US11438692B2 - Directional sound generation method and device for audio apparatus, and audio apparatus - Google Patents

Directional sound generation method and device for audio apparatus, and audio apparatus Download PDF

Info

Publication number
US11438692B2
US11438692B2 US17/309,142 US201817309142A US11438692B2 US 11438692 B2 US11438692 B2 US 11438692B2 US 201817309142 A US201817309142 A US 201817309142A US 11438692 B2 US11438692 B2 US 11438692B2
Authority
US
United States
Prior art keywords
user
loudspeaker
vertical
sound
audio device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US17/309,142
Other languages
English (en)
Other versions
US20220014845A1 (en
Inventor
Chuantao ZHANG
Qing Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goertek Inc
Original Assignee
Goertek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goertek Inc filed Critical Goertek Inc
Assigned to GOERTEK INC. reassignment GOERTEK INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WANG, QING, Zhang, Chuantao
Publication of US20220014845A1 publication Critical patent/US20220014845A1/en
Application granted granted Critical
Publication of US11438692B2 publication Critical patent/US11438692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/323Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/02Details casings, cabinets or mounting therein for transducers covered by H04R1/02 but not provided for in any of its subgroups
    • H04R2201/025Transducer mountings or cabinet supports enabling variable orientation of transducer of cabinet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic

Definitions

  • This Application pertains to a method and apparatus for directional sound emission of an audio device, and an audio device.
  • Smart-home devices With the growth in the living standard, smart-home devices are becoming increasingly popular in everyday life. Smart audio devices, as one of them, are enormous popular, and the users have very high requirements on the sound effect of smart audio devices.
  • the present disclosure provides a method and apparatus for directional sound emission of an audio device, and an audio device, to solve the problem of conventional audio devices that the orientation of the loudspeaker is fixed.
  • One aspect of the present disclosure provides a method for directional sound emission of an audio device, wherein the audio device comprises a built-in loudspeaker whose opening direction is adjustable and a spherical microphone array, the spherical microphone array comprises a plurality of microphones that are spherically disposed, and the method for directional sound emission comprises: by using the spherical microphone array, determining a spatial position of a sound-emission sound source of a user; according to a relationship among the spatial position of the sound-emission sound source of the user, a center position of the audio device and an opening position of the loudspeaker, determining a horizontal compensatory angle and a vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the user, respectively; adjusting the opening direction of the loudspeaker, so that the horizontal compensatory angle and the vertical compensatory angle are made to be zero.
  • the method for directional sound emission by using the spherical microphone array, can accurately determine the spatial position of the sound-emission sound source of the user; based on the position relationship among the spatial position of the sound-emission sound source of the user, the center position of the audio device and the opening position of the loudspeaker, can determine the horizontal compensatory angle and the vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the user; and, by adjusting the opening direction of the loudspeaker, so that the two compensatory angles are made to be zero, can realize the adjustment of the two degrees of freedom of the loudspeaker, which enables the opening direction of the loudspeaker to be aligned with the spatial position of the user in real time and accurately, and ensures that the user is within the area of the optimum sound effect of the audio device, thereby improving the acoustic experience of the user.
  • an apparatus for directional sound emission of an audio device wherein the audio device comprises a built-in loudspeaker whose opening direction is adjustable, and a spherical microphone array, the spherical microphone array comprises a plurality of microphones that are spherically disposed, and the apparatus for directional sound emission comprises: a locating unit configured for, by using the spherical microphone array, determining a spatial position of a sound-emission sound source of a user; a calculating unit configured for, according to a relationship among the spatial position of the sound-emission sound source of the user, a center position of the audio device and an opening position of the loudspeaker, determining a horizontal compensatory angle and a vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the user, respectively; and an adjusting unit configured for adjusting the opening direction of the loudspeaker, so that the horizontal compensatory angle and the vertical compensatory angle are made to be zero.
  • the apparatus for directional sound emission by using the locating unit to drive the spherical microphone array, can accurately determine the spatial position of the sound-emission sound source of the user; by using the calculating unit, based on the position relationship among the spatial position of the sound-emission sound source of the user, the center position of the audio device and the opening position of the loudspeaker, can determine the horizontal compensatory angle and the vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the user; and, by adjusting the opening direction of the loudspeaker with the adjusting unit, so that the two compensatory angles are made to be zero, can realize the adjustment of the two degrees of freedom of the loudspeaker, which enables the opening direction of the loudspeaker to be aligned with the spatial position of the user in real time and accurately, and ensures that the user is within the area of the optimum sound effect of the audio device, thereby improving the acoustic experience of the user.
  • the audio device comprises a built-in loudspeaker whose opening direction is adjustable, and a spherical microphone array, and further comprises a processor and a machine-readable storage medium that stores a machine-executable instruction, and by reading and executing the machine-executable instruction in the machine-readable storage medium, the processor is able to implement the method for directional sound emission of an audio device described above.
  • the audio device by using the spherical microphone array, can accurately determine the spatial position of the sound-emission sound source of the user; based on the position relationship among the spatial position of the sound-emission sound source of the user, the center position of the audio device and the opening position of the loudspeaker, can determine the horizontal compensatory angle and the vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the user; and by adjusting the opening direction of the loudspeaker, so that the two compensatory angles are made to be zero, can realize the adjustment of the two degrees of freedom of the loudspeaker, which enables the opening direction of the loudspeaker to be aligned with the spatial position of the user in real time and accurately, and ensures that the user is within the area of the optimum sound effect of the audio device, thereby improving the acoustic experience of the user.
  • Another aspect of the present disclosure provides a machine-readable storage medium, wherein the machine-readable storage medium stores a machine-executable instruction, and the machine-executable instruction, when executed by a processor, implements the method for directional sound emission of an audio device described above.
  • FIG. 1 is a schematic diagram of the audio device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram in which the loudspeaker of the audio device according to an embodiment of the present disclosure faces the user;
  • FIG. 3 is a schematic diagram of the center position of the audio device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of the opening position of the loudspeaker according to an embodiment of the present disclosure
  • FIG. 5 is a flow chart of the method for directional sound emission of an audio device according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of the rectangular plane coordinate system according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of the rectangular vertical coordinate system according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the vertical position coordinate of the spatial position of the ear of the user according to an embodiment of the present disclosure
  • FIG. 9 is a structural block diagram of the apparatus for directional sound emission of an audio device according to an embodiment of the present disclosure.
  • FIG. 10 is a structural block diagram of the audio device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of the hardware structure of the system according to an embodiment of the present disclosure.
  • FIG. 1 show some block diagrams and/or flow charts. It should be understood that some of the blocks in the block diagrams and/or flow charts or a combination thereof may be implemented by computer program instructions. Those computer program instructions may be provided to a processor of a generic computer, a special-purpose computer or another programmable data processing device, whereby those instructions, when executed by the processor, may create a device for implementing the functions/operations that are described in those block diagrams and/or flow charts.
  • the technique according to the present disclosure may be implemented in the form of hardware and/or software (including firmware, microcode and so on).
  • the technique according to the present disclosure may be in the form of a computer program product on a computer-readable medium storing the instructions, wherein the computer program product may be used by or in combination with an instruction executing system.
  • the computer-readable medium may be any medium that can contain, store, transmit, propagate or transport the instructions.
  • the computer-readable medium may include but is not limited to an electric, magnetic, optical, electromagnetic, infrared or semiconductor system, apparatus, device or propagation medium.
  • the computer-readable medium include: a magnetic storage device, such as a magnetic tape or a hard disk (HDD); an optical storage device, such as an optical disc (CD-ROM); a memory, such as a random access memory (RAM) or a flash memory; and/or a wired/wireless communication link.
  • a magnetic storage device such as a magnetic tape or a hard disk (HDD)
  • an optical storage device such as an optical disc (CD-ROM)
  • CD-ROM compact disc
  • a memory such as a random access memory (RAM) or a flash memory
  • RAM random access memory
  • the composing structure of the audio device according to the present disclosure will be firstly described in the following embodiment, in which embodiment the audio device includes audio products such as a smart loudspeaker box.
  • the audio device comprises a built-in loudspeaker whose opening direction is adjustable and a spherical microphone array.
  • the spherical microphone array comprises a plurality of microphones that are spherically disposed.
  • the opening direction of the built-in loudspeaker is adjusted by an adjusting mechanism.
  • the adjusting mechanism comprises a rotation motor 1 and an elevator motor 2 .
  • the rotation motor 1 may be sucked or fixed to a bottom plate of the audio device.
  • a rotation support 3 is provided on the rotation motor 1 .
  • the rotation motor 1 may drive the rotation support 3 to rotate by 360° in the horizontal direction.
  • the rotation support 3 comprises a supporting arm.
  • a loudspeaker 4 is fixedly mounted in a loudspeaker installing frame 5 .
  • the loudspeaker installing frame 5 is mounted to the rotation support 3 via the supporting arm.
  • the loudspeaker installing frame 5 is mounted to the supporting arm by shaft coupling; for example, a mounting hole is provided in the supporting arm, a rotation shaft is provided at the loudspeaker installing frame 5 , and the shaft coupling between the loudspeaker installing frame 5 and the rotation support 3 is realized by the feting of the mounting hole and the rotation shaft.
  • the elevator motor 2 is provided on the rotation support 3 , an axle 51 is provided at a boundary frame of the loudspeaker installing frame 5 that is opposite to the opening position of the loudspeaker, and a telescopic arm of the elevator motor 2 is connected to the axle 51 , to realize the rotary connection between the loudspeaker installing frame 5 and telescopic arm of the elevator motor 2 .
  • the audio device further comprises a PCBA board 6 , on which components such as the spherical microphone array, a CPU and a motor driving chip are integrated.
  • a sound-emission port is provided at the position of the top cover of the audio device that corresponds to the microphone, to enable the microphone to pick up external sound signals.
  • the opening position of the loudspeaker is the center position of the opening of the loudspeaker.
  • the center position of the audio device is located on the space vertical central line of the audio device.
  • the space vertical central line of the audio device represents the space vertical central line of the audio device, wherein when the audio device is of a cylindrical structure, the space vertical central line of the audio device is the central axis of the cylinder; and the L2-L4 represent the opening direction in three different directions of the loudspeaker respectively, wherein when the opening direction of the loudspeaker is any one of the directions, the connecting lines between the opening positions of the loudspeaker and the center position of the audio device always intersect at the same one point.
  • the CPU determines the spatial position of the sound-emission sound source of the user; according to the relationship among the spatial position of the sound-emission sound source of the user, the center position of the audio device and the opening position of the loudspeaker, determines the horizontal compensatory angle and the vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the user, the CPU generates the corresponding controlling instruction and sends to the motor driving chip, and the motor driving chip according to the horizontal compensatory angle and the vertical compensatory angle, and controls the rotation motor and the elevator motor according to the controlling instruction, so that the horizontal compensatory angle and the vertical compensatory angle are made to be zero, and adjusting the opening direction of the loudspeaker, to enable the opening direction of the loudspeaker to be aligned with the position of the user, to ensure that the user is within the area of the optimum sound effect of the audio device.
  • An aspect of the present disclosure provides a method for directional sound emission of an audio device.
  • the audio device comprises a built-in loudspeaker whose opening direction is adjustable, and a spherical microphone array.
  • the spherical microphone array comprises a plurality of microphones that are spherically disposed.
  • the structure of the audio device according to the present embodiment may refer to the audio device described above.
  • FIG. 5 is a flow chart of the method for directional sound emission of an audio device according to an embodiment of the present disclosure. As shown in FIG. 5 , the method according to the present embodiment comprises:
  • the present embodiment by using the spherical microphone array, can determine the spatial position of the sound-emission sound source of the user; based on the position relationship among the spatial position of the sound-emission sound source of the user, the center position of the audio device and the opening position of the loudspeaker, can determine the horizontal compensatory angle and the vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the user; and by adjusting the opening direction of the loudspeaker, so that the two compensatory angles are made to be zero, can realize the adjustment of the two degrees of freedom of the loudspeaker, which enables the opening direction of the loudspeaker to be aligned with the spatial position of the user in real time and accurately, and ensures that the user is within the area of the optimum sound effect of the audio device, thereby improving the acoustic experience of the user.
  • FIG. 6 is a schematic diagram of the rectangular plane coordinate system according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of the rectangular vertical coordinate system according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the vertical position coordinate of the spatial position of the ear of the user according to an embodiment of the present disclosure.
  • the steps S 510 -S 530 will be described in detail below with reference to FIGS. 6-8 .
  • the step S 510 is performed, i.e., by using the spherical microphone array, determining a spatial position of a sound-emission sound source of a user.
  • the spatial position of the sound-emission sound source of the user may be determined in the following manner:
  • a sound-source locating model is established in advance, wherein the sound-source locating model comprises a first distance parameter, a second distance parameter and a third distance parameter, wherein the first distance parameter includes respective distances from the sound source to the two microphones in the horizontal plane, the second distance parameter includes respective distances from the sound source to the two microphones in the vertical plane, and the third distance parameter includes the distance between the two microphones in the horizontal plane and the distance between the two microphones in the vertical plane.
  • a space rectangular coordinate system may be established by using the center position of the audio device as the origin of coordinates, using the opening direction of the loudspeaker as the x-axis, and using the direction perpendicular to the opening direction of the loudspeaker as the y-axis.
  • the position of the sound source in that plane can be located. Therefore, the position of the sound source in the horizontal plane can be located by using the microphones in the spherical microphone array that are located in the same one horizontal plane, and the position of the sound source in the vertical plane can be located by using the microphone in the spherical microphone array that is perpendicular to the horizontal plane. Therefore, the spatial coordinates of the position of the sound-emission sound source can be accurately located.
  • the microphones in the spherical microphone array that receive sound signals that satisfy preset conditions are determined as the first microphones and second microphones, wherein the first microphones include two microphones that are parallel in the horizontal direction, and the second microphones include two microphones that are parallel in the vertical direction, wherein the two microphones in the spherical microphone array and located in the same one horizontal plane that receive the sound signals having the highest intensities are determined as the first microphones, and the two microphones in the spherical microphone array and located in the same one vertical plane that receive the sound signals having the highest intensities are determined as the second microphones.
  • the distances from the sound-emission sound source of the user to each of the microphones of the first microphones and the second microphones are acquired, and according to the position coordinates in the space rectangular coordinate system of each of the microphones in the spherical microphone array, the distance between the two microphones of the first microphones and the distance between the two microphones of the second microphones are acquired; wherein, by using the differences between the intensity values of the sound signals of the sound-emission sound source that are received by each of the microphones of the first microphones and the second microphones and the intensity value of the sound signal of the sound-emission sound source of the user, obtaining the distances from the sound-emission sound source of the user to each of the microphones of the first microphones and the second microphones; wherein, by using a diastimeter provided at the opening of the loudspeaker, measuring the distance between the sound-emission sound source of the user and the opening of the loudspeaker, and according to the position coordinates of each of the microphones and the distances between
  • the position coordinates in the space rectangular coordinate system of the sound-emission sound source of the user are obtained.
  • the step S 520 is performed, i.e., according to a relationship among the spatial position of the sound-emission sound source of the user, a center position of the audio device and an opening position of the loudspeaker, determining a horizontal compensatory angle and a vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the user, respectively.
  • the opening direction of the loudspeaker comprises a direction of the opening position that is indicated by a first connecting line between the center position of the audio device and the opening position of the loudspeaker; wherein the center position of the audio device is located on a space vertical central line of the audio device.
  • the connecting line between the center position of the audio device (i.e., the position of the intersection point of the L1-L4) and the opening position of the loudspeaker, when facing the due left is set to be the first connecting line.
  • the L2 is the first connecting line
  • the L3 is the first connecting line
  • the L4 is the first connecting line
  • the spatial position of the sound-emission sound source of the user comprises the spatial position of the mouth of the user.
  • the method may comprise determining the horizontal compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the sound-emission sound source of the user, adjusting the opening direction of the loudspeaker, so that the horizontal compensatory angle is made to be zero.
  • the method may comprise determining the vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the sound-emission sound source of the user and/or a spatial position of an ear of the user, and adjusting the opening direction of the loudspeaker, so that the vertical compensatory angle is made to be zero.
  • the method may comprise, by determining the horizontal compensatory angle to be the angle of the opening direction of the loudspeaker relative to the spatial position of the sound-emission sound source of the user, and by adjusting the horizontal compensatory angle to be zero, rendering the opening of the loudspeaker face the direction of the sound-emission sound source of the user, i.e., towards the two ears of the user, and making the opening direction of the loudspeaker towards the two ears of the user in the horizontal direction; and by determining the vertical compensatory angle to be the angle of the opening direction of the loudspeaker relative to the spatial position of the sound-emission sound source of the user (or the ears of the user), and by adjusting the vertical compensatory angle to be zero, rendering the opening direction of the loudspeaker towards the spatial position of the sound-emission sound source of the user (or the two ears of the user) in the vertical direction
  • the horizontal compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the user is determined in the following manner: determining the horizontal compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the sound-emission sound source of the user, adjusting the opening direction of the loudspeaker, so that the horizontal compensatory angle is made to be zero.
  • the method for calculating the horizontal compensatory angle comprises: establishing a rectangular plane coordinate system with the center position of the audio device as an origin, wherein the x-axis of the established rectangular plane coordinate system is the straight line where the connecting line between the opening position of the loudspeaker and the center position of the audio device is located; by using the spherical microphone array, determining a horizontal position coordinate of the spatial position of the sound-emission sound source of the user, which means that, by using the sound-source locating model described above, the horizontal position coordinate (Xa, Ya) of the sound-emission sound source of the user in the XOY plane can be determined; and according to a second connecting line between the horizontal position coordinate and the center position of the audio device together with the first connecting line, forming the horizontal compensatory angle in the rectangular plane coordinate system, and referring to FIG. 6 , determining the included angle ⁇ formed by the connecting line between the point of the horizontal position coordinate of the sound-emission sound source of the user and the origin of coordinates,
  • the vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the user is determined in the following manner: determining the vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the sound-emission sound source of the user and/or a spatial position of an ear of the user, i.e., determining the vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the sound-emission sound source of the user, or determining the vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the ear of the user; and adjusting the opening direction of the loudspeaker, so that the vertical compensatory angle is made to be zero.
  • the method for calculating the vertical compensatory angle comprises: establishing a rectangular vertical coordinate system with the center position of the audio device as an origin, wherein the x-axis of the established rectangular vertical coordinate system is the straight line where the connecting line between the opening position of the loudspeaker and the center position of the audio device is located, or in other words, is the XOZ plane in the space rectangular coordinate system shown in FIG.
  • the spherical microphone array determines a vertical position coordinate of the spatial position of the sound-emission sound source of the user as a first vertical coordinate, wherein, by using the sound-source locating model described above, the first vertical position coordinate (Xa, Za) of the sound-emission sound source of the user in the XOZ plane can be determined; and according to a third connecting line between the first vertical coordinate and the center position of the audio device together with the first connecting line, forming the vertical compensatory angle in the rectangular vertical coordinate system as a first vertical compensatory angle, and referring to FIG. 7 , determining the included angle ⁇ formed by the connecting line between the point A of the first vertical position coordinate of the sound-emission sound source of the user and the origin of coordinates and the x-axis as the first vertical compensatory angle shown in FIG. 7 .
  • the method for calculating the vertical compensatory angle comprises: according to a first vertical position coordinate of the spatial position of the sound-emission sound source of the user, and a preset distance and/or angle relation in the rectangular vertical coordinate system between the spatial position of the ear of the user and the spatial position of the sound-emission sound source, determining the vertical position coordinate of the spatial position of the ear of the user as a second vertical coordinate; according to the third connecting line between the first vertical coordinate and the center position of the audio device together with a fourth connecting line between the second vertical coordinate and the center position of the audio device, forming a difference vertical compensatory angle as a second vertical compensatory angle; and adjusting the opening direction of the loudspeaker, so that a sum of the first vertical compensatory angle and the second vertical compensatory angle is made to be zero.
  • the first vertical coordinate (Xa, Za) of the spatial position A of the sound-emission sound source of the user may be calculated.
  • the preset distance and/or angle relation in the rectangular vertical coordinate system between the spatial position of the ear of the user and the spatial position of the sound-emission sound source includes the distance relation in the rectangular vertical coordinate system between the spatial position of the ear of the user and the spatial position of the sound-emission sound source, for example, when the distance relation includes the ⁇ X and the ⁇ Z shown in FIG.
  • the second vertical coordinate (Xb, Zb) of the spatial position B of the ear of the user can be obtained.
  • the distance relation includes the angle w and the distance ⁇ X (or the distance ⁇ Z) between the connecting line between the mouth and the ear and the relative horizontal direction shown in FIG. 8
  • the second vertical coordinate (Xb, Zb) of the spatial position B of the ear of the user can be obtained.
  • the included angle between the connecting line between the point B of the second vertical coordinate of the spatial position of the ear of the user and the origin of coordinates and the connecting line between the point A of the first vertical coordinate of the spatial position of the sound-emission sound source of the user and the origin of coordinates, as shown in FIG. 8 is determined as the second vertical compensatory angle ⁇ , and by adjusting the opening direction of the loudspeaker, the sum of the first vertical compensatory angle ⁇ and the second vertical compensatory angle ⁇ (i.e., the angle ⁇ ) is made to be zero, which makes the opening direction of the loudspeaker to be aligned with the ear of the user in the vertical direction, thereby improving the accuracy of the directional sound emission of the loudspeaker.
  • the step S 530 is performed, i.e., adjusting the opening direction of the loudspeaker, so that the horizontal compensatory angle and the vertical compensatory angle are made to be zero.
  • this step can adjust the opening direction of the loudspeaker, to realize the adjustment of the two degrees of freedom of the opening direction of the loudspeaker, i.e., the vertical angle corresponding to the pitching direction of the audio device and the horizontal angle corresponding to the rotation direction of the audio device, to achieve the object of accurately controlling the directional sound emission of the loudspeaker, thereby improving the acoustic experience of the user.
  • Another aspect of the present disclosure provides an apparatus for directional sound emission of an audio device.
  • the audio device comprises a built-in loudspeaker whose opening direction is adjustable and a spherical microphone array.
  • the spherical microphone array comprises a plurality of microphones that are spherically disposed.
  • FIG. 9 is a structural block diagram of the apparatus for directional sound emission of an audio device according to an embodiment of the present disclosure. As shown in FIG. 9 , the apparatus according to the present embodiment comprises:
  • a locating unit 91 configured for, by using the spherical microphone array, determining a spatial position of a sound-emission sound source of a user
  • a calculating unit 92 configured for, according to a relationship among the spatial position of the sound-emission sound source of the user, a center position of the audio device and an opening position of the loudspeaker, determining a horizontal compensatory angle and a vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the user respectively;
  • an adjusting unit 93 configured for adjusting the opening direction of the loudspeaker, so that the horizontal compensatory angle and the vertical compensatory angle are made to be zero.
  • the apparatus for directional sound emission by using the locating unit to drive the spherical microphone array, can accurately determine the spatial position of the sound-emission sound source of the user; by using the calculating unit, based on the position relationship among the spatial position of the sound-emission sound source of the user, the center position of the audio device and the opening position of the loudspeaker, can determine the horizontal compensatory angle and the vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the user; and by adjusting the opening direction of the loudspeaker with the adjusting unit, the two compensatory angles are made to be zero, can realize the adjustment of the two degrees of freedom of the loudspeaker, which enables the opening direction of the loudspeaker to be aligned with the spatial position of the user in real time and accurately, and ensures that the user is within the area of the optimum sound effect of the audio device, thereby improving the acoustic experience of the user.
  • the opening direction of the loudspeaker comprises a direction of the opening position that is indicated by a first connecting line between the center position of the audio device and the opening position of the loudspeaker, wherein the center position of the audio device is located on a space vertical central line of the audio device; and the spatial position of the sound-emission sound source comprises a spatial position of a mouth of the user.
  • the calculating unit 92 is configured for determining the horizontal compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the sound-emission sound source of the user, and the adjusting unit 93 is configured for adjusting the opening direction of the loudspeaker, so that the horizontal compensatory angle is made to be zero.
  • the calculating unit 92 is particularly configured for establishing a rectangular plane coordinate system with the center position of the audio device as an origin; by using the spherical microphone array, determining a horizontal position coordinate of the spatial position of the sound-emission sound source of the user; and according to a second connecting line between the horizontal position coordinate and the center position of the audio device together with the first connecting line, forming the horizontal compensatory angle in the rectangular plane coordinate system.
  • the calculating unit 92 is configured for determining the vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the sound-emission sound source of the user and/or a spatial position of an ear of the user; and the adjusting unit 93 is configured for adjusting the opening direction of the loudspeaker, so that the vertical compensatory angle is made to be zero.
  • the calculating unit 92 is particularly configured for establishing a rectangular vertical coordinate system with the center position of the audio device as an origin; by using the spherical microphone array, determining a vertical position coordinate of the spatial position of the sound-emission sound source of the user as a first vertical coordinate; and according to a third connecting line between the first vertical coordinate and the center position of the audio device together with the first connecting line, forming the vertical compensatory angle in the rectangular vertical coordinate system as a first vertical compensatory angle.
  • the calculating unit 92 is particularly configured for, according to a first vertical position coordinate of the spatial position of the sound-emission sound source of the user, and a preset distance and/or angle relation in the rectangular vertical coordinate system between the spatial position of the ear of the user and the spatial position of the sound-emission sound source, determining the vertical position coordinate of the spatial position of the ear of the user as a second vertical coordinate; according to the third connecting line between the first vertical coordinate and the center position of the audio device together with a fourth connecting line between the second vertical coordinate and the center position of the audio device, forming a difference vertical compensatory angle as a second vertical compensatory angle; and adjusting the opening direction of the loudspeaker, so that a sum of the first vertical compensatory angle and the second vertical compensatory angle is made to be zero.
  • the relative parts may refer to the description on the process embodiments.
  • the above-described device embodiments are merely illustrative, wherein the units that are described as separate components may or may not be physically separate, and the components that are displayed as units may or may not be physical units; in other words, they may be located at the same one location, and may also be distributed to a plurality of network units. Part or all of the modules may be selected according to the actual demands to realize the purposes of the solutions of the embodiments. A person skilled in the art can understand and implement the technical solutions without paying creative work.
  • Another aspect of the present disclosure provides an audio device.
  • FIG. 10 is a structural block diagram of the audio device according to an embodiment of the present disclosure.
  • the audio device comprises a built-in loudspeaker whose opening direction is adjustable, and a spherical microphone array.
  • the spherical microphone array comprises a plurality of microphones that are spherically disposed.
  • the audio device further comprises a processor and a machine-readable storage medium that stores a machine-executable instruction, and by reading and executing the machine-executable instruction in the machine-readable storage medium, the processor is able to implement the method for directional sound emission of an audio device described above.
  • the audio device by using the spherical microphone array, can accurately determine the spatial position of the sound-emission sound source of the user; based on the position relationship among the spatial position of the sound-emission sound source of the user, the center position of the audio device and the opening position of the loudspeaker, can determine the horizontal compensatory angle and the vertical compensatory angle of the opening direction of the loudspeaker relative to the spatial position of the user; and by adjusting the opening direction of the loudspeaker, so that the two compensatory angles are made to be zero, can realize the adjustment of the two degrees of freedom of the loudspeaker, which enables the opening direction of the loudspeaker to be aligned with the spatial position of the user in real time and accurately, and ensures that the user is within the area of the optimum sound effect of the audio device, thereby improving the acoustic experience of the user.
  • the audio device comprises a rotation motor and an elevator motor.
  • a loudspeaker installing frame installed with the loudspeaker is rotatably installed on a rotation support.
  • the rotation support is rotatably installed on the rotation motor, and the rotation motor drives the rotation support to rotate, to drive the loudspeaker installing frame to rotate, to realize the rotation of the loudspeaker in the horizontal direction.
  • the elevator motor is installed on the rotation support.
  • a telescopic arm of the elevator motor is rotatably connected to an axle of the loudspeaker installing frame. The axle is provided at a boundary-frame position of the loudspeaker installing frame that is opposite to the opening position of the loudspeaker.
  • the elevator motor drives the loudspeaker installing frame to rotate vertically, to realize the rotation of the loudspeaker in the vertical direction.
  • the system can accurately control the loudspeaker to directionally emit sound, to enable the loudspeaker to be aligned with the ears of the user, which ensures that the user is in real time within the area of the optimum sound effect of the audio device, thereby improving the acoustic experience of the user.
  • the system according to the present application may be implemented by software, and may also be implemented by hardware or a combination of software and hardware.
  • the system according to the present application may comprise a processor 1101 and a machine-readable storage medium 1102 that stores a machine-executable instruction.
  • the processor 1101 and the machine-readable storage medium 1102 may communicate via a system bus 1103 .
  • the processor 1101 can implement the method for directional sound emission of an audio device described above.
  • Another aspect of the present disclosure provides a machine-readable storage medium.
  • the machine-readable storage medium stores a machine-executable instruction, and the machine-executable instruction, when executed by a processor, implements the method for directional sound emission of an audio device stated above.
  • the readable storage medium may, for example, be any medium that can contain, store, transmit, propagate or transport the instruction.
  • the readable storage medium may include but is not limited to an electric, magnetic, optical, electromagnetic, infrared or semiconductor system, apparatus, device or propagation medium.
  • Particular examples of the readable storage medium include: a magnetic storage device, such as a magnetic tape or a hard disk (HDD); an optical storage device, such as an optical disc (CD-ROM); a memory, such as a random access memory (RAM) or a flash memory; and/or a wired/wireless communication link.
  • the machine-readable storage medium may contain a computer program, and the computer program may contain a code/computer-executable instruction, which, when executed by a processor, causes the processor to implement, for example, the process of the method for directional sound emission of an audio device described above and any equivalent thereof.
  • the computer program may be configured to have a computer program code containing, for example, a computer program module.
  • the code in the computer program may comprise one or more program modules. It should be noted that the division manner and the quantity of the modules are not fixed, and a person skilled in the art can use suitable program modules or a combination of program modules according to actual conditions. When the combination of those program modules is executed by a processor, the processor can implement, for example, the process of the method for directional sound emission of an audio device described above and any equivalent thereof.
  • first and second are used to distinguish identical items or similar items that have substantially the same functions and effects, and a person skilled in the art can understand that the terms such as “first” and “second” do not limit the quantity and the execution order.

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Stereophonic System (AREA)
US17/309,142 2018-10-29 2018-12-29 Directional sound generation method and device for audio apparatus, and audio apparatus Active US11438692B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811270158.5A CN109068234A (zh) 2018-10-29 2018-10-29 一种音频设备定向发声方法、装置、音频设备
CN201811270158.5 2018-10-29
PCT/CN2018/125229 WO2020087745A1 (zh) 2018-10-29 2018-12-29 一种音频设备定向发声方法、装置、音频设备

Publications (2)

Publication Number Publication Date
US20220014845A1 US20220014845A1 (en) 2022-01-13
US11438692B2 true US11438692B2 (en) 2022-09-06

Family

ID=64767684

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/309,142 Active US11438692B2 (en) 2018-10-29 2018-12-29 Directional sound generation method and device for audio apparatus, and audio apparatus

Country Status (3)

Country Link
US (1) US11438692B2 (zh)
CN (1) CN109068234A (zh)
WO (1) WO2020087745A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109068234A (zh) * 2018-10-29 2018-12-21 歌尔科技有限公司 一种音频设备定向发声方法、装置、音频设备
CN110619895A (zh) * 2019-09-06 2019-12-27 Oppo广东移动通信有限公司 定向发声控制方法及装置、发声设备、介质和电子设备
CN113572878A (zh) * 2020-04-29 2021-10-29 维沃移动通信有限公司 电子设备及其控制方法和控制装置、可读存储介质
CN111683171A (zh) * 2020-05-28 2020-09-18 维沃移动通信有限公司 音频输出方法及电子设备
CN112672251B (zh) * 2020-12-25 2024-04-12 通力科技股份有限公司 一种扬声器的控制方法和系统、存储介质及扬声器
CN113079453B (zh) * 2021-03-18 2022-10-28 长沙联远电子科技有限公司 一种听觉音效智能跟随方法及系统

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008051661A1 (en) 2006-10-24 2008-05-02 Motorola, Inc. Speaker directionality for user interface enhancement
US20110135125A1 (en) 2008-08-19 2011-06-09 Wuzhou Zhan Method, communication device and communication system for controlling sound focusing
US20140003611A1 (en) 2012-07-02 2014-01-02 Qualcomm Incorporated Systems and methods for surround sound echo reduction
CN104035065A (zh) 2014-06-23 2014-09-10 河北工业大学 基于主动旋转的声源定向装置及其应用方法
CN104301664A (zh) 2013-07-19 2015-01-21 松下电器产业株式会社 指向性控制系统、指向性控制方法、收音系统及收音控制方法
US20160021478A1 (en) 2014-07-18 2016-01-21 Oki Electric Industry Co., Ltd. Sound collection and reproduction system, sound collection and reproduction apparatus, sound collection and reproduction method, sound collection and reproduction program, sound collection system, and reproduction system
CN107170440A (zh) 2017-05-31 2017-09-15 宇龙计算机通信科技(深圳)有限公司 定向传声方法、装置、移动终端及计算机可读存储介质
CN206658288U (zh) 2017-04-24 2017-11-21 潍坊歌尔电子有限公司 智能音箱
CN108107407A (zh) 2017-12-18 2018-06-01 黑龙江大学 一种基于空间分布式麦克风的三维声源定位方法
CN108551619A (zh) 2018-04-13 2018-09-18 深圳市沃特沃德股份有限公司 智能定向音响系统及其交互方法
CN109068234A (zh) 2018-10-29 2018-12-21 歌尔科技有限公司 一种音频设备定向发声方法、装置、音频设备
US20200103939A1 (en) * 2018-09-28 2020-04-02 Via Labs, Inc. Dock of mobile communication device and operation method therefor
US20200221225A1 (en) * 2019-01-06 2020-07-09 Frank Joseph Pompei Private personal communications device
US20200329308A1 (en) * 2017-10-11 2020-10-15 Sony Corporation Voice input device and method, and program
US11086597B2 (en) * 2017-11-06 2021-08-10 Google Llc Methods and systems for attending to a presenting user

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008051661A1 (en) 2006-10-24 2008-05-02 Motorola, Inc. Speaker directionality for user interface enhancement
US20110135125A1 (en) 2008-08-19 2011-06-09 Wuzhou Zhan Method, communication device and communication system for controlling sound focusing
US20140003611A1 (en) 2012-07-02 2014-01-02 Qualcomm Incorporated Systems and methods for surround sound echo reduction
CN104301664A (zh) 2013-07-19 2015-01-21 松下电器产业株式会社 指向性控制系统、指向性控制方法、收音系统及收音控制方法
US20150023524A1 (en) 2013-07-19 2015-01-22 Panasonic Corporation Directivity control system, directivity control method, sound collection system and sound collection control method
CN104035065A (zh) 2014-06-23 2014-09-10 河北工业大学 基于主动旋转的声源定向装置及其应用方法
US20160021478A1 (en) 2014-07-18 2016-01-21 Oki Electric Industry Co., Ltd. Sound collection and reproduction system, sound collection and reproduction apparatus, sound collection and reproduction method, sound collection and reproduction program, sound collection system, and reproduction system
CN206658288U (zh) 2017-04-24 2017-11-21 潍坊歌尔电子有限公司 智能音箱
CN107170440A (zh) 2017-05-31 2017-09-15 宇龙计算机通信科技(深圳)有限公司 定向传声方法、装置、移动终端及计算机可读存储介质
US20200329308A1 (en) * 2017-10-11 2020-10-15 Sony Corporation Voice input device and method, and program
US11086597B2 (en) * 2017-11-06 2021-08-10 Google Llc Methods and systems for attending to a presenting user
CN108107407A (zh) 2017-12-18 2018-06-01 黑龙江大学 一种基于空间分布式麦克风的三维声源定位方法
CN108551619A (zh) 2018-04-13 2018-09-18 深圳市沃特沃德股份有限公司 智能定向音响系统及其交互方法
US20200103939A1 (en) * 2018-09-28 2020-04-02 Via Labs, Inc. Dock of mobile communication device and operation method therefor
CN109068234A (zh) 2018-10-29 2018-12-21 歌尔科技有限公司 一种音频设备定向发声方法、装置、音频设备
US20200221225A1 (en) * 2019-01-06 2020-07-09 Frank Joseph Pompei Private personal communications device

Also Published As

Publication number Publication date
CN109068234A (zh) 2018-12-21
WO2020087745A1 (zh) 2020-05-07
US20220014845A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
US11438692B2 (en) Directional sound generation method and device for audio apparatus, and audio apparatus
US10701509B2 (en) Emulating spatial perception using virtual echolocation
US9924291B2 (en) Distributed wireless speaker system
US11778411B2 (en) Near-field audio rendering
US11356795B2 (en) Spatialized audio relative to a peripheral device
US20190044549A1 (en) Overhead communications with wireless wearable devices
GB2519172A (en) Configuring an audio system
US10567871B1 (en) Automatically movable speaker to track listener or optimize sound performance
US11979735B2 (en) Apparatus, method, sound system
EP3925235A1 (en) Multi-sensor object tracking for modifying audio
EP4214535A2 (en) Methods and systems for determining position and orientation of a device using acoustic beacons
US11258417B2 (en) Techniques for using computer vision to alter operation of speaker(s) and/or microphone(s) of device
WO2019132110A1 (en) Method and electronic device of managing a plurality of devices
CN103486997B (zh) 镜头拍摄范围确定方法及系统
CN109151659B (zh) 一种音频设备定向发声方法、装置和音频设备
EP3661233B1 (en) Wearable beamforming speaker array
US20230082748A1 (en) Method and device to display extended screen of mobile device
US10445947B2 (en) Methods and apparatus for interacting with a distant object within a virtual reality environment
CN109963249A (zh) 数据处理方法及其系统、计算机系统和计算机可读介质

Legal Events

Date Code Title Description
AS Assignment

Owner name: GOERTEK INC., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, CHUANTAO;WANG, QING;REEL/FRAME:056087/0682

Effective date: 20210420

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE