOVE, SETCOLOR
  • 24 bits allocated to pixel data and pixel address e.g., color of pixel(s), location of pixel(s), etc.
  • the flight chart file defined in aircraft display hardware directives may then be loaded on the memory of the aircraft computing device.
  • a current zoom level of an aircraft display may be detected.
  • the current zoom level of the aircraft display may be set by a user of the aircraft (for example, using a button, a knob, a mouse, a keyboard, etc.).
  • the respective threshold zoom level of a font character reference may be compared to the current zoom level, and based on the comparison, a drawing mode (of the font character reference) may be set as a filled character mode or a stroked character mode. For example, if the current zoom level is greater than the respective threshold zoom level, the drawing mode of the respective font character reference may be set as a filled character mode. Otherwise, if the current zoom level is less than the respective threshold zoom level, the drawing mode of the respective font character reference may be set as a stroked character mode.
  • a referenced character of the font character reference may be drawn based on the drawing mode.
  • the referenced character may comprise font character values stored in a memory address on the memory of the aircraft computing device (stored separately from the flight chart). If the drawing mode is set as the filled character mode, the referenced character is presented as a filled character on the aircraft display. Otherwise, if the drawing mode is set as the stroked character mode, the referenced character is presented as a stroked character on the aircraft display.
  • the filled character may be drawn on the flight display using a plurality of filled triangles and/or a plurality of lines (for example, wide lines may be used for smaller filled regions, while filled triangles may be used for larger filled regions).
  • the stroked character may be drawn on the flight display using a plurality of line segments.

Abstract

A system and method for flight chart font character scaling is disclosed. A host computing device is configured to: detect a font character size of a font character in a flight chart file, associate a threshold zoom level with the font character based on the respective font character size, and convert the flight chart file to aircraft display hardware directives. An aircraft display is configured to display a flight chart using the aircraft display hardware directives. An aircraft computing device is configured to detect a current zoom level of the aircraft display, compare the current zoom level to the threshold zoom level, set a drawing mode of a font character reference as a stroked mode or a filled mode, and present a referenced character as a filled character or a stroked character based on the drawing mode.

Description

CROSS-REFERENCE TO RELATED APPLICATION
The present application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 63/278,576 filed Nov. 12, 2021, entitled SYSTEMS AND METHODS FOR GENERATION, SELECTION, AND DISPLAY OF MAP-BASED CHART DATABASES FOR USE WITH CERTIFIED AVIONICS SYSTEMS, naming Jeff M. Henry, Kyle R. Peters, Todd E. Miller, Jason L. Wong, Reed A. Kovach, and Srinath Nandakumar as inventors, which is incorporated herein by reference in the entirety.
BACKGROUND
Digital flight charts (i.e., aeronautical charts) are usually provided by third-party vendors in a format such as PDF. Text characters in the flight charts are commonly presented as filled characters (e.g., characters drawn using a plurality of filled triangles) which grow in thickness at higher zoom levels (zoomed in) but are hard to read at lower zoom levels (zoomed out). In contrast, stroked characters (e.g., characters drawn using a plurality of line segments) remain at a constant thickness at higher zoom levels but are easier to read at lower zoom levels. Flight charts presented on flight displays require both stroked characters and filled characters depending on the zoom level (sometimes for the same letter). Furthermore, flight charts may be generated off-line when the zoom level is not known. A method that solves the above problems by presenting either filled or stroked characters at the appropriate zoom level is desirable.
SUMMARY
A system for flight chart font character scaling is disclosed in accordance with one or more illustrative embodiments of the present disclosure. In one illustrative embodiment, the system comprises a host computing device including one or more processors configured to execute program instructions causing the one or more processors to: detect a respective font character size of one or more font characters in a flight chart file; associate a respective threshold zoom level with each of the font character(s) based on the respective font character size; replace the font character(s) with one or more font character references, wherein each of the font character reference(s) is associated with the respective threshold zoom level; and convert the flight chart file, including the font character reference(s) and the respective threshold zoom level associated with each of the font character reference(s), to a flight chart defined in aircraft display hardware directives.
In another illustrative embodiment, the system comprises an aircraft display configured to display the flight chart using the aircraft display hardware directives.
In another illustrative embodiment, the system comprises an aircraft computing device including one or more processors configured to execute program instructions causing the one or more processors to: detect a current zoom level of the aircraft display; responsive to the current zoom level being greater than the respective threshold zoom level of one of the font character reference(s), set a drawing mode of the one of the font character reference(s) as a filled character mode, or, responsive to the current zoom level being less than the respective threshold zoom level of the one of the font character reference(s), set the drawing mode of the one of the font character reference(s) as a stroked character mode; and responsive to the drawing mode being set as the filled character mode, present a referenced character of the one of the font character reference(s) as a filled character on the aircraft display, or, responsive to the drawing mode being set as the stroked character mode, present the referenced character of the one of the font character reference(s) as a stroked character on the aircraft display.
A method for flight chart font character scaling is disclosed in accordance with one or more illustrative embodiments of the present disclosure. In one illustrative embodiment, the method comprises, using a host computing device, detecting a respective font character size of one or more font characters in a flight chart file, associating a respective threshold zoom level with each of the font character(s) based on the respective font character size, replacing the font character(s) with one or more font character references, wherein each of the font character reference(s) is associated with the respective threshold zoom level, converting the flight chart file, including the font character reference(s) and the respective threshold zoom level associated with each of the font character reference(s), to a flight chart defined in aircraft display hardware directives, wherein an aircraft display is configured to display the flight chart using the aircraft display hardware directives.
In another illustrative embodiment, the method comprises, using an aircraft computing device, detecting a current zoom level of the aircraft display, responsive to the current zoom level being greater than the respective threshold zoom level of one of the font character reference(s), setting a drawing mode of the one of the font character reference(s) as a filled character mode, or, responsive to the current zoom level being less than the respective threshold zoom level of the one of the font character reference(s), setting the drawing mode of the one of the font character reference(s) as a stroked character mode; and responsive to the drawing mode being set as the filled character mode, presenting a referenced character of the one of the font character reference(s) as a filled character on the aircraft display, or, responsive to the drawing mode being set as the stroked character mode, presenting the referenced character of the one of the font character reference(s) as a stroked character on the aircraft display.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not necessarily restrictive of the invention as claimed. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and together with the general description, serve to explain the principles of the invention.
BRIEF DESCRIPTION OF DRAWINGS
The numerous advantages of the disclosure may be better understood by those skilled in the art by reference to the accompanying figures in which:
FIG. 1 is a conceptual image illustrating sizes of filled characters and stroked characters at different zoom levels.
FIG. 2 is a block diagram illustrating a system for flight chart font character scaling, in accordance with one or more embodiments of the present disclosure
FIG. 3 is a conceptual diagram illustrating the program flow of modules configured to draw a font character as filled or stroked, in accordance with one or more embodiments of the present disclosure.
FIG. 4 is a flowchart illustrating a method for flight chart font character scaling, in accordance with one or more embodiments of the present disclosure.
DETAILED DESCRIPTION
Before explaining at least one embodiment of the inventive concepts disclosed herein in detail, it is to be understood that the inventive concepts are not limited in their application to the details of construction and the arrangement of the components or steps or methodologies set forth in the following description or illustrated in the drawings. In the following detailed description of embodiments of the present disclosure, numerous specific details are set forth in order to provide a more thorough understanding of the inventive concepts. However, it will be apparent to one of ordinary skill in the art having the benefit of the present disclosure that the inventive concepts disclosed herein may be practiced without these specific details. In other instances, well-known features may not be described in detail to avoid unnecessarily complicating the present disclosure. The inventive concepts disclosed herein are capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
As used herein a letter following a reference numeral is intended to reference an embodiment of the feature or element that may be similar, but not necessarily identical, to a previously described element or feature bearing the same reference numeral (e.g., 1, 1a, 1b). Such shorthand notations are used for purposes of convenience only, and should not be construed to limit the inventive concepts disclosed herein in any way unless expressly stated to the contrary. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present). In addition, use of the “a” or “an” are employed to describe elements and components of embodiments of the present inventive concepts. This is done merely for convenience and to give a general sense of the inventive concepts, and “a” and “an” are intended to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
Finally, as used herein any reference to “one embodiment” or “some embodiments” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the inventive concepts disclosed herein. The appearances of the phrase “in some embodiments” in various places in the specification are not necessarily all referring to the same embodiment, and embodiments of the inventive concepts disclosed may include one or more of the features expressly described or inherently present herein, or any combination or sub-combination of two or more such features, along with any other features which may not necessarily be expressly described or inherently present in the present disclosure.
Aeronautical charts (flight charts) are used by pilots to navigate aircraft during departing and landing phases (e.g., using terminal flight charts) and during en-route phases (e.g., using en-route flight charts). Using flight charts and other tools, pilots are able to determine position of the aircraft, safe altitudes for the aircraft, best route to a destination, navigation aids, alternative landing areas in case of an in-flight emergency, and other useful information such as radio frequencies and airspace boundaries. Specific charts are used for each phase of a flight and may vary from a map of a particular airport facility to an overview of the instrument routes covering an entire continent (e.g., global navigation charts).
Digital flight charts are usually provided by third-party vendors in a format such as PDF. Text characters in the flight charts are commonly presented as filled characters (e.g., characters drawn using a plurality of filled triangles) which increase in thickness at higher zoom levels (zoomed in) but are hard to read at lower zoom levels (zoomed out). In contrast, stroked characters (e.g., characters drawn using a plurality of line segments) remain at a constant thickness at higher zoom levels but are easier to read at lower zoom levels. Flight charts shown on aircraft displays require both stroked characters and filled characters depending on the zoom level (sometimes for the same letter). However, due to limited memory resources on an aircraft computing device, referencing different fonts for both stroked and filled characters is disadvantageous. Furthermore, flight charts may be generated off-line when the zoom level is not known. Thus, it is desirable to solve the above problems by presenting the appropriate character (filled or stroked) at different zoom levels on an aircraft display while conserving aircraft hardware resources.
Embodiments of the present disclosure are directed to a system and method for flight chart font character scaling. The present system and method detects the size of a font character in a flight chart, and associates a threshold zoom level based on the font character size. Smaller characters (e.g., 12 point characters) may be set to stroked when the zoom level of an aircraft display is lower than a relatively low threshold zoom level (e.g., 1.25 times the baseline zoom level), whereas larger characters (e.g., 48 point characters) may be set to stroked when the zoom level of the aircraft display is lower than a relatively high zoom level (e.g., 2.0 times the baseline zoom level). The association of the threshold zoom level for each size of font character may be performed off-line during the processing of the flight chart on a host computing device, and before the zoom level of the aircraft display is known. The font characters may then be set as filled or stroked at run-time (using an aircraft computing device) based on a comparison of the associated threshold zoom level and a current zoom level of an aircraft display.
FIG. 1 is a conceptual image illustrating font character sizes of filled font characters and stroked font characters. The image shows four different font character sizes (large, medium, small and very small) of the letter “A.” The image shows a large filled character 110 a, a large stroked character 110 b, a medium filled character 120 a, a medium stroked character 120 b, a small filled character 130 a, a small stroked character 130 b, a very small filled character 140 a and a very small stroked character 140 b. At the zoom level shown in FIG. 1 , the large filled character 110 a is more easily discernable (i.e., readable) than the large stroked character 110 b. Likewise, the medium filled character 120 a is more easily discernable than the medium stroked character 120 b and the small filled character 130 a is more discernable than the small stroked character 130 b. In contrast, the very small stroked character 140 b is more discernable than the very small filled character 140 a at the same zoom level. Thus, for the zoom level shown in FIG. 1 , it may be advantageous to present the large characters 110, the medium characters 120, and the small characters 130 as filled characters, and present the very small characters 140 as stroked characters.
FIG. 2 is a block diagram illustrating a system 200 for flight chart font character scaling, in accordance with one or more embodiments of the present disclosure. The system includes a host computing device 202, and aircraft computing device 218, and an aircraft display 228.
The host computing device 202 and the aircraft computing device 218 may be controllers (e.g., computers), each respectively including one or more processors 204, 220 and a memory 206, 222. For the purposes of the present disclosure, the term “processor” or “processing element” may be broadly defined to encompass any device having one or more processing or logic elements, for example, one or more central processing units (CPUs), one or more graphics processing units (GPUs), one or more micro-processor devices, one or more application specific integrated circuit (ASIC) devices, one or more field programmable gate arrays (FPGAs), or one or more digital signal processors (DSPs), etc. In this sense, the one or more processors 204, 220 may include any device configured to execute algorithms and/or instructions (e.g., program instructions or modules stored in memory), and may be configured to perform the method steps described in the present disclosure. For example, the processors 204 may execute the modules 210, 212, 212, 214 and 216, and the processors 220 may be configured to execute the modules 224 and 226. The memories 206, 222 may include any storage medium known in the art suitable for storing program instructions executable by the associated processors 204, 220. For example, the memories 206, 222 may include, but are not limited to, a read-only memory (ROM), a random-access memory (RAM), a magnetic or optical memory device (e.g., hard disk), a magnetic tape, a solid-state drive, and the like.
The host computing device 202 may be, for example, a personal computer (PC), a laptop, a smartphone, a tablet, a server, a mainframe, etc. In some embodiments, the host computing device may operate using a Microsoft® Windows® operating system, an Apple® macOS® operating system, a Linux-based operating system, etc. In some embodiments, the host computing device may comprise a plurality of computing devices (e.g., a cloud-based system). It is noted that the host computing device 202 may be a ground-based computing device (e.g., not a part of an aircraft). The aircraft computing device(s) 218 may comprise one or more avionics embedded systems (e.g., an avionics suite), and may include a flight management system (FMS) computing device, a communications computing device, a navigation computing device, a flight display computing device, a flight control computing device, a fuel management computing device, a collision-avoidance computing device, a weather computing device, etc. The aircraft display 228 may be an LCD or CRT monitor, for example, a primary flight display (PFD), a multifunction display (MFD), and may be configured to present a flight chart (e.g., defined in aircraft display hardware directives) to a user of an aircraft.
A flight chart file 208 may be stored on the memory 206 of the host computing device. The flight chart file 208 may be a portable document format (PDF) flight chart file, however the present disclosure is not limited thereto, and it is contemplated that the flight chart file 208 may be any industry standard flight chart file that includes text. In some embodiments, a scalable vector graphics (SVG) file defined in extensible mark-up language (XML) or a comma-separated values (CSV) flight chart file may be converted to generate the flight chart file 208. The flight chart file 208 may be an image representing terminal flight charts, en-route flight charts, nautical charts, world aeronautical charts, sectional charts, etc. The image may show topographical features such as terrain elevations, ground features identifiable from altitude (rivers, dams, bridges, buildings, airports, beacons, landmarks, etc.), and information related to airspace classes, ground-based navigation aids, radio frequencies, longitude and latitude, navigation waypoints, navigation routes, etc. The flight chart file 208 may be associated with metadata such as flight chart name (e.g., “Omaha Eppley Airfield”), flight chart type (e.g., terminal, en-route, world aeronautical, etc.), flight chart location, etc.
A plurality of modules (e.g., program instructions) 210, 212, 214, and 216 stored on the memory 206 may process the flight chart file 208. The modules 210, 212, 214, and 216 may be submodules of a flight chart processing module. The flight chart processing module may be substantially similar or substantially identical to the Electronic Charts Application Tool Suite developed by Collins Aerospace (Cedar Rapids, IA), and may be configured to convert an original flight chart file (in PDF, CSV, SVG, etc.) to a converted flight chart file (e.g., in PDF or SVG), process and simplify the flight chart file, convert the flight chart file to aircraft display hardware directives, and compress the aircraft display hardware directives.
The module 210 may be configured to detect a font character size of one or more font characters (e.g., after the detection of the font character using an image recognition algorithm configured to identify flight chart elements) in the flight chart file 208. For example, the font character size of each font character may be detected as 12 point, 24 point, 48 point, 72 point, etc. The detected font character size may be of from 1 point to 1638 pixels or more.
The module 212 may be configured to associate a threshold zoom level with each font character based on the respective font character size. For example, for a 12 point font character, the associated threshold zoom level may be set to 1.25 times the baseline zoom level (125% magnification, where the baseline zoom level is 100% magnification). In contrast, for larger characters such as a 48 point font character, the associated threshold zoom level may be set to 2.0 times the baseline zoom level (200% magnification). The threshold zoom level associated with each font character (determined off-line on the host computing device 202) may be used to set the respective font character as filled or stroked (determined at run-time on the aircraft computing device 218).
The term “zoom level” may be regarded as the scaling applied to render the flight chart on the aircraft display 228. At the baseline zoom level (100% magnification) each pixel of the flight chart is represented as 100% of a pixel on the display 228. At 2.0 times the baseline zoom level (200%), each pixel of the image is represented as 200% of a pixel on the display 228 (2 pixels vertically and 2 pixels horizontally), and therefore is displayed as 4 pixels on the aircraft display 228. At 0.5 times the baseline zoom level (50%), each pixel of the image is represented as 50% of a screen pixel on the display 228, such that a single pixel of the aircraft display 228 represents 4 pixels in the image (since the image pixels are scaled 50% horizontally and vertically).
The module 214 may be configured to replace the font character(s) with one or more font character references in the flight chart file 208. Each of the font character reference(s) may be a name or container that calls font character values (e.g., pixel locations and pixel values) stored in the flight chart file 208. In this way, the font character reference(s) may be pointers that store memory addresses, and the memory addresses in turn may store the actual font character values (i.e., indirection). The font character reference(s) reduce the size of the flight chart file 208 and conserve the resources of the memory 222 of the aircraft computing device 218 (e.g., after the flight chart file 208 is converted to aircraft display hardware directives). The font character reference(s) may also be associated with the respective threshold zoom level determined by the module 212.
The module 216 may convert the flight chart file 208 to a flight chart defined in aircraft display hardware directives. Each of the aircraft display hardware directives may have a 32 bit form with 8 bits allocated to an opcode (e.g., that specifies a graphic operation to be performed, such as DRAW, MOVE, SETCOLOR) and 24 bits allocated to pixel data and pixel address (e.g., color of pixel(s), location of pixel(s), etc.). The aircraft display hardware directives may be quickly and easily displayed to a pilot on the aircraft display 228. The aircraft display hardware directives may decrease loading times and conserve processing and memory resources of the aircraft computing device 218 (since PDF or SVG flight chart files are too large to store on the memory 222 of the aircraft computing device 218, and may require long loading times to display on the aircraft display 228).
The flight chart file defined in aircraft display hardware directives may then be loaded on the memory 222 of the aircraft computing device 218. The module 224 may be configured to detect a current zoom level of the aircraft display 228. The current zoom level of the aircraft display 228 may be set by a user of the aircraft (for example, using a button, a knob, a mouse, a keyboard, etc.).
The module 224 may be configured to compare the respective threshold zoom level of a font character reference to the current zoom level, and based on the comparison, set a drawing mode (of the font character reference) as a filled character mode or a stroked character mode. For example, if the current zoom level is greater than the respective threshold zoom level, the drawing mode of the respective font character reference may be set as a filled character mode. Otherwise, if the current zoom level is less than the respective threshold zoom level, the drawing mode of the respective font character reference may be set as a stroked character mode.
The module 226 may be configured to draw a referenced character of a font character reference based on the drawing mode. The referenced character may comprise font character values stored in a memory address on the memory 222 (stored separately from the flight chart). If the drawing mode is set as the filled character mode, the referenced character is presented as a filled character on the aircraft display 228. Otherwise, if the drawing mode is set as the stroked character mode, the referenced character is presented as a stroked character on the aircraft display 228. It is noted that the filled character may be drawn on the flight display 228 using a plurality of filled triangles, and the stroked character may be drawn on the flight display 228 using a plurality of line segments. Additionally or alternatively, the filled character may be drawn using a plurality of lines (for example, wide lines may be used for smaller fill regions instead of the plurality of triangles).
FIG. 3 is a conceptual diagram illustrating the program flow of modules 223, 224, and 226 that draw a font character as filled or stroked based on a detected font character size, in accordance with one or more embodiments of the present disclosure. The module 223 may first call the module 224 to set the drawing mode of the font character reference. Then, the module 223 may call the module 226 to draw the referenced character as stroked or filled based on the drawing mode of the font character reference. Checking the drawing mode within the module 226 saves memory space since multiple Boolean checks, relocation of stylus position, and matrix manipulation only occurs once per font character size (for example, once for all of the 12 point font characters) instead of once per font character (instead of once per 12 point “A,” once per 12 point “B,” and so on, which is computationally costly). Additionally, for sequences of identically sized font characters, the module 224 does not have to be called repeatedly since the drawing mode remains set (as a Boolean value).
FIG. 4 is a flowchart illustrating a method 300 for flight chart font character scaling, in accordance with one or more embodiments of the present disclosure. The method 300 may be implemented by the system 200 as described with respect to FIGS. 2 and 3 . Steps 310, 320, 330, and 340 may be performed using a host computing device (e.g., host computing device 202 described with respect to FIG. 2 ), and steps 350, 260 and 370 may be performed using an aircraft computing device (e.g., aircraft computing device 218 described with respect to FIG. 2 )
At step 310, a font character size of one or more font characters may be detected in a flight chart file. For example, the font character size of each font character may be detected as 12 point, 24 point, 48 point, 72 point, etc. The detected font character size may be of from 1 point to 1638 pixels or more.
At step 320, a threshold zoom level may be associated with each font character based on the respective font character size. For example, for a 12 point font character, the associated threshold zoom level may be set to 1.25 times the baseline zoom level (125% magnification, where the baseline zoom level is 100% magnification). In contrast, for larger characters such as a 48 point font character, the associated threshold zoom level may be set to 2.0 times the baseline zoom level (200% magnification). The threshold zoom level associated with each font character (determined off-line on the host computing device) may be used to set the respective font character as filled or stroked (determined at run-time on the aircraft computing device).
At step 330, the one or more font characters may be replaced with one or more font character references in the flight chart file. Each of the font character references may be a name or container that calls font character values (e.g., pixel locations and pixel values) stored in the flight chart file. In this way, the font character references may be pointers that store memory addresses (in other words, a form of indirection), and the memory addresses in turn may store the actual font character values. The font character reference(s) may also be associated with the respective threshold zoom level determined by the module 212.
At step 340, the flight chart file may be converted to a flight chart defined in aircraft display hardware directives. Each of the aircraft display hardware directives may have a 32 bit form with 8 bits allocated to an opcode (e.g., that specifies a graphic operation to be performed, such as DRAW, MOVE, SETCOLOR) and 24 bits allocated to pixel data and pixel address (e.g., color of pixel(s), location of pixel(s), etc.).
At step 350, the flight chart file defined in aircraft display hardware directives may then be loaded on the memory of the aircraft computing device. A current zoom level of an aircraft display may be detected. The current zoom level of the aircraft display may be set by a user of the aircraft (for example, using a button, a knob, a mouse, a keyboard, etc.).
At step 360, the respective threshold zoom level of a font character reference may be compared to the current zoom level, and based on the comparison, a drawing mode (of the font character reference) may be set as a filled character mode or a stroked character mode. For example, if the current zoom level is greater than the respective threshold zoom level, the drawing mode of the respective font character reference may be set as a filled character mode. Otherwise, if the current zoom level is less than the respective threshold zoom level, the drawing mode of the respective font character reference may be set as a stroked character mode.
At step 370, a referenced character of the font character reference may be drawn based on the drawing mode. The referenced character may comprise font character values stored in a memory address on the memory of the aircraft computing device (stored separately from the flight chart). If the drawing mode is set as the filled character mode, the referenced character is presented as a filled character on the aircraft display. Otherwise, if the drawing mode is set as the stroked character mode, the referenced character is presented as a stroked character on the aircraft display. The filled character may be drawn on the flight display using a plurality of filled triangles and/or a plurality of lines (for example, wide lines may be used for smaller filled regions, while filled triangles may be used for larger filled regions). The stroked character may be drawn on the flight display using a plurality of line segments.
It is believed that the present disclosure and many of its attendant advantages will be understood by the foregoing description, and it will be apparent that various changes may be made in the form, construction and arrangement of the components without departing from the disclosed subject matter or without sacrificing all of its material advantages. The form described is merely explanatory, and it is the intention of the following claims to encompass and include such changes. Furthermore, it is to be understood that the invention is defined by the appended claims.

Claims (17)

What is claimed:
1. A system for flight chart font character scaling, comprising:
a host computing device including one or more processors configured to execute program instructions causing the one or more processors to:
detect a respective font character size of one or more font characters in a flight chart file;
associate a respective threshold zoom level with each of the font character(s) based on the respective font character size;
replace the font character(s) with one or more font character references, wherein each of the font character reference(s) is associated with the respective threshold zoom level; and
convert the flight chart file, including the font character reference(s) and the respective threshold zoom level associated with each of the font character reference(s), to a flight chart defined in aircraft display hardware directives;
an aircraft display configured to display the flight chart using the aircraft display hardware directives; and
an aircraft computing device including one or more processors configured to execute program instructions causing the one or more processors to:
detect a current zoom level of the aircraft display;
responsive to the current zoom level being greater than the respective threshold zoom level of one of the font character reference(s), set a drawing mode of the one of the font character reference(s) as a filled character mode, or, responsive to the current zoom level being less than the respective threshold zoom level of the one of the font character reference(s), set the drawing mode of the one of the font character reference(s) as a stroked character mode; and
responsive to the drawing mode being set as the filled character mode, present a referenced character of the one of the font character reference(s) as a filled character on the aircraft display, or, responsive to the drawing mode being set as the stroked character mode, present the referenced character of the one of the font character reference(s) as a stroked character on the aircraft display.
2. The system of claim 1, wherein the respective threshold zoom level is 1.25 times a baseline zoom level.
3. The system of claim 1, wherein the respective threshold zoom level is 1.5 times a baseline zoom level.
4. The system of claim 1, wherein the respective threshold zoom level is 2.0 times a baseline zoom level.
5. The system of claim 1, wherein the detected respective font character size is of from a 1-point font size to a 240-point font size.
6. The system of claim 1, wherein the filled character is presented on the flight display by drawing at least one of a plurality of filled triangles or a plurality of lines.
7. The system of claim 1, wherein the flight chart file is a portable document format (PDF) flight chart file.
8. The system of claim 1, wherein the flight chart file is a scalable vector graphics (SVG) flight chart file defined in extensible mark-up language (XML).
9. The system of claim 1, wherein the stroked character is presented on the flight display by drawing a plurality of line segments.
10. A method for flight chart font character scaling, comprising:
using a host computing device,
detecting a respective font character size of one or more font characters in a flight chart file,
associating a respective threshold zoom level with each of the font character(s) based on the respective font character size,
replacing the font character(s) with one or more font character references, wherein each of the font character reference(s) is associated with the respective threshold zoom level,
converting the flight chart file, including the font character reference(s) and the respective threshold zoom level associated with each of the font character reference(s), to a flight chart defined in aircraft display hardware directives, wherein an aircraft display is configured to display the flight chart using the aircraft display hardware directives,
using an aircraft computing device,
detecting a current zoom level of the aircraft display,
responsive to the current zoom level being greater than the respective threshold zoom level of one of the font character reference(s), setting a drawing mode of the one of the font character reference(s) as a filled character mode, or, responsive to the current zoom level being less than the respective threshold zoom level of the one of the font character reference(s), setting the drawing mode of the one of the font character reference(s) as a stroked character mode; and
responsive to the drawing mode being set as the filled character mode, presenting a referenced character of the one of the font character reference(s) as a filled character on the aircraft display, or, responsive to the drawing mode being set as the stroked character mode, presenting the referenced character of the one of the font character reference(s) as a stroked character on the aircraft display.
11. The method of claim 10, wherein the respective threshold zoom level is 1.25 times a baseline zoom level.
12. The method of claim 10, wherein the respective threshold zoom level is 1.5 times a baseline zoom level.
13. The method of claim 10, wherein the respective threshold zoom level is 2.0 times a baseline zoom level.
14. The method of claim 10, wherein the filled character is presented on the flight display by drawing at least one of a plurality of filled triangles or a plurality of lines.
15. The method of claim 10, wherein the flight chart file is a portable document format (PDF) flight chart file.
16. The method of claim 10, wherein the flight chart file is a scalable vector graphics (SVG) flight chart file defined in extensible mark-up language (XML).
17. The method of claim 10, wherein the stroked character is presented on the flight display by drawing a plurality of line segments.
US17/525,685 2021-11-12 2021-11-12 System and method for providing more readable font characters in size adjusting avionics charts Active 2041-11-15 US11748923B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/525,685 US11748923B2 (en) 2021-11-12 2021-11-12 System and method for providing more readable font characters in size adjusting avionics charts
EP22207047.6A EP4180769A1 (en) 2021-11-12 2022-11-11 System and method for providing more readable font characters in size adjusting avionics charts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163278576P 2021-11-12 2021-11-12
US17/525,685 US11748923B2 (en) 2021-11-12 2021-11-12 System and method for providing more readable font characters in size adjusting avionics charts

Publications (2)

Publication Number Publication Date
US20230154074A1 US20230154074A1 (en) 2023-05-18
US11748923B2 true US11748923B2 (en) 2023-09-05

Family

ID=84331556

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/525,685 Active 2041-11-15 US11748923B2 (en) 2021-11-12 2021-11-12 System and method for providing more readable font characters in size adjusting avionics charts

Country Status (2)

Country Link
US (1) US11748923B2 (en)
EP (1) EP4180769A1 (en)

Citations (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3522586A (en) 1965-08-25 1970-08-04 Nippon Electric Co Automatic character recognition apparatus
US3656178A (en) 1969-09-15 1972-04-11 Research Corp Data compression and decompression system
US4096527A (en) 1975-09-29 1978-06-20 Xerox Corporation Run length encoding and decoding methods and means
JPS622721A (en) 1985-06-28 1987-01-08 Nec Corp Coding and decoding device for picture signal
JPS62196772A (en) 1986-02-24 1987-08-31 Mitsubishi Electric Corp Picture clipping system
JPS6393273A (en) 1986-10-07 1988-04-23 Fuji Xerox Co Ltd Coding device for image information
US4792981A (en) 1987-09-21 1988-12-20 Am International, Inc. Manipulation of run-length encoded images
US4876651A (en) 1988-05-11 1989-10-24 Honeywell Inc. Digital map system
EP0380294A1 (en) 1989-01-23 1990-08-01 Codex Corporation String matching
US5050230A (en) 1989-11-29 1991-09-17 Eastman Kodak Company Hybrid residual-based hierarchical storage and display method for high resolution digital images in a multiuse environment
JPH05205069A (en) 1992-01-24 1993-08-13 Canon Inc Method and device for encoding
US5428692A (en) 1991-11-18 1995-06-27 Kuehl; Eberhard Character recognition system
US5454076A (en) 1994-03-02 1995-09-26 Vlsi Technology, Inc. Method and apparatus for simultaneously minimizing storage and maximizing total memory bandwidth for a repeating pattern
US5499382A (en) 1993-09-20 1996-03-12 Nusinov; Eugene B. Circuit and method of bit-packing and bit-unpacking using a barrel shifter
US5537669A (en) 1993-09-30 1996-07-16 Kla Instruments Corporation Inspection method and apparatus for the inspection of either random or repeating patterns
US5559707A (en) 1994-06-24 1996-09-24 Delorme Publishing Company Computer aided routing system
US5577170A (en) 1993-12-23 1996-11-19 Adobe Systems, Incorporated Generation of typefaces on high resolution output devices
WO1998043208A2 (en) 1997-03-21 1998-10-01 Newfire, Inc. Method and apparatus for graphics processing
US5936637A (en) 1987-02-27 1999-08-10 Canon Kabushiki Kaisha Image processing system having outline font data input
US5978715A (en) 1997-10-15 1999-11-02 Dassault Aviation Apparatus and method for aircraft display and control
US6014133A (en) 1996-06-14 2000-01-11 Seiko Epson Corporation Data transmitter/receiver apparatus, data transmitter, data receiver, and data compression method
US6275610B1 (en) 1996-10-16 2001-08-14 Convey Corporation File structure for scanned documents
US6320984B1 (en) 1997-04-21 2001-11-20 Fuji Photo Film Co., Ltd. Method of and apparatus for extracting contour line and workstation having contour line extracting function
US6448922B1 (en) 2000-08-24 2002-09-10 Rockwell Collins, Inc. Retrofit solution for the integration of ground-based weather radar images with on-board weather radar
US6501441B1 (en) 1998-06-18 2002-12-31 Sony Corporation Method of and apparatus for partitioning, scaling and displaying video and/or graphics across several display devices
EP1352315A2 (en) 2000-11-17 2003-10-15 Honeywell International Inc. A method and system for entering data within a flight plan entry field
US20040071351A1 (en) 2002-10-07 2004-04-15 Johan Rade Method and system for graphics compression and display
EP1454213A2 (en) 2001-03-02 2004-09-08 The United States of America, represented by the Administrator of the National Aeronautics and Space Administration (NASA) System, method and apparatus for conducting a keyterm search
EP1272977B1 (en) 2000-04-14 2004-12-29 Picsel Technologies Limited Shape processor
US6839714B2 (en) 2000-08-04 2005-01-04 Infoglide Corporation System and method for comparing heterogeneous data sources
US20050091340A1 (en) 2003-10-01 2005-04-28 International Business Machines Corporation Processing interactive content offline
US20060031006A1 (en) 2001-07-31 2006-02-09 Stenbock Roger M Process for generating computer flight plans on the internet
US7039505B1 (en) 2002-07-19 2006-05-02 Avidyne Corporation Method for digital transmission and display of weather imagery
US7096211B2 (en) 1999-12-03 2006-08-22 Sony Corporation Apparatus and method for image/position display
US20060215915A1 (en) 2005-03-23 2006-09-28 Core Logic Inc. Device and method for generating thumbnail JPEG image and medium for storing thumbnail JPEG image
EP1736894A1 (en) 2004-03-30 2006-12-27 Victor Company Of Japan, Limited Digitization service manual generation method and additional data generation method
JP3871040B2 (en) 2001-06-15 2007-01-24 ハイデルベルガー ドルツクマシーネン アクチエンゲゼルシヤフト Method for generating a trapping frame at the color boundary of a printed page existing in the form of run-length encoded image data
US20070067095A1 (en) 2005-07-01 2007-03-22 Honeywell International Inc. Method and apparatus for resolving ambiguous waypoints
US20070094591A1 (en) * 2005-10-24 2007-04-26 Etgen Michael P System and method for text legibility enhancement
US20070112517A1 (en) 2005-08-31 2007-05-17 Hilton Goldstein System and method for coordinate mapping onto airport diagrams
JP2007133231A (en) 2005-11-11 2007-05-31 Denso Corp Map display apparatus and navigation apparatus
US20070185651A1 (en) 2006-02-07 2007-08-09 Masaki Motoyama Navigation system utilizing XML/SVG map data converted from geographic map data and layered structure of XML/SVG map data based on administrative regions
JP2008022215A (en) 2006-07-12 2008-01-31 Matsushita Electric Ind Co Ltd Image encoding device, image encoding method, and storage medium therefor
US20080103641A1 (en) 2006-10-31 2008-05-01 Honeywell International, Inc. Methods and apparatus for overlaying non-georeferenced symbology on a georeferenced chart
US20080240152A1 (en) 2007-03-27 2008-10-02 Dell Products L.P. System And Method For Communicating Data For Display On A Remote Display Device
US20090080801A1 (en) 2007-09-24 2009-03-26 Microsoft Corporation Altering the appearance of a digital image using a shape
US20090123070A1 (en) 2007-11-14 2009-05-14 Itt Manufacturing Enterprises Inc. Segmentation-based image processing system
US20090125837A1 (en) 2007-11-08 2009-05-14 International Business Machines Corporation Tab control with type ahead and thumbnail images
US7552011B2 (en) 2005-01-19 2009-06-23 Sony Corporation Map display apparatus and map display method
US7552010B2 (en) 2004-09-30 2009-06-23 Fujifilm Corporation Car navigation system
US7562289B2 (en) 2003-06-18 2009-07-14 Layton Geo-Science, Inc. Methods and systems for encoding geographic coordinates and features in a portable document format file
US7581036B2 (en) 2004-10-13 2009-08-25 Microsoft Corporation Offline caching of control transactions for storage devices
US7609263B2 (en) 2005-02-10 2009-10-27 Sony Computer Entertainment Inc. Drawing processing apparatus and method for compressing drawing data
JP2009282855A (en) 2008-05-23 2009-12-03 Ricoh Co Ltd Image forming device, method for rendering gradation graphic image, gradation graphic image rendering program, and recording medium
CN101676988A (en) 2008-09-19 2010-03-24 威锋数位开发股份有限公司 Stroke foundation Chinese font small character quality display method and device
US20100128020A1 (en) 2008-11-25 2010-05-27 Lg Display Co., Ltd Multi-panel display device and method of driving the same
US7739622B2 (en) 2006-10-27 2010-06-15 Microsoft Corporation Dynamic thumbnails for document navigation
CN101751449A (en) 2009-09-16 2010-06-23 中国科学院计算技术研究所 Spatial overlap analysis method and system used in geographic information system
US7777749B2 (en) 2002-01-17 2010-08-17 University Of Washington Programmable 3D graphics pipeline for multimedia applications
US20100218089A1 (en) 2009-02-25 2010-08-26 Hui Chao Method for dynamically scaling an original background layout
EP2224359A2 (en) 2009-02-27 2010-09-01 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and computer program
US20100262318A1 (en) 2007-05-16 2010-10-14 J. Ariens & Associates, Inc. Electronic flight bag user interface system
WO2011036499A1 (en) 2009-09-28 2011-03-31 Nats (Services) Limited Aeronautical information processing
US7948502B2 (en) 2008-05-13 2011-05-24 Mitac International Corp. Method of displaying picture having location data and apparatus thereof
US7966609B2 (en) 2006-03-30 2011-06-21 Intel Corporation Optimal floating-point expression translation method based on pattern matching
JP4728744B2 (en) 2005-08-29 2011-07-20 シャープ株式会社 Image processing device
US20110191014A1 (en) 2010-02-04 2011-08-04 Microsoft Corporation Mapping interface with higher zoom level inset map
US8035642B2 (en) 2006-12-22 2011-10-11 Canon Kabushiki Kaisha Apparatus and method for processing information, and program for making computer execute the method
US8165732B2 (en) 2008-05-29 2012-04-24 Airbus Operations Sas Computer maintenance system for an aircraft with remote terminal
US8169505B2 (en) 2008-02-22 2012-05-01 Fujitsu Limited Image management apparatus for displaying images based on geographical environment
US20120242687A1 (en) * 2011-03-25 2012-09-27 Choi Sungha Image processing apparatus and image processing method
US8306745B1 (en) 2007-05-04 2012-11-06 The Boeing Company Methods and systems for displaying airport moving map information
US20120287151A1 (en) 2011-05-09 2012-11-15 Microsoft Corporation Partitioning high resolution images into sub-images for display
US8339417B2 (en) 2008-07-25 2012-12-25 Navteq B.V. Open area maps based on vector graphics format images
US8374390B2 (en) 2009-06-24 2013-02-12 Navteq B.V. Generating a graphic model of a geographic object and systems thereof
US8379065B2 (en) 2003-08-07 2013-02-19 Sk Planet Co., Ltd. Method for displaying high resolution picture in mobile communication terminal, mobile communication terminal and system for converting picture file format therefor
US8515658B1 (en) 2009-07-06 2013-08-20 The Boeing Company Managing navigational chart presentation
US8583368B1 (en) 2010-02-17 2013-11-12 The Boeing Company Rule based depiction of minimum altitudes
GB2504085A (en) 2012-07-16 2014-01-22 Software Ltd C Displaying maps and data sets on image display interfaces
US8704732B2 (en) 2010-09-29 2014-04-22 Qualcomm Incorporated Image synchronization for multiple displays
US20140168277A1 (en) * 2011-05-10 2014-06-19 Cisco Technology Inc. Adaptive Presentation of Content
US20140225928A1 (en) 2013-02-13 2014-08-14 Documill Oy Manipulation of textual content data for layered presentation
US20140282038A1 (en) 2013-03-15 2014-09-18 InTheAirNet, LLC. Flight detail application and interactive map system and method
EP2792998A2 (en) 2013-04-16 2014-10-22 The Boeing Company Systems and methods for generating a navigation chart
US8937737B2 (en) 2011-07-14 2015-01-20 Konica Minolta Business Technologies, Inc. Image processing apparatus, thumbnail image generating method, and recording medium
US20150070373A1 (en) 2012-08-23 2015-03-12 Google Inc. Clarification of Zoomed Text Embedded in Images
US9035969B2 (en) 2012-11-29 2015-05-19 Seiko Epson Corporation Method for multiple projector display using a GPU frame buffer
EP2879061A2 (en) 2013-11-27 2015-06-03 Xiaomi Inc. Method and device for enlarging displayed font
US20150239574A1 (en) 2014-02-26 2015-08-27 Honeywell International Inc. Pilot centered system and method for decluttering aircraft displays
US20150278626A1 (en) 2014-03-31 2015-10-01 Nidec Sankyo Corporation Character recognition device and character segmentation method
US20150324088A1 (en) 2014-05-09 2015-11-12 Lyve Minds, Inc. Thumbnail image creation
US9195637B2 (en) 2010-11-03 2015-11-24 Microsoft Technology Licensing, Llc Proportional font scaling
US20160092557A1 (en) 2014-09-26 2016-03-31 Oracle International Corporation Techniques for similarity analysis and data enrichment using knowledge sources
US9430195B1 (en) 2010-04-16 2016-08-30 Emc Corporation Dynamic server graphics
US9443433B1 (en) 2015-04-23 2016-09-13 The Boeing Company Method and system to monitor for conformance to a traffic control instruction
US9465513B2 (en) 2013-04-11 2016-10-11 General Electric Company Visual representation of map navigation history
US9489121B2 (en) 2011-11-02 2016-11-08 Microsoft Technology Licensing, Llc Optimal display and zoom of objects and text in a document
US9547727B2 (en) 2011-07-25 2017-01-17 Scientiamobile, Inc. System and method for using a device description repository
US9619919B1 (en) 2012-12-19 2017-04-11 Rockwell Collins, Inc. Synthetic environments with stereoscopic avionics displays system and related method
US9639309B1 (en) 2015-10-14 2017-05-02 Kyocera Document Solutions Inc. Image conversion methods
US9671935B2 (en) 2012-02-16 2017-06-06 Furuno Electric Co., Ltd. Information display device, display mode switching method and display mode switching program
US9703455B2 (en) 2012-10-18 2017-07-11 Dental Imaging Technologies Corporation Overlay maps for navigation of intraoral images
CN107026958A (en) 2016-01-29 2017-08-08 株式会社东芝 Document processing method, document processing device and document processing system
EP3201879A1 (en) 2014-09-30 2017-08-09 Microsoft Technology Licensing, LLC Optimizing the legibility of displayed text
US9781294B1 (en) 2016-08-09 2017-10-03 Xerox Corporation System and method for rendering micro gloss effect image patterns on a recording medium
US9818051B2 (en) 2016-01-29 2017-11-14 Ricoh Company, Ltd. Rotation and clipping mechanism
CN107402734A (en) 2017-07-25 2017-11-28 浪潮金融信息技术有限公司 A kind of method that text definition is automatically adjusted with screen resolution
US9891875B2 (en) 2014-09-11 2018-02-13 S-Printing Solution Co., Ltd. Host device for transmitting print data to printer and method of rendering print data via host device
US9921721B2 (en) 2014-08-08 2018-03-20 Google Llc Navigation interfaces for ebooks
US9939271B1 (en) 2013-09-23 2018-04-10 The Boeing Company Enroute distance measuring tool
US10001376B1 (en) 2015-02-19 2018-06-19 Rockwell Collins, Inc. Aircraft position monitoring system and method
US20180181646A1 (en) 2016-12-26 2018-06-28 Infosys Limited System and method for determining identity relationships among enterprise data entities
US10061480B1 (en) 2015-07-28 2018-08-28 Rockwell Collins, Inc. Navigation chart information generating and presenting system, device, and method
US20180253889A1 (en) 2017-03-06 2018-09-06 Canon Kabushiki Kaisha Information processing apparatus, storage medium, and information processing method for processing clipping rendering instruction
US10170010B1 (en) 2018-06-07 2019-01-01 Rockwell Collins, Inc. Display of traffic overlaid on aeronautical chart
CN109325083A (en) 2018-08-03 2019-02-12 江苏联旺信息科技有限公司 The loading method for flying striograph, the boat of navigating fly striograph load software and aerial photography device
US20190057671A1 (en) 2017-08-18 2019-02-21 Microsoft Technology Licensing, Llc Multi-display device user interface modification
US20190220234A1 (en) 2018-01-15 2019-07-18 Lucid Dream Software, Inc. Methods, systems, apparatuses and devices for facilitating printing of a digital image based on image splitting
US10372292B2 (en) 2013-03-13 2019-08-06 Microsoft Technology Licensing, Llc Semantic zoom-based navigation of displayed content
US20190299701A1 (en) 2016-05-10 2019-10-03 Agfa Nv Manufacturing of a security document
CN110727747A (en) 2019-09-02 2020-01-24 湖北大学 Paper map rapid vectorization method and system based on longitude and latitude recognition
US20200089694A1 (en) 2018-09-06 2020-03-19 Maritech Development Limited Tile server
US10674075B2 (en) 2013-04-30 2020-06-02 Sony Corporation Image processing device, image processing method, and program
US10684769B2 (en) 2013-06-13 2020-06-16 Microsoft Technology Licensing, Llc Inset dynamic content preview pane
US20200195924A1 (en) 2017-09-08 2020-06-18 Mediatek Inc. Methods and Apparatuses of Processing Pictures in an Image or Video Coding System
US20200251029A1 (en) 2019-01-31 2020-08-06 Coretronic Corporation Display system, display method of display system and display device
US20200255350A1 (en) 2013-03-13 2020-08-13 Samsung Electronics Co., Ltd. Electronic device and method for generating thumbnails based on captured images
US20200320142A1 (en) 2018-06-13 2020-10-08 Oracle International Corporation Regular expression generation using span highlighting alignment
US20200386567A1 (en) 2019-06-07 2020-12-10 Toyota Jidosha Kabushiki Kaisha Map generation device, map generation method, and map generation ocmputer program
US10872274B2 (en) 2016-03-29 2020-12-22 Alibaba Group Holding Limited Character recognition method and device
US10880522B2 (en) 2009-05-22 2020-12-29 Immersive Media Company Hybrid media viewing application including a region of interest within a wide field of view
US20210004930A1 (en) 2019-07-01 2021-01-07 Digimarc Corporation Watermarking arrangements permitting vector graphics editing
US20210035453A1 (en) 2019-08-01 2021-02-04 Honeywell International Inc. Systems and methods to utilize flight monitoring data
CA3095088C (en) 2017-03-31 2021-02-23 Area 2601, LLC Computer-based systems and methods for facilitating aircraft approach
US20210056300A1 (en) 2019-08-24 2021-02-25 Kira Inc. Text extraction, in particular table extraction from electronic documents
WO2021035223A1 (en) 2019-08-22 2021-02-25 Educational Vision Technologies, Inc. Automatic data extraction and conversion of video/images/sound information from a board-presented lecture into an editable notetaking resource
US10984501B2 (en) 2011-09-10 2021-04-20 Microsoft Technology Licensing, Llc Thumbnail zoom
US11030477B2 (en) 2016-10-28 2021-06-08 Intuit Inc. Image quality assessment and improvement for performing optical character recognition
US20210192202A1 (en) 2017-12-18 2021-06-24 Capital One Services, Llc Recognizing text in image data
EP3845862A1 (en) 2020-01-06 2021-07-07 Rockwell Collins, Inc. Interactive charts system and method
US20210225181A1 (en) 2020-01-20 2021-07-22 Honeywell International Inc. Display systems and methods for providing ground traffic collison threat awareness
US11106329B2 (en) 2015-09-18 2021-08-31 Honeywell International Inc. Flight deck display systems and methods for generating cockpit displays including dynamic taxi turnoff icons
US20210349615A1 (en) 2017-09-19 2021-11-11 Adobe Inc. Resizing graphical user interfaces

Patent Citations (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3522586A (en) 1965-08-25 1970-08-04 Nippon Electric Co Automatic character recognition apparatus
US3656178A (en) 1969-09-15 1972-04-11 Research Corp Data compression and decompression system
US4096527A (en) 1975-09-29 1978-06-20 Xerox Corporation Run length encoding and decoding methods and means
JPS622721A (en) 1985-06-28 1987-01-08 Nec Corp Coding and decoding device for picture signal
JPS62196772A (en) 1986-02-24 1987-08-31 Mitsubishi Electric Corp Picture clipping system
JPS6393273A (en) 1986-10-07 1988-04-23 Fuji Xerox Co Ltd Coding device for image information
US5936637A (en) 1987-02-27 1999-08-10 Canon Kabushiki Kaisha Image processing system having outline font data input
US4792981A (en) 1987-09-21 1988-12-20 Am International, Inc. Manipulation of run-length encoded images
EP0341645A2 (en) 1988-05-11 1989-11-15 Honeywell Inc. Digital mapping display apparatus
US4876651A (en) 1988-05-11 1989-10-24 Honeywell Inc. Digital map system
EP0380294A1 (en) 1989-01-23 1990-08-01 Codex Corporation String matching
US5050230A (en) 1989-11-29 1991-09-17 Eastman Kodak Company Hybrid residual-based hierarchical storage and display method for high resolution digital images in a multiuse environment
US5428692A (en) 1991-11-18 1995-06-27 Kuehl; Eberhard Character recognition system
JPH05205069A (en) 1992-01-24 1993-08-13 Canon Inc Method and device for encoding
US5499382A (en) 1993-09-20 1996-03-12 Nusinov; Eugene B. Circuit and method of bit-packing and bit-unpacking using a barrel shifter
US5537669A (en) 1993-09-30 1996-07-16 Kla Instruments Corporation Inspection method and apparatus for the inspection of either random or repeating patterns
US5577170A (en) 1993-12-23 1996-11-19 Adobe Systems, Incorporated Generation of typefaces on high resolution output devices
US5454076A (en) 1994-03-02 1995-09-26 Vlsi Technology, Inc. Method and apparatus for simultaneously minimizing storage and maximizing total memory bandwidth for a repeating pattern
US5559707A (en) 1994-06-24 1996-09-24 Delorme Publishing Company Computer aided routing system
US6014133A (en) 1996-06-14 2000-01-11 Seiko Epson Corporation Data transmitter/receiver apparatus, data transmitter, data receiver, and data compression method
US6275610B1 (en) 1996-10-16 2001-08-14 Convey Corporation File structure for scanned documents
WO1998043208A2 (en) 1997-03-21 1998-10-01 Newfire, Inc. Method and apparatus for graphics processing
US6320984B1 (en) 1997-04-21 2001-11-20 Fuji Photo Film Co., Ltd. Method of and apparatus for extracting contour line and workstation having contour line extracting function
US5978715A (en) 1997-10-15 1999-11-02 Dassault Aviation Apparatus and method for aircraft display and control
US6501441B1 (en) 1998-06-18 2002-12-31 Sony Corporation Method of and apparatus for partitioning, scaling and displaying video and/or graphics across several display devices
US7096211B2 (en) 1999-12-03 2006-08-22 Sony Corporation Apparatus and method for image/position display
EP1272977B1 (en) 2000-04-14 2004-12-29 Picsel Technologies Limited Shape processor
US20050030321A1 (en) 2000-04-14 2005-02-10 Picsel Research Limited Shape processor
US6839714B2 (en) 2000-08-04 2005-01-04 Infoglide Corporation System and method for comparing heterogeneous data sources
US6448922B1 (en) 2000-08-24 2002-09-10 Rockwell Collins, Inc. Retrofit solution for the integration of ground-based weather radar images with on-board weather radar
EP1352315A2 (en) 2000-11-17 2003-10-15 Honeywell International Inc. A method and system for entering data within a flight plan entry field
EP1454213A2 (en) 2001-03-02 2004-09-08 The United States of America, represented by the Administrator of the National Aeronautics and Space Administration (NASA) System, method and apparatus for conducting a keyterm search
US7173738B2 (en) 2001-06-15 2007-02-06 Heidelberger Druckmaschinen Ag Method of producing traps in a print page
JP3871040B2 (en) 2001-06-15 2007-01-24 ハイデルベルガー ドルツクマシーネン アクチエンゲゼルシヤフト Method for generating a trapping frame at the color boundary of a printed page existing in the form of run-length encoded image data
US20060031006A1 (en) 2001-07-31 2006-02-09 Stenbock Roger M Process for generating computer flight plans on the internet
US7777749B2 (en) 2002-01-17 2010-08-17 University Of Washington Programmable 3D graphics pipeline for multimedia applications
US7039505B1 (en) 2002-07-19 2006-05-02 Avidyne Corporation Method for digital transmission and display of weather imagery
US20040071351A1 (en) 2002-10-07 2004-04-15 Johan Rade Method and system for graphics compression and display
US7562289B2 (en) 2003-06-18 2009-07-14 Layton Geo-Science, Inc. Methods and systems for encoding geographic coordinates and features in a portable document format file
US8379065B2 (en) 2003-08-07 2013-02-19 Sk Planet Co., Ltd. Method for displaying high resolution picture in mobile communication terminal, mobile communication terminal and system for converting picture file format therefor
US20050091340A1 (en) 2003-10-01 2005-04-28 International Business Machines Corporation Processing interactive content offline
US20080046254A1 (en) 2004-03-30 2008-02-21 Victor Company Of Japan, Limited Electronic Service Manual Generation Method, Additional Data Generation Method, Electronic Service Manual Generation Appartus, Additional Data Generation Apparatus, Electronic ServIce Manual Generation Program, Additional Data Generation Program, And Recording Media On Which These Programs Are Recorded
EP1736894A1 (en) 2004-03-30 2006-12-27 Victor Company Of Japan, Limited Digitization service manual generation method and additional data generation method
US7552010B2 (en) 2004-09-30 2009-06-23 Fujifilm Corporation Car navigation system
US7581036B2 (en) 2004-10-13 2009-08-25 Microsoft Corporation Offline caching of control transactions for storage devices
US7552011B2 (en) 2005-01-19 2009-06-23 Sony Corporation Map display apparatus and map display method
US7609263B2 (en) 2005-02-10 2009-10-27 Sony Computer Entertainment Inc. Drawing processing apparatus and method for compressing drawing data
US20060215915A1 (en) 2005-03-23 2006-09-28 Core Logic Inc. Device and method for generating thumbnail JPEG image and medium for storing thumbnail JPEG image
US20070067095A1 (en) 2005-07-01 2007-03-22 Honeywell International Inc. Method and apparatus for resolving ambiguous waypoints
JP4728744B2 (en) 2005-08-29 2011-07-20 シャープ株式会社 Image processing device
US20070112517A1 (en) 2005-08-31 2007-05-17 Hilton Goldstein System and method for coordinate mapping onto airport diagrams
US20070094591A1 (en) * 2005-10-24 2007-04-26 Etgen Michael P System and method for text legibility enhancement
CN100440222C (en) 2005-10-24 2008-12-03 国际商业机器公司 System and method for text legibility enhancement
JP2007133231A (en) 2005-11-11 2007-05-31 Denso Corp Map display apparatus and navigation apparatus
US20070185651A1 (en) 2006-02-07 2007-08-09 Masaki Motoyama Navigation system utilizing XML/SVG map data converted from geographic map data and layered structure of XML/SVG map data based on administrative regions
US7966609B2 (en) 2006-03-30 2011-06-21 Intel Corporation Optimal floating-point expression translation method based on pattern matching
JP2008022215A (en) 2006-07-12 2008-01-31 Matsushita Electric Ind Co Ltd Image encoding device, image encoding method, and storage medium therefor
US7739622B2 (en) 2006-10-27 2010-06-15 Microsoft Corporation Dynamic thumbnails for document navigation
US20080103641A1 (en) 2006-10-31 2008-05-01 Honeywell International, Inc. Methods and apparatus for overlaying non-georeferenced symbology on a georeferenced chart
US8035642B2 (en) 2006-12-22 2011-10-11 Canon Kabushiki Kaisha Apparatus and method for processing information, and program for making computer execute the method
US20080240152A1 (en) 2007-03-27 2008-10-02 Dell Products L.P. System And Method For Communicating Data For Display On A Remote Display Device
US8306745B1 (en) 2007-05-04 2012-11-06 The Boeing Company Methods and systems for displaying airport moving map information
US20100262318A1 (en) 2007-05-16 2010-10-14 J. Ariens & Associates, Inc. Electronic flight bag user interface system
US20090080801A1 (en) 2007-09-24 2009-03-26 Microsoft Corporation Altering the appearance of a digital image using a shape
US20090125837A1 (en) 2007-11-08 2009-05-14 International Business Machines Corporation Tab control with type ahead and thumbnail images
US20090123070A1 (en) 2007-11-14 2009-05-14 Itt Manufacturing Enterprises Inc. Segmentation-based image processing system
US8169505B2 (en) 2008-02-22 2012-05-01 Fujitsu Limited Image management apparatus for displaying images based on geographical environment
US7948502B2 (en) 2008-05-13 2011-05-24 Mitac International Corp. Method of displaying picture having location data and apparatus thereof
JP2009282855A (en) 2008-05-23 2009-12-03 Ricoh Co Ltd Image forming device, method for rendering gradation graphic image, gradation graphic image rendering program, and recording medium
US8165732B2 (en) 2008-05-29 2012-04-24 Airbus Operations Sas Computer maintenance system for an aircraft with remote terminal
US8339417B2 (en) 2008-07-25 2012-12-25 Navteq B.V. Open area maps based on vector graphics format images
CN101676988A (en) 2008-09-19 2010-03-24 威锋数位开发股份有限公司 Stroke foundation Chinese font small character quality display method and device
US20100128020A1 (en) 2008-11-25 2010-05-27 Lg Display Co., Ltd Multi-panel display device and method of driving the same
US20100218089A1 (en) 2009-02-25 2010-08-26 Hui Chao Method for dynamically scaling an original background layout
EP2224359A2 (en) 2009-02-27 2010-09-01 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and computer program
US10880522B2 (en) 2009-05-22 2020-12-29 Immersive Media Company Hybrid media viewing application including a region of interest within a wide field of view
US8374390B2 (en) 2009-06-24 2013-02-12 Navteq B.V. Generating a graphic model of a geographic object and systems thereof
US8515658B1 (en) 2009-07-06 2013-08-20 The Boeing Company Managing navigational chart presentation
CN101751449A (en) 2009-09-16 2010-06-23 中国科学院计算技术研究所 Spatial overlap analysis method and system used in geographic information system
WO2011036499A1 (en) 2009-09-28 2011-03-31 Nats (Services) Limited Aeronautical information processing
US20110191014A1 (en) 2010-02-04 2011-08-04 Microsoft Corporation Mapping interface with higher zoom level inset map
US8583368B1 (en) 2010-02-17 2013-11-12 The Boeing Company Rule based depiction of minimum altitudes
US9430195B1 (en) 2010-04-16 2016-08-30 Emc Corporation Dynamic server graphics
US8704732B2 (en) 2010-09-29 2014-04-22 Qualcomm Incorporated Image synchronization for multiple displays
US9195637B2 (en) 2010-11-03 2015-11-24 Microsoft Technology Licensing, Llc Proportional font scaling
US20120242687A1 (en) * 2011-03-25 2012-09-27 Choi Sungha Image processing apparatus and image processing method
US20120287151A1 (en) 2011-05-09 2012-11-15 Microsoft Corporation Partitioning high resolution images into sub-images for display
US20140168277A1 (en) * 2011-05-10 2014-06-19 Cisco Technology Inc. Adaptive Presentation of Content
US8937737B2 (en) 2011-07-14 2015-01-20 Konica Minolta Business Technologies, Inc. Image processing apparatus, thumbnail image generating method, and recording medium
US9547727B2 (en) 2011-07-25 2017-01-17 Scientiamobile, Inc. System and method for using a device description repository
US10984501B2 (en) 2011-09-10 2021-04-20 Microsoft Technology Licensing, Llc Thumbnail zoom
US9489121B2 (en) 2011-11-02 2016-11-08 Microsoft Technology Licensing, Llc Optimal display and zoom of objects and text in a document
US9671935B2 (en) 2012-02-16 2017-06-06 Furuno Electric Co., Ltd. Information display device, display mode switching method and display mode switching program
GB2504085A (en) 2012-07-16 2014-01-22 Software Ltd C Displaying maps and data sets on image display interfaces
US20150070373A1 (en) 2012-08-23 2015-03-12 Google Inc. Clarification of Zoomed Text Embedded in Images
US9703455B2 (en) 2012-10-18 2017-07-11 Dental Imaging Technologies Corporation Overlay maps for navigation of intraoral images
US9035969B2 (en) 2012-11-29 2015-05-19 Seiko Epson Corporation Method for multiple projector display using a GPU frame buffer
US9619919B1 (en) 2012-12-19 2017-04-11 Rockwell Collins, Inc. Synthetic environments with stereoscopic avionics displays system and related method
US20140225928A1 (en) 2013-02-13 2014-08-14 Documill Oy Manipulation of textual content data for layered presentation
US10372292B2 (en) 2013-03-13 2019-08-06 Microsoft Technology Licensing, Llc Semantic zoom-based navigation of displayed content
US20200255350A1 (en) 2013-03-13 2020-08-13 Samsung Electronics Co., Ltd. Electronic device and method for generating thumbnails based on captured images
US20140282038A1 (en) 2013-03-15 2014-09-18 InTheAirNet, LLC. Flight detail application and interactive map system and method
US9465513B2 (en) 2013-04-11 2016-10-11 General Electric Company Visual representation of map navigation history
EP2792998A2 (en) 2013-04-16 2014-10-22 The Boeing Company Systems and methods for generating a navigation chart
US10674075B2 (en) 2013-04-30 2020-06-02 Sony Corporation Image processing device, image processing method, and program
US10684769B2 (en) 2013-06-13 2020-06-16 Microsoft Technology Licensing, Llc Inset dynamic content preview pane
US9939271B1 (en) 2013-09-23 2018-04-10 The Boeing Company Enroute distance measuring tool
EP2879061A2 (en) 2013-11-27 2015-06-03 Xiaomi Inc. Method and device for enlarging displayed font
US20150239574A1 (en) 2014-02-26 2015-08-27 Honeywell International Inc. Pilot centered system and method for decluttering aircraft displays
US20150278626A1 (en) 2014-03-31 2015-10-01 Nidec Sankyo Corporation Character recognition device and character segmentation method
US20150324088A1 (en) 2014-05-09 2015-11-12 Lyve Minds, Inc. Thumbnail image creation
US9921721B2 (en) 2014-08-08 2018-03-20 Google Llc Navigation interfaces for ebooks
US9891875B2 (en) 2014-09-11 2018-02-13 S-Printing Solution Co., Ltd. Host device for transmitting print data to printer and method of rendering print data via host device
US20160092557A1 (en) 2014-09-26 2016-03-31 Oracle International Corporation Techniques for similarity analysis and data enrichment using knowledge sources
EP3201879A1 (en) 2014-09-30 2017-08-09 Microsoft Technology Licensing, LLC Optimizing the legibility of displayed text
US10001376B1 (en) 2015-02-19 2018-06-19 Rockwell Collins, Inc. Aircraft position monitoring system and method
US9443433B1 (en) 2015-04-23 2016-09-13 The Boeing Company Method and system to monitor for conformance to a traffic control instruction
US10061480B1 (en) 2015-07-28 2018-08-28 Rockwell Collins, Inc. Navigation chart information generating and presenting system, device, and method
US11106329B2 (en) 2015-09-18 2021-08-31 Honeywell International Inc. Flight deck display systems and methods for generating cockpit displays including dynamic taxi turnoff icons
US9639309B1 (en) 2015-10-14 2017-05-02 Kyocera Document Solutions Inc. Image conversion methods
CN107026958A (en) 2016-01-29 2017-08-08 株式会社东芝 Document processing method, document processing device and document processing system
US9818051B2 (en) 2016-01-29 2017-11-14 Ricoh Company, Ltd. Rotation and clipping mechanism
US10872274B2 (en) 2016-03-29 2020-12-22 Alibaba Group Holding Limited Character recognition method and device
US20190299701A1 (en) 2016-05-10 2019-10-03 Agfa Nv Manufacturing of a security document
US9781294B1 (en) 2016-08-09 2017-10-03 Xerox Corporation System and method for rendering micro gloss effect image patterns on a recording medium
US11030477B2 (en) 2016-10-28 2021-06-08 Intuit Inc. Image quality assessment and improvement for performing optical character recognition
US20180181646A1 (en) 2016-12-26 2018-06-28 Infosys Limited System and method for determining identity relationships among enterprise data entities
US20180253889A1 (en) 2017-03-06 2018-09-06 Canon Kabushiki Kaisha Information processing apparatus, storage medium, and information processing method for processing clipping rendering instruction
CA3095088C (en) 2017-03-31 2021-02-23 Area 2601, LLC Computer-based systems and methods for facilitating aircraft approach
CN107402734A (en) 2017-07-25 2017-11-28 浪潮金融信息技术有限公司 A kind of method that text definition is automatically adjusted with screen resolution
US20190057671A1 (en) 2017-08-18 2019-02-21 Microsoft Technology Licensing, Llc Multi-display device user interface modification
US20200195924A1 (en) 2017-09-08 2020-06-18 Mediatek Inc. Methods and Apparatuses of Processing Pictures in an Image or Video Coding System
US20210349615A1 (en) 2017-09-19 2021-11-11 Adobe Inc. Resizing graphical user interfaces
US20210192202A1 (en) 2017-12-18 2021-06-24 Capital One Services, Llc Recognizing text in image data
US20190220234A1 (en) 2018-01-15 2019-07-18 Lucid Dream Software, Inc. Methods, systems, apparatuses and devices for facilitating printing of a digital image based on image splitting
US10170010B1 (en) 2018-06-07 2019-01-01 Rockwell Collins, Inc. Display of traffic overlaid on aeronautical chart
US20200320142A1 (en) 2018-06-13 2020-10-08 Oracle International Corporation Regular expression generation using span highlighting alignment
CN109325083A (en) 2018-08-03 2019-02-12 江苏联旺信息科技有限公司 The loading method for flying striograph, the boat of navigating fly striograph load software and aerial photography device
US20200089694A1 (en) 2018-09-06 2020-03-19 Maritech Development Limited Tile server
US20200251029A1 (en) 2019-01-31 2020-08-06 Coretronic Corporation Display system, display method of display system and display device
US20200386567A1 (en) 2019-06-07 2020-12-10 Toyota Jidosha Kabushiki Kaisha Map generation device, map generation method, and map generation ocmputer program
US20210004930A1 (en) 2019-07-01 2021-01-07 Digimarc Corporation Watermarking arrangements permitting vector graphics editing
US20210035453A1 (en) 2019-08-01 2021-02-04 Honeywell International Inc. Systems and methods to utilize flight monitoring data
WO2021035223A1 (en) 2019-08-22 2021-02-25 Educational Vision Technologies, Inc. Automatic data extraction and conversion of video/images/sound information from a board-presented lecture into an editable notetaking resource
US20210056300A1 (en) 2019-08-24 2021-02-25 Kira Inc. Text extraction, in particular table extraction from electronic documents
CN110727747A (en) 2019-09-02 2020-01-24 湖北大学 Paper map rapid vectorization method and system based on longitude and latitude recognition
EP3845862A1 (en) 2020-01-06 2021-07-07 Rockwell Collins, Inc. Interactive charts system and method
US11061563B1 (en) 2020-01-06 2021-07-13 Rockwell Collins, Inc. Interactive charts system and method
US20210225181A1 (en) 2020-01-20 2021-07-22 Honeywell International Inc. Display systems and methods for providing ground traffic collison threat awareness

Non-Patent Citations (38)

* Cited by examiner, † Cited by third party
Title
Anonymous: "algorithm—Contour of a run-length-coded digital shape", Stack Overflow, Dec. 31, 2015, pp. 1-5, URL:https://stackoverflow.com/questions/32354807/contour-of-a-run-length-coded-digital-shape.
Anonymous: "Pilot's Guide to ForeFlight Mobile 82nd Edition Covers ForeFlight Mobile v12.7", Aug. 26, 2020, pp. 161-165.
Anonymous: "SkyDemon Mobile, GBS handheld navigation devices for aircrfaft", Dec. 4, 2021; Internet URL https://web.archive.org/web/20211204140934/https://www.skydemon.aero/inflight/.
Anonymous: Pilot's Guide to ForeFlight Mobile 82nd Edition Covers ForeFlight Mobile v12.7, Aug. 26, 2020, pp. 78-90.
ArcGIS, "Introduction to export a map or layout", retrieved from the Internet Nov. 11, 2021.
Bongwon Suh, Haibin Ling, Benjamin B. Bederson, and David W. Jacobs. 2003. Automatic thumbnail cropping and its effectiveness. In Proceedings of the 16th annual ACM symposium on User interface software and technology (UIST 03). Association for Computing Machinery, New York, NY, USA, 95-104.
C. Pschierer et al, "Human factors analysis for a 2D enroute moving map application", SPIE, PO Box 10, Bellingham, WA 98227-0010 USA, vol. 5802, May 25, 2005.
Extended European Search Report dated Apr. 11, 2023; European Application No. 22207049.2.
Extended European Search Report dated Apr. 11, 2023; European Application No. 22207123.5.
Extended European Search Report dated Apr. 12, 2023; European Application No. 22207050.0.
Extended European Search Report dated Apr. 12, 2023; European Application No. 22207124.3.
Extended European Search Report dated Apr. 18, 2023; European Application No. 22207164.9.
Extended European Search Report dated Apr. 21, 2023; European Application No. 22207060.9.
Extended European Search Report dated Apr. 4, 2023; European Application No. 22207012.0.
Extended European Search Report dated Apr. 5, 2023, European Application No. 22207025.2.
Extended European Search Report dated Apr. 5, 2023, European Application No. 22207047.6.
Extended European Search Report dated Apr. 5, 2023; European Application No. 22207019.5.
Extended European Search Report dated Apr. 5, 2023; European Application No. 22207057.5.
Extended European Search Report dated Jun. 13, 2023; European Application No. 22206954.4.
Extended European Search Report dated Mar. 24, 2023; European Application No. 22207029.4.
Hatlapatka Radim: "JBIG2 Supported by OCR", EUDML Jul. 9, 2012, pp. 1-9.
Houston, Ben & Nielsen, Michael & Batty, Christopher & Nilsson, Ola & Museth, Ken. (2006). Hierarchical RLE Level Set: A compact and versatile deformable surface representation. ACM Trans. Graph.. 25. 151-175.
Jeppesen, "JeppView for Windows, User Guide", (2016), 92 pages.
Lufthanasa Systems Blog, "Lido eRouteManual 4.3 Design Overview", (2016) Retrieved from the Internet.
Microsoft, "Generate a thumbnail sprite with Azure Media Services", (2021), Retrieved from Internet Nov. 11, 2021.
Narkive Mailinglist Archive, "Fastest Method of Drawing a TileMap", (2002), Retrieved from Internet Nov. 11, 2021.
Neupane Prasanga et al: "Extracting Unknown Repeated Pattern in Tiled Images: 19th International Conference on Hybrid Intelligent Systems (HIS 2019) held in Bhopal, India, Dec. 10-12, 2019" In: Intelligent Autonomous Systems 13, International Publishing, Cham, vol. 1179, pp. 92-102.
OUBET S.: "Aeronautical charts for electronic flight bags", 22ND. DASC. THE 22ND. DIGITAL AVIONICS SYSTEMS CONFERENCE PROCEEDINGS. INDIANAPOLIS, IN, OCT. 12 - 16, 2003., NEW YORK, NY : IEEE., US, vol. 2, 12 October 2003 (2003-10-12) - 16 October 2003 (2003-10-16), US , pages 13_D_1_1 - 13_D_1_9, XP010669024, ISBN: 978-0-7803-7844-5
Pamental, Jason, "Digging in to dynamic typography", Retrieved from Internet, Nov. 11, 2021, 11 pages.
Pamental, Jason, "The evolution of typography with variable fonts", Retrieved from the Internet, Nov. 11, 2021.
Penquerch, "[AD] RLE clipping speedup patch" (2002), Retrieved from Internet, Nov. 11, 2021.
QGIS: Open-source cross-platform GIS software, Retrieved from Internet, Nov. 11, 2021.
Rockwell Collins: "Flight Database Services for Pro Line Fusion", Jan. 12, 2021, XP093035870, Internet URL: https://www.rockwellcollins.com/-/media/files/unsecure/products/product-brochures/navigation-and-guidance/flight-management-systems/resources/fusion-data-base-services-01.pdf?la=en&lastupdate=20210125195039&csrt=15271691716207860418, p. 5.
Shang Junqing et al: "JBIG2 text image compression based on OCR", Proceedings of the SPIE, vol. 6067, Jan. 15, 2006, p. 6067D.
Skysectionals: "Tour Low-Altitude Enroute Charts", Sep. 22, 2021; XP093035866, Internet: URL:https://web.archive.org/web/20210922184910/https://skysectionals.com/tour-enroute/.
Somasundaram, K. "A Method for Filling Holes in Objects of Medical Images Using Region Labeling and Run Length Encoding Schemes." (2010).
Stephen Dubet; Institute of Electrical and Electronics Engineers: "Aeronautical charts for electronic flight bags", 22nd. DASC. The 22nd Digital Avionics Systems Conference Proceedings. Indianapolis, IN Oct. 12-16, 2003. vol. 2, pp. 13_D_1_1_13_D_1_9, XP010669024.
Yang Y. et al: "Vectorization of Linear Features in Scanned Topographic Maps Using Adaptive Image Segmentation and Sequential Line Tracking", The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIX-B4, Aug. 25, 2012, pp. 103-108.

Also Published As

Publication number Publication date
US20230154074A1 (en) 2023-05-18
EP4180769A1 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
EP4181400A1 (en) Tool to facilitate customer generated chart databases for use with a certified avionics system
US11423061B2 (en) Tile server
EP1121678B1 (en) Flight plan intent alert system and method
US6782312B2 (en) Situation dependent lateral terrain maps for avionics displays
US20030004619A1 (en) Assembly, computer program product and method for displaying navigation performance based flight path deviation information
EP1881296B1 (en) Selecting and identifying view overlay information for electronic display
US9340282B2 (en) System and method for displaying vertical reference on a rotorcraft system
CN111326024B (en) Associative display system with organized display for aircraft
US10606948B2 (en) Predictive user interface for vehicle control system
WO2009002603A1 (en) Systems and methods for generating, storing and using electronic navigation charts
EP4089645A1 (en) Aircraft classification from aerial imagery
US11748923B2 (en) System and method for providing more readable font characters in size adjusting avionics charts
US7908045B1 (en) System and method for presenting an image of terrain on an aircraft display unit
US20200339275A1 (en) Flight Interval Management Graphical Speed Performance Monitor
EP2913813B1 (en) System and method for runway selection through scoring
US20030169301A1 (en) Display selection identification enhancement by de-emphasizing non-essential information
US8260545B1 (en) Methods and apparatus for generating a navigation chart
EP4155772A1 (en) System and method to select and display prioritized azimuth slice vertical radar image
US20230150687A1 (en) Electronic chart application with enhanced element searching and highlighting using generic third-party data
US20220092991A1 (en) Aircraft system and method to display air traffic indicators
US11081011B1 (en) Aircraft system and method to provide graphical threshold range indicator
US11543520B2 (en) Aircraft system and method to display three-dimensional threat image
US11837101B2 (en) System and method to display aircraft relative storm top image
US20230237916A1 (en) Method and system for visualizing aircraft communications
Southwell et al. Correlation of Population Density to Designated Urban Areas

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROCKWELL COLLINS, INC., IOWA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HENRY, JEFF M.;REEL/FRAME:058103/0167

Effective date: 20211110

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE