US11590517B2 - Universal minimal waste dispensing tip - Google Patents
Universal minimal waste dispensing tip Download PDFInfo
- Publication number
- US11590517B2 US11590517B2 US17/929,187 US202217929187A US11590517B2 US 11590517 B2 US11590517 B2 US 11590517B2 US 202217929187 A US202217929187 A US 202217929187A US 11590517 B2 US11590517 B2 US 11590517B2
- Authority
- US
- United States
- Prior art keywords
- applicator
- hub
- syringe
- nozzle
- tip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002699 waste material Substances 0.000 title abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 90
- 239000012530 fluid Substances 0.000 claims abstract description 47
- -1 polyethylene Polymers 0.000 claims description 14
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 5
- 239000004677 Nylon Substances 0.000 claims description 4
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 229920001778 nylon Polymers 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims description 3
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 3
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 239000004626 polylactic acid Substances 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 229910052755 nonmetal Inorganic materials 0.000 claims 3
- 239000007769 metal material Substances 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 28
- 230000000717 retained effect Effects 0.000 abstract description 4
- 239000011800 void material Substances 0.000 abstract description 2
- 230000000670 limiting effect Effects 0.000 description 25
- 238000012360 testing method Methods 0.000 description 13
- 229920003023 plastic Polymers 0.000 description 8
- 239000004033 plastic Substances 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000008867 communication pathway Effects 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 5
- 230000013011 mating Effects 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000003955 fissure sealant Substances 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 239000003462 bioceramic Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000088 plastic resin Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000003479 dental cement Substances 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000011350 dental composite resin Substances 0.000 description 1
- 239000005548 dental material Substances 0.000 description 1
- 239000013070 direct material Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/02—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
- B05B1/10—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in the form of a fine jet, e.g. for use in wind-screen washers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B11/00—Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
- B05B11/0005—Components or details
- B05B11/0089—Dispensing tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C5/00—Filling or capping teeth
- A61C5/60—Devices specially adapted for pressing or mixing capping or filling materials, e.g. amalgam presses
- A61C5/62—Applicators, e.g. syringes or guns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B15/00—Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
- B05B15/60—Arrangements for mounting, supporting or holding spraying apparatus
- B05B15/65—Mounting arrangements for fluid connection of the spraying apparatus or its outlets to flow conduits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D83/00—Containers or packages with special means for dispensing contents
- B65D83/0005—Containers or packages provided with a piston or with a movable bottom or partition having approximately the same section as the container
- B65D83/0022—Containers or packages provided with a piston or with a movable bottom or partition having approximately the same section as the container moved by a reciprocable plunger
Definitions
- the presently disclosed embodiments relate generally to syringes and more specifically to a dispensing applicator or applicator tip that is attachable to the syringe in order to direct material dispensed from the syringe with decreased or minimized waste and/or material-retention.
- the fluids can have various purposes, such as to sterilize, anesthetize, clean or treat in some manner the surface being examined during the procedure.
- a number of different delivery systems have been developed.
- One such delivery system is a syringe.
- the syringe is formed with a barrel containing an amount of the fluid to be dispensed and a nozzle at one end of the barrel from which the fluid is expelled from the barrel.
- a plunger is slidably positioned within the barrel and includes a bung that contacts the fluid within the barrel. The plunger can be moved within the barrel in order to compress the fluid via the bung to urge or force the fluid from within the barrel out of the syringe through the nozzle.
- the amount of fluid dispensed from the nozzle is controlled by the force applied to the fluid via the plunger, and thus the individual can determine the amount of fluid to be dispensed.
- a suitable applicator such as a those including a needle extending outwardly from a plastic assemblage, among others, is secured to the nozzle opposite the barrel to direct the flow of fluid from the nozzle and inject or apply various medical materials and medicaments.
- a suitable engagement structure is formed on the nozzle that is engageable with a complementary structure disposed on the applicator.
- these “applicators” are called “applicator tips” (these words are used interchangeably throughout the document).
- the most common syringe and applicator connection is formed by the luer taper in which the syringe nozzle is formed with a 6% tapered surface on the exterior of the nozzle tip that allows for a fluid tight connection when mated with an applicator that has an assemblage with an interior surface having a complementary 6% taper.
- the assemblage also includes an engagement structure, to facilitate a lock or a slip connection with the nozzle.
- an exterior flange on the assemblage is engaged with threads located on the exterior of the nozzle or on the interior surface of a sheath spaced from and surrounding the nozzle.
- the friction between the interior 6% taper surface of the assemblage and the exterior 6% taper surface of the nozzle hold the applicator on the nozzle, optionally in conjunction with a locking member on the assemblage that engages the nozzle.
- the current construction of a currently-available tip/hub 17 forming the part of the applicator that is used to connect the applicator to a syringe 15 is configured to fit over and around the distal tip/nozzle 15 x of the syringe at its distal end and results in a significant amount of unintended waste of the material to be dispensed from the syringe.
- the entire syringe barrel is not expressly illustrated in this prior art drawing, those of skill in the art will readily appreciate how the hub 17 fits with the distal tip/nozzle 15 x of a standard syringe 15 that includes a distal-extending lip 15 y around that tip 15 x .
- the portion of the hub of the applicator that extends between the distal terminus of a syringe nozzle 17 a and a proximal end 17 c of a needle as indicated in FIG. 1 essentially functions as a reservoir 17 b for unused material within the applicator.
- a bioceramic such as BC sealer, available from Brasseler (Savannah, Ga.), to fill voids during an endodontic procedure and/or an apicoectomy surgical procedure.
- the barrel of the syringe of the BC sealer contains 2 g of bioceramic, which directly translates to 57 procedures that can theoretically be performed using the amount of bioceramic contained within the syringe.
- this analysis does not take into consideration the amount of material wasted within each applicator, which is replaced for each procedure for obvious hygienic and other purposes, although the syringe is able to be used across multiple procedures.
- the low waste needle syringe includes a syringe tip that is formed with an outward taper of its inner diameter in order to mate with a complementary frusto-conical member of a needle assembly.
- the smooth outer surface of the frusto-conical member contacts the smooth inner surface of the tip to align a needle base with the exterior of the tip.
- the base includes threads that engage a flange on the exterior of the tip in a manner to secure the base to the syringe tip.
- an applicator for attachment to common/commercially available syringes which applicator is configured for significantly reducing the amount of unused material retained within the applicator after use. It is also desirable that the applicator include a universal connector that can be utilized with syringes having different nozzle or syringe tip configurations.
- an applicator that reduces the amount of unused material retained within the applicator after a use that may be one of a plurality of use instances of a syringe with applicators being exchanged for each use, and that can be securely engaged with conventional syringes selected from multiple possible nozzle or syringe tip configurations, and/or with other material-delivery products (e.g., bottles, mixing applicator tips, plastic delivery/applicator tips, metal delivery/applicator tips, or others).
- material-delivery products e.g., bottles, mixing applicator tips, plastic delivery/applicator tips, metal delivery/applicator tips, or others.
- a universal applicator includes a hub that is engaged with the nozzle or tip of a syringe and an applicator tip that extends outwardly from the hub.
- the hub and applicator tip define a passage within the applicator through which material can flow to be dispensed from the applicator.
- the hub includes a main body from which the applicator tip extends.
- the main body has a diameter greater than the diameter of a corresponding nozzle or syringe tip, and includes a neck extending outwardly from the hub opposite the applicator tip.
- the neck has a first section disposed immediately adjacent the hub and having a diameter less than that of the main body.
- the neck also optionally includes a second section extending outwardly form the first section opposite the main body, the second section having a diameter less than that of the first section.
- Each of the first and second sections includes an engagement structure disposed on the exterior of the first and second section.
- the engagement structure can frictionally engage the interior surface of a nozzle or syringe tip in order to secure the applicator to the nozzle or syringe tip to enable fluids to be dispensed from the syringe and through the applicator.
- an applicator is configured to be secured to a syringe, where the applicator includes a hub defining a fluid passage therethrough and including at least one barb thereon, the barb configured to frictionally engage an interior of a syringe nozzle, and an applicator tip extending outwardly from the hub, where said barb will be understood to include one or more protrusions, including a frustoconical structure that protrudes around a proximal portion of the applicator.
- a syringe includes a barrel configured to hold an amount of material therein, the barrel defining an open end and a nozzle opposite the open end; a plunger disposed at least partially within the open end and including a bung sealingly engaged between the plunger and the barrel; and an applicator including a hub disposed at least partially within the nozzle and defining a fluid passage therethrough, the hub having at least one barb thereon, that frictionally and sealingly engages an interior of the nozzle, and an applicator tip extending outwardly from the hub.
- a method of dispensing a fluid from a syringe includes the steps of providing a syringe comprising a barrel including an amount of fluid therein, the barrel defining an open end and a nozzle opposite the open end, a plunger disposed at least partially within the open end and including a body and a push pin extending from one end of the body, a seal plate slidably mounted to the push pin and a bung disposed over the seal plate and the push pin, the bung contacting the fluid and sealingly engaged between the seal plate and the barrel, applying a force to the plunger to press the push pin through the seal plate and against the bung to dispense the fluid from the nozzle and removing the force on the plunger to cease dispensing the fluid from the nozzle.
- a method of dispensing a fluid from a syringe includes steps of applying a force to an applicator to insert a hub at least partially into an interior of a nozzle of a syringe to frictionally and sealingly engage at least one barb of the hub with the interior of the nozzle; and applying a force on a syringe plunger to urge the plunger into a syringe barrel and to dispense a material through the nozzle and through the applicator mounted to the nozzle.
- some embodiments accomplish the need or desire of providing for material waste reduction with a tip universally connectable to standardly-available (e.g., compliant with ISO 594-1 and/or 594-2 standards) syringes by describing an applicator tip that utilizes at least one frustoconical-shape within the applicator tip's hub to frictionally mate with the inner diameter of the nozzle of conventional syringes.
- standardly-available e.g., compliant with ISO 594-1 and/or 594-2 standards
- the term “universal” refers to the fact that the presently disclosed embodiments are constructed to connect with standard and readily-available syringes in a secure manner that will markedly reduce material-usage waste in comparison with other applicator tips that are presently known.
- At least one frustoconical-shape within the applicator tip's hub is disposed directly adjacent to a cylinder of reduced diameter to form at least one barb shape, where the cylinder and frustoconical or non-frustoconical protruding barb element together form a neck immediately adjacent to a larger diameter hub body.
- the applicator tip's hub contains wings or ridges to facilitate mating of the tip with the syringe by providing gripping surface(s) for a user.
- the applicator tip's hub may snap into the inside of a syringe nozzle and rely on a friction fit between at least one barb (frustoconical) shape of the applicator tip's hub and the inner diameter of the syringe nozzle. Additionally, the applicator tip's hub may also include a luer lock connection as described in greater detail below to offer an even more secure fitment between the applicator tip and syringe.
- the applicator tip also includes an applicator end that can be of various materials and sizes for various clinical uses and applications, although sizes of the applicator end may often be between 16 ga and 33 ga.
- the applicator tip is constructed to include a fluid communication pathway throughout its length such that material is expelled from the syringe through the at least one barb/frustoconical shapes, through the applicator end, and then out of the distal-most terminal tip of the applicator.
- FIG. 1 is a perspective view of a prior art luer taper applicator.
- FIG. 2 is a perspective view of an applicator according one exemplary and non-limiting embodiment.
- FIG. 3 is side elevation view of a hub of an applicator hub element according to one exemplary and non-limiting embodiment.
- FIG. 4 is top plan view of the hub of FIG. 3 .
- FIG. 5 is cross-sectional view along line 5 - 5 of FIG. 3 .
- FIG. 6 is a bottom plan view of the hub of FIG. 3 .
- FIG. 7 is a side elevation view of an applicator secured to a syringe according to one exemplary and non-limiting embodiment.
- FIG. 8 is a cross-sectional view of the syringe and applicator of FIG. 7 .
- FIG. 9 is a detail view within arced line 9 - 9 of FIG. 8 .
- FIG. 10 shows an illustrative example of a non-limiting embodiment where the entire applicator (i.e. hub and applicator tip) is molded as one part.
- FIGS. 11 A- 11 B show, respectively, illustrative examples of various conventional applicators and various non-limiting embodiments.
- the applicator tip portions of the devices are identical and the hub portion is either conventional ( FIG. 11 A ) or a non-limiting illustrative embodiment of the inventive hub ( FIG. 11 B ).
- the applicator tip is bonded to the hub via adhesive or other bonding means in either case, or in some embodiments the applicator tip and hub can be injection molded as one piece.
- FIG. 12 shows a diagrammatic barb as a frustoconical element.
- FIG. 13 shows a lengthwise cross-section of another embodiment of an applicator tip.
- FIG. 14 visually contrasts two different prior art tips versus the tip of FIG. 13 with views showing before and after extrusion of material through each, diagrammatically portraying actual samples.
- FIG. 15 shows a lengthwise cross-section of another embodiment of an applicator tip, similar to the embodiment of FIGS. 2 - 9 .
- FIG. 16 shows a lengthwise cross-section of still another embodiment of an applicator tip, similar in many respects to the embodiment of FIGS. 2 - 9 .
- FIG. 17 illustrates the set-up of a pull force test with the embodiment of FIG. 16 and a syringe.
- proximal and distal are used herein in the common usage sense where they refer respectively to a handle/doctor-end of a device or related object and a tool/patient-end of a device or related object.
- the terms “about,” “substantially,” “generally,” and other terms of degree, when used with reference to any volume, dimension, proportion, or other quantitative or qualitative value, are intended to communicate a definite and identifiable value within the standard parameters that would be understood by one of skill in the art (equivalent to a medical device engineer with experience in this field), and should be interpreted to include at least any legal equivalents, minor but functionally-insignificant variants, standard manufacturing tolerances, and including at least mathematically significant figures (although not required to be as broad as the largest range thereof).
- an applicator 120 includes hub 122 configured for connection to a syringe 20 (see, e.g., FIG. 7 ) and an applicator tip 126 that extends outwardly from the hub 122 .
- the applicator tip 126 is formed to be hollow or tubular in shape and provides the directional outlet for a fluid or material to be dispensed from the syringe 20 through the applicator 120 .
- the tip 126 defines a material passage 128 that extends the length of the tip 126 and hub 122 through which the material dispensed from the syringe 20 can flow.
- the tip 126 may be constructed in a variety of styles, configurations, or designs that vary depending upon the desired use for the applicator tip 126 and/or the type of material to be dispensed form the tip 126 , non-limiting examples of which are shown in FIGS. 11 A- 11 B . In certain exemplary and non-limiting embodiments (see, e.g., FIG.
- the tip 126 can be formed as a unitary molded piece that is integrally formed with the hub 122 , or a separate type of tubing formed from a suitable plastic or metal, optionally in conjunction with synthetic or naturally occurring fibers, e.g. a flocked fiber or brush component 199 (not shown here, but see the center embodiment of FIGS. 11 A- 11 B ), which is secured in a suitable manner as a terminal member to the end of the tip 126 opposite the hub 122 .
- Tip 126 can also include other terminal members or structures, such as a pad (not shown) formed of a suitable material and affixed to the tip 126 via established means or methods such as adhesives, epoxies, ultrasonic bonding, or others.
- the tip 126 is formed as a tube 129 defining the passage 128 therethrough and having a lower portion 130 connected in axial alignment with the hub 122 and an upper portion 132 connected to and extending outwardly from the lower portion 130 opposite the hub 122 by a bend 134 .
- the lower portion 130 has a consistent diameter along its entire length while the upper section 132 narrows in diameter from the bend to the outlet 136 via a taper or step.
- the upper section 132 can maintain its diameter from the bend 134 to the passage 128 .
- the tip 120 is molded as a single piece and bent via a post-processing step to a desired arc or bend 134 .
- the hub 122 of the applicator 120 is illustrated as being formed of a material similar to that used to form the tip 126 , such as a suitable plastic material.
- the material used to form the hub 122 includes an inherent resiliency to the material, such that the material can be flexed when compressed without breaking and then can partially or fully return to its original shape when the compression is removed.
- Certain suitable materials for the hub 122 that include this property include, but are not limited to, polyethylene, polypropylene, or nylon, and other compressible materials of such durometer and resilience that those of skill in the art will appreciate the structural and functional appropriateness for the presently disclosed embodiments.
- the properties of these materials also enable the hub 122 to be formed from the material in a variety of suitable molding processes, such as injection molding processes, among others.
- suitable molding processes such as injection molding processes, among others.
- the particular molding process for forming the hub 122 can additionally be utilized to form an applicator tip 126 integrally with a hub 122 , when desired.
- the hub 122 is formed with a main body 138 and a neck 140 extending in axial alignment outwardly from the main body 138 opposite the tip 126 .
- the main body 138 is generally cylindrical in shape, though other cross-sectional shapes can also be employed, and includes an upper surface 144 , a lower surface 146 and a side wall 148 extending between the upper surface 144 and lower surface 146 .
- the side wall 148 is joined to the upper surface 144 by a first beveled surface 150 and to the lower surface 146 by a second beveled surface 152 .
- the first beveled surface 150 and second beveled surface 152 may optionally be removed.
- the upper surface 144 includes an aperture 154 that communicates with a passage 156 extending through the main body 138 . Opposite the aperture 154 , the passage 156 terminates in an opening 158 formed in the lower surface 146 .
- the passage 156 tapers as it extends through the main body 138 from the opening 158 to the aperture 154 , which can be formed as desired, such as with a smoothly tapering inner surface or, as in the exemplary and non-limiting illustrated embodiment with a number of successively narrowing concentric passage sections 160 , 162 , 164 .
- the passage 156 can be a cylinder of constant diameter from the aperture 154 through the main body 138 and neck 140 .
- the hub 122 also includes the neck 140 , which is disposed on the lower surface around the opening 158 .
- the neck 140 includes a first section 166 disposed on the lower surface 146 around the opening 158 and a second section 168 located on the first section 166 opposite the lower surface 146 .
- the first section 166 includes a cylindrical portion 170 extending outwardly from the lower surface 146 and a sloped portion 172 disposed on the cylindrical portion 170 opposite the lower surface 146 .
- the cylindrical portion 170 has a constant diameter along its length, which can be between 1.5 mm and 3.5 mm, yet may be between 2.2 mm and 2.7 mm, and in one exemplary embodiment is 2.45 mm, while the sloped portion 172 has diameter larger than the cylindrical portion 170 at one end 174 immediately adjacent the cylindrical portion 170 , which can be between 4.0 mm and 3.6 mm, may be between 3.1 mm and 2.4 mm, and in one exemplary embodiment is 2.6 mm, and a diameter smaller than the cylindrical portion 170 at its opposite end 176 , which can be between 1.0 mm and 1.6 mm, may be between 1.8 and 2.3 mm, and in one exemplary embodiment is 2.1 mm.
- the end 174 having the larger diameter has a surface that is sloped out and forms a barb 178 that can be compressed to frictionally engage a surface against which the barb 178 is pressed.
- the barbs 178 , 188 are illustrated as being formed by frustoconical structures that encircle and may be coaxial with the central passage 156 , but it should be appreciated that other frustoconical engagement structures as well as non-frustoconical barbed structures may be used for the engagement and securement described with reference to those barbs 178 , 188 , including constructed for force-fit engagement and/or for edge-grip engagement.
- a frustoconical engagement element can function to engage an opposed surface with edges and/or surfaces—along different elements of that element, including with sharp projections/edges/points as well as (or in the alternative) by other surfaces.
- the second section 168 which may optionally be omitted in some embodiments, is formed similarly to the first section 166 with a cylindrical portion 180 disposed against the first section 166 and a sloped portion 182 extending outwardly from the cylindrical portion 180 .
- the diameter of the cylindrical portion 180 corresponds to the diameter of the end 176 of the sloped portion 172
- the diameter of sloped portion 182 has a diameter larger than the cylindrical portion 180 at one end 184 immediately adjacent the cylindrical portion 180 , which can be between 1.8 mm and 2.5 mm, and in one exemplary embodiment is 2.25 mm
- a diameter smaller than the cylindrical portion 180 at its opposite end 186 which can be between 1.6 mm to 2.0 mm, and in one exemplary embodiment is 1.8 mm.
- the end 184 having the larger diameter forms a barb 188 that can be compressed to frictionally and sealingly engage a surface against which the barb 188 is pressed to form a fluid-tight seal.
- the cylindrical portion 180 may vary in length depending on the surface against which the barb 188 is pressed, however, the length of the cylindrical portion 180 should be sufficient enough to allow proper mating of the tip 120 to a syringe 20 ( FIG. 7 ).
- the cylindrical portion 180 is between 0.1 mm and 10 mm; in other embodiments the cylindrical portion 180 is between 0.25 mm and 5 mm, while in yet other embodiments the cylindrical portion 180 is between 0.4 mm and 1 mm, and in one exemplary embodiment the cylindrical portion 180 is 0.4 mm.
- the first section 166 and second section 168 combine to form a passage 190 extending through the neck 140 that is in axial alignment and communicates with the passage 156 in the main body 138 to allow fluid or other materials to pass through the hub 122 formed by the main body 138 and the neck 140 .
- the passage 190 can be can be formed as desired, such as with a smoothly tapering inner surface or, as in the exemplary illustrated embodiment with a number of successively narrowing concentric passage sections 192 , 194 , or as a cylindrical passage with generally constant diameter.
- the applicator 120 is shown attached to a syringe 20 .
- the syringe 20 has a barrel 22 that defines an interior volume for containing a fluid (not shown) that includes an open proximal end 25 and a distal nozzle 26 disposed at the opposite end of the barrel 22 .
- the barrel 22 is formed of a suitable material, such as a plastic.
- the proximal end 25 includes an annular flange 31 used to grasp the barrel 22 in order to dispense the fluid contained within the barrel 22 .
- the nozzle 26 opposite the proximal end 25 includes a tapered portion 27 that extends into a passage 28 extending there through that terminates at a dispensing end 29 out of which the fluid flows.
- the portion 27 can be straight and not tapered.
- syringe embodiments such as the syringe 520 shown in FIG. 17 , may include a distal luer structure well known in the art and illustrated here as a luer-equipped apron 523 that has an inward-facing luer structure, where a complementary outward facing structure may be (and indeed is) provided on certain applicator embodiments as described herein.
- the syringe 20 also includes a plunger 30 that is inserted in the open end 25 of the barrel 22 within the annular flange 31 .
- the plunger 30 includes a body 32 having a rigid structure formed of a suitable material, such as a plastic, with an outer diameter slightly less than that that of the interior 21 of the barrel 22 .
- the body 32 is formed with mutually orthogonal ribs or splines 34 extending the length of the body 32 .
- the body 32 supports a cap or bung 36 disposed within the barrel 22 that contacts and presses against the fluid within the barrel 22 to force the fluid or material through the nozzle 26 when the plunger 30 is pressed into the barrel 22 .
- the neck 140 of the applicator 120 can be inserted or force fit directly into the passage 28 of the nozzle 26 to secure the applicator 120 to the syringe 20 , with the main body 138 functioning as a stop against the dispensing end 29 to limit the distance the neck 140 can be inserted into the nozzle 26 , as the main body 138 is formed with a diameter greater than the inner diameter of the nozzle 26 .
- At least one of the barbs 178 , 188 on the neck 140 engages and is compressed by and against the interior of the nozzle 26 to frictionally and sealingly engage the barbs 178 , 188 and the neck 140 within the nozzle 26 , thereby preventing the discharge of any fluid from the syringe 20 other than through the applicator 120 .
- the engagement of the barbs 178 , 188 with the nozzle 26 is sufficient to withstand the pressures exerted on the applicator 120 when the plunger 30 is used to dispense the fluid form the syringe 20 .
- the neck 140 can be engaged with nozzles 26 of various diameters, enabling the universal applicator 120 to be utilized with various types of syringes 20 without the need for specialized attachment caps or other unique structures. Therefore, in some embodiments, one barb or two barbs 178 , 188 , or more barbs, may be incorporated to be used with various types of syringes 20 .
- the total volume of the space 196 defined by the passages 128 , 156 , 190 within the applicator 120 is minimized with this construction of the applicator 120 , consequently minimizing the amount of fluid or material that will be retained within the applicator 120 after use.
- the applicator 120 results in only 38 mg of material loss when dispensing the content of the syringe 20 in performing procedures using 35 mg of the BC sealer per procedure. Therefore, the presently-disclosed applicator 120 will yield approximately 27 procedures per syringe, even accounting for loss within applicators 120 for each procedure.
- the structure of the applicator 120 results in a 54% reduction in the waste material generated from the syringe 20 , and a 59% increase in the procedures that can be performed using the same amount of starting material over prior art applicator assemblages or hubs.
- inventions of the applicator 120 can include versions where the main body 138 can be reduced in size, with the tip 126 being directly secured to or formed on the lower surface 146 that extends across the neck 140 , or where the main body 138 is omitted entirely and the tip 126 is secured or formed directly as part of the neck 140 .
- another embodiment of the applicator 120 can include versions where the main body 138 is increased in size to facilitate easier handling and manipulation, but the passages 128 , 156 , 190 maintain their volume.
- the barbs 178 , 188 can be formed with other configurations, such as circumferential ribs, ridges or protrusions (not shown) having the selected diameters, or other similar and suitable structures.
- the taper percent (defined as the difference in diameter of the circles that define ends of a frustoconical element, divided by the length between the circles that comprise the frustoconical element) of the at least one frustoconical-shaped portion may be 20% to 180% in some embodiments, 25% to 120% in other embodiments, 30% to 80% in still other embodiment, and 40%-60% in certain embodiments.
- FIG. 12 which diagrammatically depicts a frustoconical shape containing a circle of smaller diameter D1, a circle of larger diameter D2, and an axially longitudinal length, L1, between the circles that define end boundaries of the frustoconical shape.
- the angle of the frustoconical shape's taper (a) may be embodied as 30° to 85°, 40° to 80°, 60° and 80°, and in certain embodiments, 65° to 75°.
- the max diameter of the larger circle, D2 comprising one end of a frustoconical shape (on its own as one of a plurality) may be 2.0 mm to 4.2 mm, 2.8 mm to 4.0 mm, or in some embodiments, 3.0 mm to 3.2 mm.
- an engagement length between the at least one frustoconical element 278 of the applicator tip and the syringe nozzle's inner diameter of 0.5 mm to 15.0 mm, 1.0 mm to 7.0 mm, and in some embodiments, 1.5 mm to 6.0 mm.
- an engagement length between and along the applicator's luer lock threads and the syringe's luer lock threads may be 1.0 mm to 15.0 mm, or in the range of 2.5 mm-9.0 mm.
- the length, L1 of the at least one frustoconical shaped portion of certain embodiments will be in the range of 0.5 mm to 15.0 mm, in other embodiment in the range of 1.0 mm-7.0 mm, and in the range of 1.5 mm to 6.0 mm in other embodiments. Additionally, the length of the hub portion of the applicator tip is may be in the range of 2.5 mm to 12.0 mm in some embodiments, 4.5 mm to 7.0 mm in some embodiments, and 1.5 mm 6.0 mm in some embodiments.
- the applicator tip's hub portion including the at least one frustoconical shape, may be constructed of an injection moldable plastic resin that exhibits flexing characteristics to facilitate a better friction fit between the at least one frustoconical shape 278 and the syringe's nozzle.
- suitable plastic resins include polyethylene, polypropylene, nylon, polyamides, acrylonitrile butadiene styrene, polylactic acid, polystyrene, and/or polytetrafluoroethylene, amongst others.
- the plastic resin may optionally include pigments, dyes, or other light attenuating compounds which may be useful if the applicator tip is used for dispensing light sensitive materials, such as dental composites, adhesives, cements, and/or epoxies, amongst others.
- FIG. 13 shows a longitudinal cross-section view of an applicator tip 220 .
- the applicator tip 220 includes a hub 222 and applicator end 226 .
- the hub 222 includes a body 238 with luer lock threads 239 configured to engage in a syringe's luer-equipped apron, wings to facilitate user grip for mating of the tip to a syringe (wings not shown in FIG. 13 , because they are perpendicular to the illustrated cross-sectional plane, but may be understood with reference to commonly-known structures including in sample # 1 of FIG. 14 ), and a frustoconical engagement structure 278 .
- the luer threads 239 of the hub 222 are configured to engage with the inward-facing luer structure of a luer-equipped apron 523 around the nozzle 526 of a syringe.
- the frustoconical engagement structure 278 is in a non-limiting, but illustrative manner, depicted as including two circles of 1.1 mm and 3.2 mm diameters, which circles are separated by a distance of 3.7 mm, so as to yield a taper angle ( ⁇ ) of 74°.
- the applicator end includes stainless steel tubing 257 and polyimide tubing 259 (joined to each other via an adhesive).
- the applicator end 220 may be joined with the hub using an adhesive, epoxy, weld, or other commonly used joining material/technique.
- a fluid communication pathway 256 is configured through the length of the applicator tip 220 so that that material from a connected syringe can be expelled through the hub 222 to the distal terminal end of the applicator end 226 .
- the frustoconical shape is includes end circles of 1.1 mm and 3.2 mm diameter, which are separated by a distance of 3.7 mm, thereby yielding a taper angle, ⁇ , of 74°.
- the applicator end includes stainless steel tubing 257 and polyimide tubing 259 .
- a fluid communication pathway exists such that material from a connected syringe can be expelled through hub to the end of the applicator tip.
- This configuration will particularly be appreciated to minimize void space that is going to hold material in a non-deliverable position and thereby lessen or minimize waste of that material by the combination of its frustoconical barb interface with a syringe nozzle and very-small diameter applicator end.
- Potential embodiments including inward-facing and outward structural features may further be appreciated with reference to U.S. application Ser. No.
- barb used herein to describe engagement structure of the hub of various embodiments is not limited to a frustoconical shape. Additional designs within the scope of the present disclosure include the use of frustopyramidal shapes can be used instead of frustoconical shapes. To illustrate this in further detail, it is known that a horizontal cross section of the frustoconical shape yields a circle, whereas a horizontal cross section of the frustopyramidal shape yields a square or other rectilinear shape.
- frusto-polygonal shape may include a different frusto-polygonal shape, where a horizontal cross section of the frusto-polygon shape is defined to yields a polygon having the number of sides and angles of the three-dimensional frusto-polygonal structure.
- the internal wall or bore (e.g., 156 , 256 , etc.) of the applicator tip's hub can be straight-cylindrical or tapered.
- an external 6% taper may be advantageous to facilitate a tighter friction fit with standard 6% luer taper syringes.
- the disclosed fluid path can be straight, tapered, stepped, or various other geometries commonly utilized in injection molding.
- the applicator tip can all be comprised of one material or the applicator tip can be composed of at least two different materials.
- the hub including the at least one frustoconical shapes, can be injection molded from a suitable resin, while the applicator end might comprise a stainless steel cannula and may further comprise another material such as a polymer tube.
- the hub can be injection molded from a suitable resin, while the applicator end might comprise a stainless steel cannula mated with a polyimide tube.
- other metal and polymeric/plastic materials can be used (e.g.
- luer lock threads aluminum, steel, brass, titanium, polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), amongst others).
- PE polyethylene
- PP polypropylene
- ABS acrylonitrile butadiene styrene
- PVC polyvinyl chloride
- PTFE polytetrafluoroethylene
- FIG. 14 an experimental contrast is illustrated between current/prior art tips as compared to the tip 220 of FIG. 13 (which is informative also with reference to other embodiments of the present disclosure).
- the left-hand column of FIG. 4 shows “SAMPLE 1” (a BC tip from Brasseler of Worcester, Ga.), “SAMPLE 2” (ViscoTip from Vista Dental Products of Racine, Wis.), and “SAMPLE 3,” which is constructed in keeping with the FIG. 13 embodiment of a universal minimal waste tip disclosed herein.
- Sample 3 (presently-disclosed universal minimal-waste tip) yields a material savings of 86.8%, and 64.2%, respectively.
- the present inventive tip resulted in significantly less material wasted compared to existing tips on the market.
- the Universal Minimal Waste Tip will yield a material savings of at least 20% compared to a standard applicator tip.
- the Universal Minimal Waste Tip will yield a material savings of at least 40% compared to a standard applicator tip.
- the Universal Minimal Waste Tip will yield a material savings of at least 75% compared to a standard applicator tip, where standard applicator tip refers to the known/commercially-available products as of the time of this disclosure.
- FIG. 15 shows a cross-section example of an applicator tip 320 , which is similar to that of FIGS. 2 - 9 , except that the cannula end portion 326 has a different shape.
- the applicator tip 320 is comprised of a hub 322 and applicator end 326 .
- the hub 322 includes a body 338 and two barbs 366 , 368 each of which is constructed as a frustoconical shape directly adjacent to a cylinder of reduced diameter (as compared to the largest circle comprising the frustoconical shape) projecting from the body 338 .
- barb 368 includes a frustoconical shape, with two circles of 1.8 mm and 2.25 mm diameters separated by a longitudinal distance of 0.6 mm, which yields a taper angle of 69°.
- a cylinder of diameter 2.1 mm and length 0.4 mm Directly adjacent to the frustoconical portion of barb 368 and separating it from barb 366 is a cylinder of diameter 2.1 mm and length 0.4 mm. Together, the frustoconical element and adjacent cylinder comprise barb 368 .
- Barb 366 includes a frustoconical shape, with two circles of 2.1 mm and 2.6 mm diameters, separated by a longitudinal distance of 0.6 mm, which yields a taper angle of 67°.
- a cylinder of diameter 2.45 mm and length 0.4 mm Directly adjacent to the frustoconical portion of barb 368 and separating it from hub body 338 is a cylinder of diameter 2.45 mm and length 0.4 mm. Together, the frustoconical element and adjacent cylinder comprise barb 366 .
- the applicator end 326 includes a stainless steel tube.
- a fluid communication pathway 356 extends through the tip 320 such that material from a connected syringe can be expelled through the hub to the end of the applicator tip.
- the barbs 366 , 368 are configured to be received securely into the lumen/passage through the distal nozzle of a syringe, with said secure attachment being sufficiently strong to reliably resist displacement during delivery of material through the tip 320 , while still providing an ability to be removed while leaving the syringe in condition to have another tip attached thereto.
- FIG. 16 shows a longitudinal cross-section view of an applicator tip 420 .
- the applicator tip 420 includes a hub 422 and applicator end 426 that is injection molded as a single piece from a plastic resin, similar to the embodiment of FIG. 10 .
- the applicator tip 420 is injection-molded straight, and then bent via post-process heat bending to a desired angle or curve.
- the hub 422 includes a body 438 and one barb 466 which includes a frustoconical shape separated from the body 438 by a cylinder of reduced diameter compared to the largest circle comprising the frustoconical shape.
- the barb is comprised of a frustoconical shape which is made from two circles of 2.06 mm and 2.54 mm diameters separated by a distance of 1.4 mm, which yields a taper angle of 80°.
- a fluid communication pathway 456 is configured such that material from a connected syringe can be expelled through the length of the applicator tip.
- the applicator tip 420 shown in FIG. 16 was mated to multiple conventional syringes of varying internal nozzle diameters. This assembly was then subjected to a pull test to determine the amount of force required to separate the applicator tip from the mated syringe (this is defined as the fitment force), where the testing set-up is shown and described with reference to FIG. 17 . Because this applicator tip design does not incorporate luer lock threads, the only mechanism mating the applicator tip to the syringe is the friction force between the applicator tip's frustoconical shape and the inner diameter of the syringe nozzle.
- each syringe was tested in at least triplicate with new applicator tips used for each trial, using the testing set-up shown in FIG. 17 , which includes a syringe 520 with a plunger 532 , proximal flange 531 , barrel 522 , and apron 523 with inward facing luer disposed around the syringe nozzle (not shown, but readily understandable from FIGS. 7 - 9 ).
- a syringe 520 was provided, each tested applicator tip 420 had its hub 422 inserted into the syringe nozzle until the nozzle's distal terminus contacted or nearly contacted the hub body 438 .
- a force gauge 579 was attached to the applicator tip 420 and used to test the removal force for each applicator 420 by a “pull” separating the tip from the syringe.
- results of the tests are summarized below in TABLE 2 and illustrate a direct relationship between the barb overlap metric (defined as subtracting the syringe nozzle inner diameter from D2 of the device and as illustrated in FIG. 12 ) and the average pull force required to separate the syringe and applicator tip.
- the fitment force between the disclosed applicator tip and syringe is preferably equal to or greater than 5N, more preferably equal to or greater than 10N, even more preferably equal to or greater than 15N, and most equal to or preferably greater than 20N.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
Description
TABLE 1 |
Material savings of various dental materials |
utilizing various embodiments of the |
disclosed universal minimal waste tip (UMWT) |
Material | |||
Mass | Savings | ||
Wasted | Using | ||
Application Tip | Material | (mg) | UMWT |
BC Tip | BC Sealer | 143.9 | 86.8% |
ViscoTip | BC Sealer | 53.0 | 64.2% |
ViscoTip UMWT | BC Sealer | 19.0 | — |
22ga Pre-Bent | Embrace Pit & | 57.4 | 74.6% |
Tip | Fissure Sealant | ||
22ga UMWT | Embrace Pit & | 14.6 | — |
Fissure Sealant | |||
22ga Pre-Bent | TheraCal | 93.4 | 81.4% |
Tip | |||
22ga UMWT | TheraCal | 17.4 | — |
TABLE 2 |
The applicator tip disclosed in FIG. 16 was mated |
with multiple syringes of varying internal nozzle |
diameters. A pull test was performed to determine the |
amount of force required to separate the applicator |
tip from the syringe. ID = inner diameter. |
Force Needed to Separate | ||||
Syringe | Barb | No. | Tip and Syringe/ | |
Nozzle ID | Overlap | of | Fitment Force (N) |
(mm) | (mm)* | Trials | AVE | SD | ||
2.12 | 0.42 | 3 | 17.6 | 0.8 | ||
2.18 | 0.36 | 5 | 15.7 | 0.5 | ||
2.24 | 0.30 | 5 | 12.1 | 1.1 | ||
2.50 | 0.04 | 5 | 5.8 | 0.0 | ||
*In this particular embodiment, the max diameter of the frustoconical shape, D2, is 2.54 mm. Therefore, the “barb overlap” was calculated by subtracting the syringe nozzle ID from the 2.54 mm value. |
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/929,187 US11590517B2 (en) | 2018-11-21 | 2022-09-01 | Universal minimal waste dispensing tip |
US18/174,475 US20230211360A1 (en) | 2018-11-21 | 2023-02-24 | Universal minimal waste dispensing tip |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862770464P | 2018-11-21 | 2018-11-21 | |
US29/692,825 USD958929S1 (en) | 2018-11-21 | 2019-05-29 | Minimal waste dispensing tip |
US16/689,837 US11602759B2 (en) | 2018-11-21 | 2019-11-20 | Universal minimal waste dispensing tip |
US17/929,187 US11590517B2 (en) | 2018-11-21 | 2022-09-01 | Universal minimal waste dispensing tip |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/689,837 Continuation US11602759B2 (en) | 2018-11-21 | 2019-11-20 | Universal minimal waste dispensing tip |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/174,475 Continuation US20230211360A1 (en) | 2018-11-21 | 2023-02-24 | Universal minimal waste dispensing tip |
Publications (2)
Publication Number | Publication Date |
---|---|
US20220410184A1 US20220410184A1 (en) | 2022-12-29 |
US11590517B2 true US11590517B2 (en) | 2023-02-28 |
Family
ID=70727156
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US29/692,825 Active USD958929S1 (en) | 2018-11-21 | 2019-05-29 | Minimal waste dispensing tip |
US16/689,837 Active 2039-11-30 US11602759B2 (en) | 2018-11-21 | 2019-11-20 | Universal minimal waste dispensing tip |
US29/792,885 Active USD961044S1 (en) | 2018-11-21 | 2022-04-28 | Minimal waste dispensing tip |
US29/865,070 Active USD987778S1 (en) | 2018-11-21 | 2022-07-06 | Minimal waste dispensing tip |
US17/929,187 Active US11590517B2 (en) | 2018-11-21 | 2022-09-01 | Universal minimal waste dispensing tip |
US18/174,475 Pending US20230211360A1 (en) | 2018-11-21 | 2023-02-24 | Universal minimal waste dispensing tip |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US29/692,825 Active USD958929S1 (en) | 2018-11-21 | 2019-05-29 | Minimal waste dispensing tip |
US16/689,837 Active 2039-11-30 US11602759B2 (en) | 2018-11-21 | 2019-11-20 | Universal minimal waste dispensing tip |
US29/792,885 Active USD961044S1 (en) | 2018-11-21 | 2022-04-28 | Minimal waste dispensing tip |
US29/865,070 Active USD987778S1 (en) | 2018-11-21 | 2022-07-06 | Minimal waste dispensing tip |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/174,475 Pending US20230211360A1 (en) | 2018-11-21 | 2023-02-24 | Universal minimal waste dispensing tip |
Country Status (1)
Country | Link |
---|---|
US (6) | USD958929S1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230211360A1 (en) * | 2018-11-21 | 2023-07-06 | Inter-Med, Inc. | Universal minimal waste dispensing tip |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3966427A1 (en) | 2019-04-01 | 2022-03-16 | DynaEnergetics Europe GmbH | Retrievable perforating gun assembly and components |
USD975543S1 (en) * | 2022-01-28 | 2023-01-17 | Qingzhi Li | Bottle adapter |
Citations (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US600803A (en) * | 1898-03-15 | Hypodermic syringe | ||
US2029483A (en) | 1934-08-15 | 1936-02-04 | James J Holland | Water syringe |
US2664893A (en) * | 1951-10-20 | 1954-01-05 | George P Kempel | Disposable douche |
US3294089A (en) | 1960-12-14 | 1966-12-27 | Richard A Brookfield | Hypodermic needle |
US3754553A (en) * | 1972-01-07 | 1973-08-28 | Arsald Inc | Disposable douching apparatus |
US3773047A (en) | 1972-11-06 | 1973-11-20 | V Sneider | Disposable syringe |
US4274555A (en) * | 1978-12-07 | 1981-06-23 | Sneider Vincent R | Flexible syringe with nozzle closure |
US4392617A (en) | 1981-06-29 | 1983-07-12 | International Business Machines Corporation | Spray head apparatus |
USD326273S (en) | 1988-07-25 | 1992-05-19 | Tel Sagami Limited | Heat insulating cylinder for thermal treatment of semiconductor wafers |
USD366051S (en) | 1994-10-31 | 1996-01-09 | Nordson Corporation | Nozzle insert for dispensing viscous materials |
US5820606A (en) | 1996-06-11 | 1998-10-13 | Origin Medsystems, Inc. | Reusable cannula with disposable seal |
US5853373A (en) | 1996-08-05 | 1998-12-29 | Becton, Dickinson And Company | Bi-level charge pulse apparatus to facilitate nerve location during peripheral nerve block procedures |
US6095813A (en) * | 1999-06-14 | 2000-08-01 | 3M Innovative Properties Company | Method for applying a dental composition to tooth structure |
US6113572A (en) | 1995-05-24 | 2000-09-05 | C. R. Bard, Inc. | Multiple-type catheter connection systems |
USD433692S (en) | 1999-11-02 | 2000-11-14 | Nordson Corporation | Swivable nozzle for dispensing adhesives and sealants |
USD434053S (en) | 1999-08-02 | 2000-11-21 | Nordson Corporation | Nozzle for dispensing adhesives and sealants |
US6537239B2 (en) | 2001-05-14 | 2003-03-25 | Phillip Mark | Insert for a nozzle of a flow through liquid applicator and combination thereof |
US20040051303A1 (en) | 2002-06-14 | 2004-03-18 | Alexander Lorenz | Multi-length flex connector |
US20040055254A1 (en) | 2002-09-20 | 2004-03-25 | David Setton | Pre-filled personal hydration reservoir |
US20040102738A1 (en) * | 2002-11-26 | 2004-05-27 | Medical Ventures, L.L.C. | Pressure actuated flow control valve |
US20040138642A1 (en) | 2003-01-10 | 2004-07-15 | Fischer Dan E. | Fiber-coated dental infusor systems and methods of use |
US7128283B1 (en) | 2004-02-02 | 2006-10-31 | Shahin Yousef A | Paint spraying nozzle assembly |
US20100240004A1 (en) * | 2009-03-23 | 2010-09-23 | Moshe Zalsman | Capsule for mixing together two flowable materials, and kits including such capsules, particularly useful in dentistry |
US20100261138A1 (en) | 2009-04-14 | 2010-10-14 | Phillip Phung-I Ho | Dental agent applicator |
USD636844S1 (en) | 2009-11-13 | 2011-04-26 | Duerr Systems Gmbh | Rotary atomizer component |
US8079534B2 (en) | 2007-05-15 | 2011-12-20 | Lechler Gmbh | Spray nozzle |
US20120255890A1 (en) | 2011-04-05 | 2012-10-11 | Cumberland Scott L | Portable Water Filter |
US20120258423A1 (en) | 2011-03-22 | 2012-10-11 | Centrix, Inc. | Capsule and delivery tip with transition portion for dispensing viscous reactive dental materials |
US20130140225A1 (en) | 2010-07-30 | 2013-06-06 | Thierry Decock | Nozzle And Container For Dispensing A Liquid |
USD717396S1 (en) | 2013-01-02 | 2014-11-11 | Barry J. Hammarback | Water purification cartridge |
US20150034114A1 (en) | 2013-08-05 | 2015-02-05 | Marlene Miles | Syringe attachment for cosmetics |
US20150202637A1 (en) | 2014-01-20 | 2015-07-23 | Nikles Tec Italia S.R.L. | Cartridges and dispenser devices for jets of water incorporating such cartridges |
US20160008545A1 (en) | 2013-03-07 | 2016-01-14 | David B. Brothers | Low waste syringe and needle assemblage |
USD749693S1 (en) | 2012-10-31 | 2016-02-16 | Talley Group Limited | Spray device nozzle |
USD752177S1 (en) | 2014-07-04 | 2016-03-22 | Nok Corporation | Cartridge for a water purifier |
USD806831S1 (en) | 2016-10-27 | 2018-01-02 | Hong Kong Ecoaqua Co., Limited | Filter unit |
EP2688606B1 (en) * | 2011-03-22 | 2018-05-09 | Centrix, Inc. | Capsule and delivery tip for dispensing reactive dental material |
USD846070S1 (en) | 2017-11-09 | 2019-04-16 | Qingdao Ecopure Filter Co., Ltd. | Filter unit |
US20200156086A1 (en) | 2018-11-21 | 2020-05-21 | Inter-Med, Inc. | Universal minimal waste dispensing tip |
USD900277S1 (en) | 2019-01-17 | 2020-10-27 | Ecospears, Inc. | Spear with cap |
USD926922S1 (en) | 2019-07-15 | 2021-08-03 | Spraying Systems Co. | Spray nozzle |
USD926923S1 (en) | 2019-07-19 | 2021-08-03 | Graco Minnesota Inc. | Fluid head retainer |
USD933160S1 (en) | 2019-07-19 | 2021-10-12 | Graco Minnesota Inc. | Fluid cartridge |
USD934991S1 (en) | 2019-04-25 | 2021-11-02 | Tokyo Electron Limited | Component of a liquid discharge nozzle for semiconductor substrate processing apparatus |
USD943061S1 (en) | 2019-04-01 | 2022-02-08 | Marine Turbine Technologies, LLC | Fuel nozzle |
US20220040713A1 (en) | 2018-10-02 | 2022-02-10 | Gjosa Sa | Atomiser and showerhead |
US20220040712A1 (en) | 2020-08-10 | 2022-02-10 | Kohler Co. | Spray assembly |
USD943708S1 (en) | 2020-06-09 | 2022-02-15 | Water Evaporation Systems, Llc | Wastewater atomization nozzle |
US20220065374A1 (en) | 2020-08-28 | 2022-03-03 | Xiangcheng Xie | Adapter to connect water pipe and high-pressure spray gun |
US20220072567A1 (en) | 2020-09-10 | 2022-03-10 | Zhangzhou Leyuan Industrial Co., Ltd. | Nozzle for Providing a Helical Spray |
USD946696S1 (en) | 2019-03-11 | 2022-03-22 | Rohm & Haas Electronic Materials Singapore Pte. Ltd | Expansion filler module |
US11313501B2 (en) | 2019-05-02 | 2022-04-26 | Shin Tai Spurt Water Of The Garden Tools Co., Ltd. | Hose connector |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US151775A (en) * | 1874-06-09 | Improvement in devices for securing the nozzles or necks of oilers | ||
US5324273A (en) * | 1992-09-30 | 1994-06-28 | Centrix, Inc. | Disposable barrel dental impression material syringe |
US5759178A (en) * | 1996-08-20 | 1998-06-02 | Wells; John | Cannula tip |
US20040006312A1 (en) * | 1999-11-10 | 2004-01-08 | Donnan Jeremy Francis | Hypodermic syringes |
US6334774B1 (en) * | 2000-11-24 | 2002-01-01 | Phillip Mark | Flow through applicator with resilient tip |
US7169134B2 (en) * | 2002-03-26 | 2007-01-30 | Ultradent Products, Inc. | Apparatus with rotatable valve syringe |
US20050101879A1 (en) * | 2003-11-06 | 2005-05-12 | Shidham Vinod B. | Needle aspiration biopsy device and method |
CN101203258B (en) * | 2005-05-12 | 2011-01-19 | 尤尼特拉克特注射器公司 | Improved controlled retraction syringe and plunger therefor |
EP2233105B1 (en) * | 2005-07-01 | 2012-10-10 | 3M Innovative Properties Company | Delivery system for dental materials |
US20070225658A1 (en) * | 2006-03-21 | 2007-09-27 | Jensen Steven D | Unit Dose Delivery Systems |
USD570478S1 (en) * | 2007-05-29 | 2008-06-03 | Daikyo Seiko, Ltd. | Syringe nozzle cap |
BRPI0922629A2 (en) * | 2008-12-02 | 2016-01-05 | Allergan Inc | injection device |
US8915890B2 (en) * | 2009-07-30 | 2014-12-23 | Becton, Dickinson And Company | Medical device assembly |
US9399125B2 (en) * | 2013-02-13 | 2016-07-26 | Becton, Dickinson And Company | Needleless connector and access port disinfection cleaner and antimicrobial protection cap |
USD728781S1 (en) * | 2013-10-01 | 2015-05-05 | Dentsply International Inc. | Dental material dispenser tip |
USD768489S1 (en) * | 2015-07-10 | 2016-10-11 | Gregory L. Indruk | Tip for dispenser pump |
USD809093S1 (en) * | 2016-09-30 | 2018-01-30 | Valvoline Licensing And Intellectual Property Llc | Lubricant dispenser |
US10441763B2 (en) * | 2017-11-17 | 2019-10-15 | Esthetic Education LLC | Sterile applicator assembly |
US20210323022A1 (en) * | 2020-04-20 | 2021-10-21 | Asm Technology Singapore Pte Ltd | Fluid-dispensing apparatus |
USD965777S1 (en) * | 2020-09-11 | 2022-10-04 | Becton, Dickinson And Company | Tip cap and disinfecting unit |
-
2019
- 2019-05-29 US US29/692,825 patent/USD958929S1/en active Active
- 2019-11-20 US US16/689,837 patent/US11602759B2/en active Active
-
2022
- 2022-04-28 US US29/792,885 patent/USD961044S1/en active Active
- 2022-07-06 US US29/865,070 patent/USD987778S1/en active Active
- 2022-09-01 US US17/929,187 patent/US11590517B2/en active Active
-
2023
- 2023-02-24 US US18/174,475 patent/US20230211360A1/en active Pending
Patent Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US600803A (en) * | 1898-03-15 | Hypodermic syringe | ||
US2029483A (en) | 1934-08-15 | 1936-02-04 | James J Holland | Water syringe |
US2664893A (en) * | 1951-10-20 | 1954-01-05 | George P Kempel | Disposable douche |
US3294089A (en) | 1960-12-14 | 1966-12-27 | Richard A Brookfield | Hypodermic needle |
US3754553A (en) * | 1972-01-07 | 1973-08-28 | Arsald Inc | Disposable douching apparatus |
US3773047A (en) | 1972-11-06 | 1973-11-20 | V Sneider | Disposable syringe |
US4274555A (en) * | 1978-12-07 | 1981-06-23 | Sneider Vincent R | Flexible syringe with nozzle closure |
US4392617A (en) | 1981-06-29 | 1983-07-12 | International Business Machines Corporation | Spray head apparatus |
USD326273S (en) | 1988-07-25 | 1992-05-19 | Tel Sagami Limited | Heat insulating cylinder for thermal treatment of semiconductor wafers |
USD366051S (en) | 1994-10-31 | 1996-01-09 | Nordson Corporation | Nozzle insert for dispensing viscous materials |
US6113572A (en) | 1995-05-24 | 2000-09-05 | C. R. Bard, Inc. | Multiple-type catheter connection systems |
US5820606A (en) | 1996-06-11 | 1998-10-13 | Origin Medsystems, Inc. | Reusable cannula with disposable seal |
US5853373A (en) | 1996-08-05 | 1998-12-29 | Becton, Dickinson And Company | Bi-level charge pulse apparatus to facilitate nerve location during peripheral nerve block procedures |
US6095813A (en) * | 1999-06-14 | 2000-08-01 | 3M Innovative Properties Company | Method for applying a dental composition to tooth structure |
USD434053S (en) | 1999-08-02 | 2000-11-21 | Nordson Corporation | Nozzle for dispensing adhesives and sealants |
USD433692S (en) | 1999-11-02 | 2000-11-14 | Nordson Corporation | Swivable nozzle for dispensing adhesives and sealants |
US6537239B2 (en) | 2001-05-14 | 2003-03-25 | Phillip Mark | Insert for a nozzle of a flow through liquid applicator and combination thereof |
US20040051303A1 (en) | 2002-06-14 | 2004-03-18 | Alexander Lorenz | Multi-length flex connector |
US20040055254A1 (en) | 2002-09-20 | 2004-03-25 | David Setton | Pre-filled personal hydration reservoir |
US20040102738A1 (en) * | 2002-11-26 | 2004-05-27 | Medical Ventures, L.L.C. | Pressure actuated flow control valve |
US20040138642A1 (en) | 2003-01-10 | 2004-07-15 | Fischer Dan E. | Fiber-coated dental infusor systems and methods of use |
US7128283B1 (en) | 2004-02-02 | 2006-10-31 | Shahin Yousef A | Paint spraying nozzle assembly |
US8079534B2 (en) | 2007-05-15 | 2011-12-20 | Lechler Gmbh | Spray nozzle |
US20100240004A1 (en) * | 2009-03-23 | 2010-09-23 | Moshe Zalsman | Capsule for mixing together two flowable materials, and kits including such capsules, particularly useful in dentistry |
US20100261138A1 (en) | 2009-04-14 | 2010-10-14 | Phillip Phung-I Ho | Dental agent applicator |
USD636844S1 (en) | 2009-11-13 | 2011-04-26 | Duerr Systems Gmbh | Rotary atomizer component |
US20130140225A1 (en) | 2010-07-30 | 2013-06-06 | Thierry Decock | Nozzle And Container For Dispensing A Liquid |
US20120258423A1 (en) | 2011-03-22 | 2012-10-11 | Centrix, Inc. | Capsule and delivery tip with transition portion for dispensing viscous reactive dental materials |
EP2688606B1 (en) * | 2011-03-22 | 2018-05-09 | Centrix, Inc. | Capsule and delivery tip for dispensing reactive dental material |
US20120255890A1 (en) | 2011-04-05 | 2012-10-11 | Cumberland Scott L | Portable Water Filter |
USD749693S1 (en) | 2012-10-31 | 2016-02-16 | Talley Group Limited | Spray device nozzle |
USD717396S1 (en) | 2013-01-02 | 2014-11-11 | Barry J. Hammarback | Water purification cartridge |
US20160008545A1 (en) | 2013-03-07 | 2016-01-14 | David B. Brothers | Low waste syringe and needle assemblage |
US20150034114A1 (en) | 2013-08-05 | 2015-02-05 | Marlene Miles | Syringe attachment for cosmetics |
US20150202637A1 (en) | 2014-01-20 | 2015-07-23 | Nikles Tec Italia S.R.L. | Cartridges and dispenser devices for jets of water incorporating such cartridges |
USD752177S1 (en) | 2014-07-04 | 2016-03-22 | Nok Corporation | Cartridge for a water purifier |
USD806831S1 (en) | 2016-10-27 | 2018-01-02 | Hong Kong Ecoaqua Co., Limited | Filter unit |
USD846070S1 (en) | 2017-11-09 | 2019-04-16 | Qingdao Ecopure Filter Co., Ltd. | Filter unit |
US20220040713A1 (en) | 2018-10-02 | 2022-02-10 | Gjosa Sa | Atomiser and showerhead |
US20200156086A1 (en) | 2018-11-21 | 2020-05-21 | Inter-Med, Inc. | Universal minimal waste dispensing tip |
USD958929S1 (en) | 2018-11-21 | 2022-07-26 | Inter-Med, Inc. | Minimal waste dispensing tip |
USD900277S1 (en) | 2019-01-17 | 2020-10-27 | Ecospears, Inc. | Spear with cap |
USD946696S1 (en) | 2019-03-11 | 2022-03-22 | Rohm & Haas Electronic Materials Singapore Pte. Ltd | Expansion filler module |
USD943061S1 (en) | 2019-04-01 | 2022-02-08 | Marine Turbine Technologies, LLC | Fuel nozzle |
USD934991S1 (en) | 2019-04-25 | 2021-11-02 | Tokyo Electron Limited | Component of a liquid discharge nozzle for semiconductor substrate processing apparatus |
US11313501B2 (en) | 2019-05-02 | 2022-04-26 | Shin Tai Spurt Water Of The Garden Tools Co., Ltd. | Hose connector |
USD926922S1 (en) | 2019-07-15 | 2021-08-03 | Spraying Systems Co. | Spray nozzle |
USD933160S1 (en) | 2019-07-19 | 2021-10-12 | Graco Minnesota Inc. | Fluid cartridge |
USD926923S1 (en) | 2019-07-19 | 2021-08-03 | Graco Minnesota Inc. | Fluid head retainer |
USD943708S1 (en) | 2020-06-09 | 2022-02-15 | Water Evaporation Systems, Llc | Wastewater atomization nozzle |
US20220040712A1 (en) | 2020-08-10 | 2022-02-10 | Kohler Co. | Spray assembly |
US20220065374A1 (en) | 2020-08-28 | 2022-03-03 | Xiangcheng Xie | Adapter to connect water pipe and high-pressure spray gun |
US20220072567A1 (en) | 2020-09-10 | 2022-03-10 | Zhangzhou Leyuan Industrial Co., Ltd. | Nozzle for Providing a Helical Spray |
Non-Patent Citations (7)
Title |
---|
Brasseler USA brochure; BC Sealer™ ; dated Oct. 2019; 1 pg. |
Is EndoSequence BC Sealer Expensive? (Friday Questions), Allen Ali Nasseh, Undated; viewed Nov. 11, 2019, pp. 1 thr 4 (https://realworldendo.com/). |
Iwata-Medea—Kustom Fluid Nozzle 0.5Mm, May 18, 2016, amazon.ca, May 20, 2022, URL: https://www.amazon.ca/Iwata-Medea-Iwata-Nozzle-Hp-Th/dp/B00A6WFIUY/ (Year: 2016). |
Litorange 2 PCS Lead-Free Brass Winterize Sprinkler Systems: Air Compressor 1/4″ Quick Connect Plug, Jan. 30, 2019, amazon.ca, Mar. 20, 2022, URL: https://www.amazon.ca/dp/B07KWZHM8B/ (Year: 2019). |
Premium Quality Quick Connect Connectors & Adopters Set of 5 Pcs—1, Jul. 14, 2015, amazon.ca, Mar. 2, 2022,URL: https://www.amazon.ca/Premium-Quality-Connect-Connectors-Adopters/dp/B0745VSW12/ (Year: 2015). |
Scott's Dental Supply—Visco-Tip; Undated; viewed Nov. 20, 2019; pp. 1-2; (https://www.scottsdental.com/visco-tip.html). |
Syringe Adaptor/Coupler—Luer Lock , Oct. 30, 2019, amazon.ca, Mar. 2, 2022, URL: https://www.amazon.ca/Syringe-Adaptor-Coupler-Polypropylene-Transfer/dp/B01KY6X6CS/ (Year: 2019). |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230211360A1 (en) * | 2018-11-21 | 2023-07-06 | Inter-Med, Inc. | Universal minimal waste dispensing tip |
Also Published As
Publication number | Publication date |
---|---|
US20230211360A1 (en) | 2023-07-06 |
USD958929S1 (en) | 2022-07-26 |
US11602759B2 (en) | 2023-03-14 |
US20200156086A1 (en) | 2020-05-21 |
USD987778S1 (en) | 2023-05-30 |
US20220410184A1 (en) | 2022-12-29 |
USD961044S1 (en) | 2022-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11590517B2 (en) | Universal minimal waste dispensing tip | |
US5290259A (en) | Double syringe delivery system | |
AU2005231716B2 (en) | Apparatus for an improved high pressure medicinal dispenser | |
US8372057B2 (en) | Luer lock adapter | |
US8100295B2 (en) | Dispensing assembly with removably attachable accessories | |
US20190083359A1 (en) | Pharmaceutical adaptor system and pharmaceutical kit system | |
CN105939744B (en) | Plunger assembly comprising a plunger rod or the like for advancing a stopper through a syringe | |
JP5502800B2 (en) | Cartridge system and delivery tube used in such a cartridge system | |
KR102686209B1 (en) | Fluid Path Connectors for Medical Fluid Transfer | |
JPH1080494A (en) | Assembly of catheter adapter | |
JP2005501616A (en) | Fittings for medical fluid supply systems | |
DE29602173U1 (en) | Application device for medical liquids | |
JP2005523118A (en) | Fluid transfer adapter for use with a syringe barrel | |
JP2009072638A (en) | Leur connector assembly | |
US9399098B2 (en) | Flushing medical devices | |
US12083323B2 (en) | Needle hub and syringe arrangement | |
US20140329198A1 (en) | Full flow disposable syringe tip and connector | |
JP2022110995A (en) | Luer-lock fastening needle hub | |
EP1814617A1 (en) | Device, in particular, a medical device, for administering an active substance, in particular in the form of a plastic dual-chambered syringe | |
US8845597B2 (en) | Adapter for an injection appliance | |
KR20060009281A (en) | Syringe system | |
CN117120126A (en) | Needle assembly | |
US20110204097A1 (en) | Dispenser assembly with plunger having beaded portion | |
JP7326288B2 (en) | No backflow syringe, especially for administering dental paste compositions | |
US11485548B1 (en) | Multi-use applicator and methods for its use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: MARANON CAPITAL, L.P., AS ADMINISTRATIVE AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:INTER-MED, INC.;APEX DENTAL MATERIALS, LLC;REEL/FRAME:062004/0800 Effective date: 20220407 |
|
AS | Assignment |
Owner name: INTER-MED, INC., WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAETEN, JOHN;JOHNSON, ALEXANDER D.;SIGNING DATES FROM 20200529 TO 20200601;REEL/FRAME:062488/0758 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: BMO BANK N.A., AS ADMINISTRATIVE AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:INTER-MED, INC.;REEL/FRAME:066993/0755 Effective date: 20240403 |
|
AS | Assignment |
Owner name: APEX DENTAL MATERIALS, LLC, WISCONSIN Free format text: SECURITY INTEREST;ASSIGNOR:MARANON CAPITAL, L.P., AS AGENT;REEL/FRAME:067010/0306 Effective date: 20240403 Owner name: INTER-MED, INC., WISCONSIN Free format text: SECURITY INTEREST;ASSIGNOR:MARANON CAPITAL, L.P., AS AGENT;REEL/FRAME:067010/0306 Effective date: 20240403 |
|
AS | Assignment |
Owner name: APEX DENTAL MATERIALS, LLC, WISCONSIN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE PREVIOUSLY RECORDED ON REEL 67010 FRAME 306. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST;ASSIGNOR:MARANON CAPITAL, L.P., AS AGENT;REEL/FRAME:067029/0280 Effective date: 20240403 Owner name: INTER-MED, INC., WISCONSIN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE PREVIOUSLY RECORDED ON REEL 67010 FRAME 306. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST;ASSIGNOR:MARANON CAPITAL, L.P., AS AGENT;REEL/FRAME:067029/0280 Effective date: 20240403 Owner name: APEX DENTAL MATERIALS, LLC, WISCONSIN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECURITY INTEREST PREVIOUSLY RECORDED ON REEL 67010 FRAME 306. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST;ASSIGNOR:MARANON CAPITAL, L.P., AS AGENT;REEL/FRAME:067028/0628 Effective date: 20240403 Owner name: INTER-MED, INC., WISCONSIN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE TO RELEASE OF SECURITY INTEREST PREVIOUSLY RECORDED ON REEL 67010 FRAME 306. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST;ASSIGNOR:MARANON CAPITAL, L.P., AS AGENT;REEL/FRAME:067028/0628 Effective date: 20240403 |