US11511615B2 - Hybrid drive transmission with E-motor rotor resolver integrated with auxiliary drive - Google Patents

Hybrid drive transmission with E-motor rotor resolver integrated with auxiliary drive Download PDF

Info

Publication number
US11511615B2
US11511615B2 US17/213,364 US202117213364A US11511615B2 US 11511615 B2 US11511615 B2 US 11511615B2 US 202117213364 A US202117213364 A US 202117213364A US 11511615 B2 US11511615 B2 US 11511615B2
Authority
US
United States
Prior art keywords
transmission
torque converter
transmission housing
rotor position
drive shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/213,364
Other versions
US20220305900A1 (en
Inventor
Matthew Payne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Priority to US17/213,364 priority Critical patent/US11511615B2/en
Assigned to Schaeffler Technologies AG & Co. KG reassignment Schaeffler Technologies AG & Co. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PAYNE, MATTHEW
Publication of US20220305900A1 publication Critical patent/US20220305900A1/en
Application granted granted Critical
Publication of US11511615B2 publication Critical patent/US11511615B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/06Auxiliary drives from the transmission power take-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0441Arrangements of pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/06Auxiliary drives from the transmission power take-off
    • B60K2025/065Auxiliary drives from the transmission power take-off the transmission being fluidic, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02026Connection of auxiliaries with a gear case; Mounting of auxiliaries on the gearbox
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02034Gearboxes combined or connected with electric machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02039Gearboxes for particular applications
    • F16H2057/02043Gearboxes for particular applications for vehicle transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present disclosure relates to hybrid vehicle drive transmissions which include an electric motor (E-motor) integrated into the transmission, which is located in the drive line between the internal combustion and the driven wheels, to provide drive torque from the E-motor in addition to or in place of the drive torque from the internal combustion engine.
  • E-motor electric motor
  • Hybrid vehicle drive transmissions which include an integrated E-motor.
  • the position of the rotor has to be sensed and the rotor position data signaled to the controller for the E-motor.
  • all known electric drives are controlled using a rotor position sensor (RPS) that is located coaxial with the E-motor. This can involve complex and/or custom designed rotary resolvers or encoders to fit in the space adjacent to the rotor or around the torque converter hub that extends from the torque converter outer shell to which the rotor is directly mounted.
  • RPS rotor position sensor
  • a coaxial architecture is optimal depending on the available space; however, in view of the shrinking space available in hybrid vehicle drive transmissions, alternative solutions may be advantageous for additional space saving as well as reduced costs.
  • a transmission with an integrated hybrid drive includes a transmission housing as well as a torque converter rotatably mounted within the transmission housing.
  • the torque converter includes an outer shell with an impeller pump configured to be drivingly connected to a crankshaft, and a turbine within the outer shell that is connected to an output shaft.
  • An e-motor is integrated into the transmission and includes a stator connected to the transmission housing, a rotor connected to the outer shell of the torque converter, and a controller.
  • An auxiliary drive unit is provided having a drive shaft that is driven by a connection to the torque converter outer shell.
  • a rotor position sensor (RPS) is provided on the drive shaft that is configured to signal rotor position data to the controller. This arrangement allows for offset positioning of the RPS relative to the axis of the rotor and torque converter, which provides for better space utilization and also allows for a standard RPS to be utilized.
  • the auxiliary drive unit is an oil pump.
  • the oil pump is preferably located on a side of the transmission housing opposite from a torque converter side, and the drive shaft for the auxiliary drive extends through the transmission housing.
  • the RPS is positioned on the torque converter side of the transmission housing.
  • the torque converter further includes a torque converter pump hub, and a chain drive extends between the torque converter pump hub and the drive shaft for the auxiliary drive.
  • a torque converter pump hub extends between the torque converter pump hub and the drive shaft for the auxiliary drive.
  • a drive ratio of the torque converter pump hub to the drive shaft is 1:1.
  • the controller can be adjusted or calibrated to compensate for other drive ratios so that the rotor speed is determined.
  • the drive ratio could be from 1:2 to 1:6, although other ratios are also possible.
  • the RPS is mounted to the transmission housing, and a resolver housing is mounted over the rotor position sensor.
  • the resolver housing is sealed to the transmission housing to provide a water-tight enclosure for the RPS. This is a requirement for some transmissions that have specific wet running capabilities.
  • the transmission may further include a flex plate that is drivingly connected to the torque converter outer shell and configured to be connected to the crankshaft.
  • the flex plate operates in a known manner to smooth the variations in drive torque from the internal combustion engine.
  • the auxiliary drive unit can be for something other than the oil pump and could possibly also be just comprised of the drive shaft that is solely used for the RPS.
  • the auxiliary drive is located on a side of the transmission housing opposite from a torque converter side, and the drive shaft extends through the transmission housing and the RPS is positioned on the drive shaft on the torque converter side of the transmission housing.
  • the drive shaft can be driven with a chain and sprocket drive arrangement from the torque converter hub, or can be a direct gear drive.
  • the RPS is preferably a rotary resolver or rotary encoder. Although any type of sensor can be used that is configured to sense rotary position.
  • a transmission with an integrated hybrid drive includes a transmission housing and a torque converter rotatably mounted within the transmission housing.
  • the torque converter including an outer shell and a pump hub.
  • An E-motor is provided having a stator connected to the transmission housing, a rotor connected to the outer shell, and a controller.
  • An oil pump is provided having a drive shaft that is driven by a connection to the torque converter pump hub.
  • a RPS is located on the drive shaft and is configured to signal rotor position data to the controller.
  • FIG. 1 is a schematic cross-sectional view through a transmission with an integrated hybrid drive according to one embodiment.
  • FIG. 2 is a detailed view showing a first side of the transmission housing with an existing auxiliary drive area.
  • FIG. 3 is a view showing the opposite side of the transmission housing from FIG. 2 with the position of a rotary position sensor.
  • FIG. 4 is an enlarged detailed view taken from FIG. 3 .
  • FIG. 1 schematically shows the transmission 10 in half cross-section while FIGS. 2-4 showed details of the transmission housing 12 .
  • the transmission 10 includes a transmission housing 12 along with a torque converter 14 that is rotatably mounted within the transmission housing 12 .
  • the torque converter 14 includes an outer shell 16 along with an impeller pump 18 that is configured to be drivingly connected to a crankshaft 20 of an associated internal combustion engine.
  • a flex plate 22 is located between the crankshaft 20 and the outer shell 16 .
  • the flex plate 22 can be of known construction and acts to smooth rotational torque fluctuation from the crankshaft 20 being input to the transmission 10 .
  • the torque converter 14 further includes a turbine 24 is connected to an output shaft 26 of the torque converter 14 in order to transfer torque downstream along a driveline between the internal combustion engine and the driven wheels.
  • An E-motor 30 is located within the transmission housing 12 .
  • the E-motor 30 includes a stator 32 connected to the transmission housing 12 as well as a rotor 34 that is connected to the outer shell 16 of the torque converter 14 .
  • a controller 36 is also provided for the E-motor 30 , and is schematically represented in FIG. 1 .
  • An auxiliary drive unit such as an oil pump 40 , having a drive shaft 42 that is driven by a connection to the torque converter output shell 16 is provided. This is positioned in the auxiliary drive area 41 indicated in FIG. 2 on the transmission housing 12 .
  • a rotor position sensor (RPS) 50 is provided on the drive shaft 42 and is configured to signal rotor position data to the controller 36 such that the E-motor 30 can be controlled in use.
  • the oil pump 40 is located on a side 12 A of the transmission housing 12 that is opposite from a torque converter side 12 B of the transmission housing 12 .
  • the drive shaft 4 extends through the transmission housing 12 and the rotor position sensor 50 is positioned on the torque converter side 12 B of the transmission housing 12 .
  • One or more bearings 48 can be used to support the drive shaft 42 .
  • the torque converter 14 further includes a torque converter pump hub 28 , and a chain drive 44 extends between the torque converter pump hub 28 and the drive shaft 42 .
  • sprockets 45 , 46 are located on the torque converter pump hub 28 and the drive shaft 42 , respectively.
  • Other types of drives, such as a direct gear drive could also be utilized in order to drive the driveshaft 42 directly from the torque converter pump hub 28 with little or no lash so that the position of the rotor 34 can be accurately determined.
  • a drive ratio of the torque converter pump hub 28 to the drive shaft 42 is 1:1.
  • other drive ratios such as 1:2 to 1:6, for example, could be used and the RPS 50 and/or the controller 36 can be configured and/or calibrated to take into account the drive ratio such that the position of the rotor 34 is accurately determined.
  • the RPS 50 is mounted to the transmission housing 12 and a resolver housing 52 is mounted over the RPS 50 .
  • the resolver housing 52 is sealed to the transmission housing 12 in order to provide a water-tight enclosure for the RPS 50 .
  • a seal 54 can be utilized.
  • an RTV sealant can be applied to the surfaces during installation.
  • this arrangement allows the drive shaft 42 to be mounted parallel to an offset from the axis A of the torque converter 14 which allows for offset positioning of the RPS 50 relative to the axis A of the rotor 34 and the torque converter 14 .
  • This allows for better space utilization and eliminates the need for a custom configured rotor position sensing arrangement in a co-axial position with the rotor 34 and the torque converter 14 , as was previously known.
  • the present arrangement allows the use of an off-the-shelf position sensor to be used as the RPS 50 , which can be a known type of rotary resolver or rotary encoder.
  • the auxiliary drive unit could be something other than oil pump 40 , and could also just be an offset drive shaft 42 that is driven by the torque converter 14 or the rotor 34
  • one specific application where an E-motor 30 is being incorporated into an existing envelope of a transmission 10 takes advantage of the space previously assigned to the oil pump 40 as the auxiliary drive unit as well as the existing drive arrangement for the oil pump 40 , only requiring modification to the drive shaft 42 so that it is extended in order to accommodate the RPS 50 located within the bell housing 12 of the transmission.
  • the resolver housing 52 is sealingly mounted over the RPS 50 to meet water-tight enclosure requirements for the particular application.

Abstract

A transmission with an integrated hybrid drive is provided that includes a transmission housing as well as a torque converter rotatably mounted within the transmission housing. The torque converter includes an outer shell configured to be drivingly connected to a crankshaft. An e-motor is integrated into the transmission and includes a stator connected to the transmission housing, a rotor connected to the outer shell, and a controller. An auxiliary drive unit is provided having a drive shaft that is driven by a connection to the torque converter outer shell. A rotor position sensor (RPS) is provided on the drive shaft that is configured to signal rotor position data to the controller. The drive shaft and RPS are offset relative to the axis of the rotor and torque converter, providing better space utilization.

Description

FIELD OF INVENTION
The present disclosure relates to hybrid vehicle drive transmissions which include an electric motor (E-motor) integrated into the transmission, which is located in the drive line between the internal combustion and the driven wheels, to provide drive torque from the E-motor in addition to or in place of the drive torque from the internal combustion engine.
BACKGROUND
Hybrid vehicle drive transmissions are known which include an integrated E-motor. In order to control the E-motor, the position of the rotor has to be sensed and the rotor position data signaled to the controller for the E-motor. Basically, all known electric drives are controlled using a rotor position sensor (RPS) that is located coaxial with the E-motor. This can involve complex and/or custom designed rotary resolvers or encoders to fit in the space adjacent to the rotor or around the torque converter hub that extends from the torque converter outer shell to which the rotor is directly mounted.
A coaxial architecture is optimal depending on the available space; however, in view of the shrinking space available in hybrid vehicle drive transmissions, alternative solutions may be advantageous for additional space saving as well as reduced costs.
SUMMARY
In one aspect, a transmission with an integrated hybrid drive is provided that includes a transmission housing as well as a torque converter rotatably mounted within the transmission housing. The torque converter includes an outer shell with an impeller pump configured to be drivingly connected to a crankshaft, and a turbine within the outer shell that is connected to an output shaft. An e-motor is integrated into the transmission and includes a stator connected to the transmission housing, a rotor connected to the outer shell of the torque converter, and a controller. An auxiliary drive unit is provided having a drive shaft that is driven by a connection to the torque converter outer shell. A rotor position sensor (RPS) is provided on the drive shaft that is configured to signal rotor position data to the controller. This arrangement allows for offset positioning of the RPS relative to the axis of the rotor and torque converter, which provides for better space utilization and also allows for a standard RPS to be utilized.
In one embodiment, the auxiliary drive unit is an oil pump. The oil pump is preferably located on a side of the transmission housing opposite from a torque converter side, and the drive shaft for the auxiliary drive extends through the transmission housing. The RPS is positioned on the torque converter side of the transmission housing.
For this arrangement, the torque converter further includes a torque converter pump hub, and a chain drive extends between the torque converter pump hub and the drive shaft for the auxiliary drive. This is similar to a prior known oil pump arrangement, except for the drive shaft extending through the transmission housing to the torque converter side, and the RPS being positioned on the drive shaft for the oil pump.
Preferably, a drive ratio of the torque converter pump hub to the drive shaft is 1:1. However, this does not need to be the case and the controller can be adjusted or calibrated to compensate for other drive ratios so that the rotor speed is determined. For example, the drive ratio could be from 1:2 to 1:6, although other ratios are also possible.
In one arrangement, the RPS is mounted to the transmission housing, and a resolver housing is mounted over the rotor position sensor. Preferably the resolver housing is sealed to the transmission housing to provide a water-tight enclosure for the RPS. This is a requirement for some transmissions that have specific wet running capabilities.
The transmission may further include a flex plate that is drivingly connected to the torque converter outer shell and configured to be connected to the crankshaft. The flex plate operates in a known manner to smooth the variations in drive torque from the internal combustion engine.
The auxiliary drive unit can be for something other than the oil pump and could possibly also be just comprised of the drive shaft that is solely used for the RPS. In any case, the auxiliary drive is located on a side of the transmission housing opposite from a torque converter side, and the drive shaft extends through the transmission housing and the RPS is positioned on the drive shaft on the torque converter side of the transmission housing. The drive shaft can be driven with a chain and sprocket drive arrangement from the torque converter hub, or can be a direct gear drive.
The benefit of this arrangement is that based on the drive shaft being mounted parallel to and offset from an axis of the torque converter, multiple different locations for the RPS can be utilized depending on other space requirements in the transmission.
The RPS is preferably a rotary resolver or rotary encoder. Although any type of sensor can be used that is configured to sense rotary position.
In another aspect, a transmission with an integrated hybrid drive is provided that includes a transmission housing and a torque converter rotatably mounted within the transmission housing. The torque converter including an outer shell and a pump hub. An E-motor is provided having a stator connected to the transmission housing, a rotor connected to the outer shell, and a controller. An oil pump is provided having a drive shaft that is driven by a connection to the torque converter pump hub. A RPS is located on the drive shaft and is configured to signal rotor position data to the controller.
Here, similar features to those discussed above are used specifically in connection with the oil pump RPS arrangement. The location of the RPS on the oil pump drive shaft can be useful when designing hybrid drive transmissions having common parts and/or common designs with existing transmissions in order to take advantage of the already existing transmission oil pump drive design and/or components thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing Summary and the following Detailed Description will be better understood when read in conjunction with the appended drawings, which illustrate a preferred embodiment of the disclosure. In the drawings:
FIG. 1 is a schematic cross-sectional view through a transmission with an integrated hybrid drive according to one embodiment.
FIG. 2 is a detailed view showing a first side of the transmission housing with an existing auxiliary drive area.
FIG. 3 is a view showing the opposite side of the transmission housing from FIG. 2 with the position of a rotary position sensor.
FIG. 4 is an enlarged detailed view taken from FIG. 3.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Certain terminology is used in the following description for convenience only and is not limiting. A reference to a list of items that are cited as “at least one of a, b, or c” (where a, b, and c represent the items being listed) means any single one of the items a, b, or c, or combinations thereof. The terms “generally” and “approximately” mean within +/−10% of the indicated value. The terminology includes the words specifically noted above, derivatives thereof and words of similar import.
Referring to FIGS. 1-4, a transmission 10 with an integrated hybrid drive is shown. FIG. 1 schematically shows the transmission 10 in half cross-section while FIGS. 2-4 showed details of the transmission housing 12.
The transmission 10 includes a transmission housing 12 along with a torque converter 14 that is rotatably mounted within the transmission housing 12. The torque converter 14 includes an outer shell 16 along with an impeller pump 18 that is configured to be drivingly connected to a crankshaft 20 of an associated internal combustion engine. In a preferred arrangement, a flex plate 22 is located between the crankshaft 20 and the outer shell 16. The flex plate 22 can be of known construction and acts to smooth rotational torque fluctuation from the crankshaft 20 being input to the transmission 10. The torque converter 14 further includes a turbine 24 is connected to an output shaft 26 of the torque converter 14 in order to transfer torque downstream along a driveline between the internal combustion engine and the driven wheels.
An E-motor 30 is located within the transmission housing 12. The E-motor 30 includes a stator 32 connected to the transmission housing 12 as well as a rotor 34 that is connected to the outer shell 16 of the torque converter 14. A controller 36 is also provided for the E-motor 30, and is schematically represented in FIG. 1.
An auxiliary drive unit, such as an oil pump 40, having a drive shaft 42 that is driven by a connection to the torque converter output shell 16 is provided. This is positioned in the auxiliary drive area 41 indicated in FIG. 2 on the transmission housing 12. A rotor position sensor (RPS) 50 is provided on the drive shaft 42 and is configured to signal rotor position data to the controller 36 such that the E-motor 30 can be controlled in use.
The oil pump 40 is located on a side 12A of the transmission housing 12 that is opposite from a torque converter side 12B of the transmission housing 12. The drive shaft 4 extends through the transmission housing 12 and the rotor position sensor 50 is positioned on the torque converter side 12B of the transmission housing 12. One or more bearings 48 can be used to support the drive shaft 42.
In the illustrated embodiment, the torque converter 14 further includes a torque converter pump hub 28, and a chain drive 44 extends between the torque converter pump hub 28 and the drive shaft 42. Here, sprockets 45, 46 are located on the torque converter pump hub 28 and the drive shaft 42, respectively. Other types of drives, such as a direct gear drive could also be utilized in order to drive the driveshaft 42 directly from the torque converter pump hub 28 with little or no lash so that the position of the rotor 34 can be accurately determined.
In one embodiment, a drive ratio of the torque converter pump hub 28 to the drive shaft 42 is 1:1. However, other drive ratios such as 1:2 to 1:6, for example, could be used and the RPS 50 and/or the controller 36 can be configured and/or calibrated to take into account the drive ratio such that the position of the rotor 34 is accurately determined.
As shown in FIGS. 1, 3, and 4, the RPS 50 is mounted to the transmission housing 12 and a resolver housing 52 is mounted over the RPS 50. In one arrangement, the resolver housing 52 is sealed to the transmission housing 12 in order to provide a water-tight enclosure for the RPS 50. Here, a seal 54 can be utilized. Alternatively, an RTV sealant can be applied to the surfaces during installation.
As shown in FIG. 1, this arrangement allows the drive shaft 42 to be mounted parallel to an offset from the axis A of the torque converter 14 which allows for offset positioning of the RPS 50 relative to the axis A of the rotor 34 and the torque converter 14. This allows for better space utilization and eliminates the need for a custom configured rotor position sensing arrangement in a co-axial position with the rotor 34 and the torque converter 14, as was previously known. Further, the present arrangement allows the use of an off-the-shelf position sensor to be used as the RPS 50, which can be a known type of rotary resolver or rotary encoder.
While in a general sense, the auxiliary drive unit could be something other than oil pump 40, and could also just be an offset drive shaft 42 that is driven by the torque converter 14 or the rotor 34, one specific application where an E-motor 30 is being incorporated into an existing envelope of a transmission 10 takes advantage of the space previously assigned to the oil pump 40 as the auxiliary drive unit as well as the existing drive arrangement for the oil pump 40, only requiring modification to the drive shaft 42 so that it is extended in order to accommodate the RPS 50 located within the bell housing 12 of the transmission. Here, in order to meet further requirements on the drive train, the resolver housing 52 is sealingly mounted over the RPS 50 to meet water-tight enclosure requirements for the particular application.
Having thus described the present disclosure in detail, it is to be appreciated and will be apparent to those skilled in the art that many physical changes, only a few of which are exemplified in the detailed description of the invention, could be made without altering the inventive concepts and principles embodied therein.
It is also to be appreciated that numerous embodiments incorporating only part of the preferred embodiment are possible which do not alter, with respect to those parts, the inventive concepts and principles embodied therein.
The present embodiment and optional configurations are therefore to be considered in all respects as exemplary and/or illustrative and not restrictive, the scope of the embodiments being indicated by the appended claims rather than by the foregoing description, and all alternate embodiments and changes to this embodiment which come within the meaning and range of equivalency of said claims are therefore to be embraced therein.
LIST OF REFERENCE NUMERALS
    • 10 Transmission
    • 12 Transmission housing
    • 12A First side of transmission housing
    • 12B Torque converter side of transmission housing
    • 14 Torque Converter
    • 16 Outer shell
    • 18 Impeller pump
    • 20 Crankshaft
    • 22 Flex plate
    • 24 Turbine
    • 26 Output shaft
    • 30 E-motor
    • 32 Stator
    • 34 Rotor
    • 36 Controller
    • 40 Oil pump
    • 41 Auxiliary drive area
    • 42 Drive Shaft
    • 44 Chain drive
    • 45 Sprocket
    • 46 Sprocket
    • 50 Rotor position Sensor
    • 52 Resolver cover
    • 54 Seal
    • A Axis of torque converter and rotor

Claims (18)

What is claimed is:
1. A transmission with an integrated hybrid drive, comprising:
a transmission housing;
a torque converter rotatably mounted within the transmission housing, the torque converter including an outer shell with an impeller pump configured to be drivingly connected to a crankshaft, and a turbine connected to an output shaft;
an e-motor including a stator connected to the transmission housing, a rotor connected to the outer shell, and a controller;
an auxiliary drive unit having a drive shaft that is driven by a connection to the torque converter outer shell; and
a rotor position sensor on the drive shaft that is configured to signal rotor position data to the controller.
2. The transmission of claim 1, wherein the auxiliary drive unit is an oil pump.
3. The transmission of claim 2, wherein the oil pump is located on a side of the transmission housing opposite from a torque converter side, and the drive shaft extends through the transmission housing and the rotor position sensor is positioned on the torque converter side of the transmission housing.
4. The transmission of claim 2, wherein the torque converter further comprises a torque converter pump hub, and a chain drive extends between the torque converter pump hub and the drive shaft.
5. The transmission of claim 4, wherein a drive ratio of the torque converter pump hub to the drive shaft is 1:1.
6. The transmission of claim 4, wherein a drive ratio of the torque converter pump hub to the drive shaft is greater than 1:1 and at least one of the rotor position sensor or the controller is configured to take into account the drive ratio in determining the position of the rotor.
7. The transmission of claim 1, wherein the rotor position sensor is mounted to the transmission housing, and a resolver housing is mounted over the rotor position sensor.
8. The transmission of claim 7, wherein the resolver housing is sealed to the transmission housing to provide a water-tight enclosure for the rotor position sensor.
9. The transmission of claim 1, further comprising a flex plate drivingly connected to the torque converter outer shell, wherein the flex plate is configured to be connected to the crankshaft.
10. The transmission of claim 1, wherein the auxiliary drive unit is located on a side of the transmission housing opposite from a torque converter side, and the drive shaft extends through the transmission housing and the rotor position sensor is positioned on the torque converter side of the transmission housing.
11. The transmission of claim 1, wherein the drive shaft is mounted parallel to and offset from an axis of the torque converter.
12. The transmission of claim 1, wherein the rotor position sensor is a rotary resolver or encoder.
13. A transmission with an integrated hybrid drive, comprising:
a transmission housing;
a torque converter rotatably mounted within the transmission housing, the torque converter including an outer shell and a pump hub;
an e-motor including a stator connected to the transmission housing, a rotor connected to the outer shell, and a controller;
an oil pump having a drive shaft that is driven by a connection to the torque converter pump hub; and
a rotor position sensor on the drive shaft that is configured to signal rotor position data to the controller.
14. The transmission of claim 13, wherein the oil pump is located on a side of the transmission housing opposite from a torque converter side, and the drive shaft extends through the transmission housing and the rotor position sensor is positioned on the torque converter side of the transmission housing.
15. The transmission of claim 14, wherein the rotor position sensor is mounted to the transmission housing, and a resolver housing is mounted over the rotor position sensor.
16. The transmission of claim 15, wherein the resolver housing is sealed to the transmission housing to provide a water-tight enclosure for the rotor position sensor.
17. The transmission of claim 13, wherein the drive shaft is mounted parallel to and offset from an axis of the torque converter.
18. The transmission of claim 13, wherein the rotor position sensor is a rotary resolver or encoder.
US17/213,364 2021-03-26 2021-03-26 Hybrid drive transmission with E-motor rotor resolver integrated with auxiliary drive Active 2041-06-24 US11511615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/213,364 US11511615B2 (en) 2021-03-26 2021-03-26 Hybrid drive transmission with E-motor rotor resolver integrated with auxiliary drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/213,364 US11511615B2 (en) 2021-03-26 2021-03-26 Hybrid drive transmission with E-motor rotor resolver integrated with auxiliary drive

Publications (2)

Publication Number Publication Date
US20220305900A1 US20220305900A1 (en) 2022-09-29
US11511615B2 true US11511615B2 (en) 2022-11-29

Family

ID=83362936

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/213,364 Active 2041-06-24 US11511615B2 (en) 2021-03-26 2021-03-26 Hybrid drive transmission with E-motor rotor resolver integrated with auxiliary drive

Country Status (1)

Country Link
US (1) US11511615B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258001B1 (en) * 1999-03-26 2001-07-10 Aisin Aw Co., Ltd. Vehicle drive train
US6478101B1 (en) * 1999-10-01 2002-11-12 Aisin Aw Co., Ltd. Drive unit for hybrid vehicle
US6935450B1 (en) * 1999-10-01 2005-08-30 Aisin Aw Co., Ltd. Hybrid vehicle driving device
US7017693B2 (en) * 2001-08-10 2006-03-28 Aisin Aw Co., Ltd. Drive device for hybrid vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258001B1 (en) * 1999-03-26 2001-07-10 Aisin Aw Co., Ltd. Vehicle drive train
US6478101B1 (en) * 1999-10-01 2002-11-12 Aisin Aw Co., Ltd. Drive unit for hybrid vehicle
US6935450B1 (en) * 1999-10-01 2005-08-30 Aisin Aw Co., Ltd. Hybrid vehicle driving device
US7017693B2 (en) * 2001-08-10 2006-03-28 Aisin Aw Co., Ltd. Drive device for hybrid vehicle

Also Published As

Publication number Publication date
US20220305900A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
EP2463135B1 (en) Drive device for vehicle
JP5331169B2 (en) Hybrid vehicle drive device
US20090023529A1 (en) Hybrid vehicle drive device
EP1370753B1 (en) An accessory drive for driving a balance shaft
CN102791505A (en) Drive device for electric vehicle
BR9915082A (en) Electromotive drive, especially for a pump for a power-assisted steering system for a motor vehicle
KR20050118218A (en) Hydrodynamic converter comprising a primary clutch
JPH05116542A (en) Drive unit for electric car
WO2012120649A1 (en) Drive device for electric vehicle
US11511615B2 (en) Hybrid drive transmission with E-motor rotor resolver integrated with auxiliary drive
US6840208B2 (en) Drive for one or more engine accessories
US6773315B2 (en) Power train
JP2000297850A (en) Power transmission device with planetary speed reducing increasing mechanism
US5649456A (en) Transmission gear support structure
AU2001282308A1 (en) Power train
JP5956552B2 (en) Electric vehicle drive
FI92855C (en) Adjustable camshaft arrangement for camshaft on a large diesel engine
US7055663B2 (en) Hydrodynamic torque converter
JP2576055Y2 (en) Torque sensor mounting structure
JP2006254570A (en) Hybrid drive device
US11536359B2 (en) Arrangement of a rotor position sensor
US5078238A (en) Brake system
KR100254206B1 (en) Automatic transmission
JP2508163Y2 (en) Rotating electric machine with built-in one-way clutch
JP2001083168A (en) Rotation detector for propeller

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PAYNE, MATTHEW;REEL/FRAME:055728/0116

Effective date: 20210325

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE