US11351519B2 - Absorbent polymers, and methods and systems of producing thereof and uses thereof - Google Patents
Absorbent polymers, and methods and systems of producing thereof and uses thereof Download PDFInfo
- Publication number
- US11351519B2 US11351519B2 US16/346,853 US201716346853A US11351519B2 US 11351519 B2 US11351519 B2 US 11351519B2 US 201716346853 A US201716346853 A US 201716346853A US 11351519 B2 US11351519 B2 US 11351519B2
- Authority
- US
- United States
- Prior art keywords
- polymer
- reactor
- produce
- propiolactone
- beta
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/264—Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01C—PLANTING; SOWING; FERTILISING
- A01C1/00—Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
- A01C1/06—Coating or dressing seed
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/34—Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/24—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/62—Compostable, hydrosoluble or hydrodegradable materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
- B01J19/0013—Controlling the temperature of the process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/06—Solidifying liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/245—Stationary reactors without moving elements inside placed in series
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2455—Stationary reactors without moving elements inside provoking a loop type movement of the reactants
- B01J19/2465—Stationary reactors without moving elements inside provoking a loop type movement of the reactants externally, i.e. the mixture leaving the vessel and subsequently re-entering it
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3014—Kneading
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/09—Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/43—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
- C07C51/44—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
- C07C57/04—Acrylic acid; Methacrylic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D305/00—Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
- C07D305/02—Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
- C07D305/10—Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having one or more double bonds between ring members or between ring members and non-ring members
- C07D305/12—Beta-lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F120/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F120/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F120/04—Acids; Metal salts or ammonium salts thereof
- C08F120/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/01—Processes of polymerisation characterised by special features of the polymerisation apparatus used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/36—Amides or imides
- C08F222/38—Amides
- C08F222/385—Monomers containing two or more (meth)acrylamide groups, e.g. N,N'-methylenebisacrylamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
- C08G63/08—Lactones or lactides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
- C08G63/83—Alkali metals, alkaline earth metals, beryllium, magnesium, copper, silver, gold, zinc, cadmium, mercury, manganese, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/91—Polymers modified by chemical after-treatment
- C08G63/912—Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G81/00—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
- C08G81/02—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C08G81/024—Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
- C08G81/027—Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyester or polycarbonate sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/08—Homopolymers or copolymers of acrylic acid esters
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01C—PLANTING; SOWING; FERTILISING
- A01C21/00—Methods of fertilising, sowing or planting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
- A61F2013/530131—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium being made in fibre but being not pulp
- A61F2013/530226—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium being made in fibre but being not pulp with polymeric fibres
- A61F2013/530313—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium being made in fibre but being not pulp with polymeric fibres being biodegradable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
- A61F2013/530481—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00121—Controlling the temperature by direct heating or cooling
- B01J2219/00123—Controlling the temperature by direct heating or cooling adding a temperature modifying medium to the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2555/00—Personal care
- B32B2555/02—Diapers or napkins
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/12—Physical properties biodegradable
Definitions
- the present disclosure relates generally to polymeric materials, and more specifically to polymeric materials suitable for use as adsorbent materials, and methods of producing thereof.
- Superabsorbent polymers are polymeric materials that can absorb and retain huge amounts of water or aqueous solutions. Such polymeric materials are used extensively for the manufacture of diapers, adult incontinence products, and feminine hygiene products, as well as well as in agricultural applications.
- Superabsorbent polymers are commonly produced from polymerization of acrylic acid. However, due to volatile acrylic acid price and supply deficit, there is a desire in the art to produce polymeric materials with adsorbent properties from alternative sources. In particular, there is a need in the art to produce bio-based, bio-degradable polymeric materials with adsorbent properties, obtained from renewable sources.
- polymeric materials with adsorbent properties that addresses the need in the art.
- Such polymeric materials may be obtained from beta-propiolactone, which may be derived from renewable sources, such as bio-based ethylene oxide and carbon monoxide.
- a method of producing a polymer comprising: combining beta-propiolactone with a metal compound to produce acrylic acid, a salt thereof, or a combination thereof; and polymerizing the acrylic acid, a salt thereof, or a combination thereof, with a polymerization initiator and optionally a cross-linker to produce the polymer.
- the polymerizing is performed neat or in a non-aqueous media.
- the metal compound is M, M 2 O, MOH, or M + (CH 2 ⁇ CHCOO ⁇ ), or a combination thereof.
- a method of producing a polymer comprising:
- polymer comprises repeating units of
- steps (c) and (d) are performed neat or in a non-aqueous media.
- a method of producing a polymer comprising:
- beta-propiolactone with a metal compound in a main reactor, wherein the metal compound initiates the polymerization of at least a portion of the beta-propiolactone to produce polypropiolactone in the main reactor;
- the polymerizing is performed neat or in a non-aqueous media.
- a polymer produced according to any of the methods described herein is cross-linked.
- the polymer is bio-based and/or bio-degradable.
- the polymers described herein, or produced according to the methods described herein may be suitable for use as an absorbent article (e.g., for diapers, adult incontinence products, or feminine hygiene products) or as agricultural products (e.g., for agricultural materials, and seed coatings).
- an absorbent article e.g., for diapers, adult incontinence products, or feminine hygiene products
- agricultural products e.g., for agricultural materials, and seed coatings.
- a system comprising: a main reactor; a distillation column connected to the main reactor; and a kneader reactor connected to the top of the main reactor via the distillation column.
- a system comprising: a main reactor; and a vessel, comprising a distillation column and a kneader reactor, wherein the distillation column is connected to the top of the main reactor.
- the main reactor is configured to: receive an input stream comprising beta-propiolactone, polymerize at least a portion of the beta-propiolactone in the input stream to produce polypropiolactone, thermolyze at least a portion of the polypropiolactone to produce acrylic acid, and volatize at least a portion of the acrylic acid.
- the main reactor is configured to: receive an input stream comprising beta-propiolactone, receive a mixture of a metal compound and heat transfer fluid, polymerize at least a portion of the beta-propiolactone in the input stream in the presence of the metal compound to produce polypropiolactone, thermolyze at least a portion of the polypropiolactone to produce acrylic acid, and volatize at least a portion of the acrylic acid.
- the distillation column is configured to receive the volatized acrylic acid from the main reactor. In certain variations, the distillation column is configured to receive the volatized acrylic acid from the main reactor, and feed the distilled acrylic acid to the kneader reactor.
- the kneader reactor is configured to: receive at least a portion of the acrylic acid distilled from the distillation column, receive a radical initiator, optionally a cross-linker, and a metal or metal salt, produce a partially neutralized polyacrylic acid from at least a portion of the acrylic acid in the kneader reactor, and feed at least a portion of the partially neutralized polyacrylic acid back into the main reactor.
- the main reactor is further configured to: receive the partially neutralized polyacrylic acid from the kneader reactor, and polymerize beta-propiolactone to produce a polymer with polypropiolactone branches; and the main reactor further comprises an outlet configured to output a product stream comprising beta-propiolactone, the polymer and heat transfer fluid.
- FIG. 1 depicts an exemplary system to carry out the methods described herein to produce an absorbent polymer from beta-propiolactone.
- polymers that have absorbent properties.
- such polymers are produced from beta-propiolactone.
- the beta-propiolactone may be produced from carbonylation of ethylene oxide.
- the polymers described herein may be bio-based polymers.
- the polymers described herein may be biodegradable.
- Such superabsorbent polymers may be used for diapers, adult incontinence products, and feminine hygiene products, maintaining or improving the performance of such products.
- provided herein are methods of producing a polymer having a polyacrylic acid backbone and a plurality of polypropiolactone side chains, and decomposing at least a portion of the polypropiolactone side chains to produce polyacrylic acid.
- a method of producing a polymer comprising: combining beta-propiolactone with a metal compound to produce acrylic acid, a salt thereof, or a combination thereof; and polymerizing the acrylic acid, a salt thereof, or a combination thereof, with a polymerization initiator and optionally a cross-linker to produce the polymer.
- the metal compound is a compound of formula M, M 2 O, MOH, or M + (CH 2 ⁇ CHCOO ⁇ ), or a combination thereof.
- a method of producing a polymer comprising:
- polymer comprises repeating units of
- a method of producing a polymer comprising:
- polymer comprises repeating units of
- the methods further comprise isolating at least a portion of the polymer produced in step (d). In yet other variations, the methods further comprise: combining the isolated polymer with additional beta-propiolactone to produce additional polymer intermediate.
- the method is performed continuously.
- the method is performed to balance the exotherm from polymerizing beta-propiolactone to produce the polymer intermediate with the thermolysis of the polymer intermediate.
- the heat of polymerization can be absorbed by the thermolysis of the polypropiolactone side chains, or evaporation of heat-transfer fluid, or the reaction system can be designed to allow proper temperature control.
- the method involves combining or separating some of steps (a)-(d). For example, in certain variations of the foregoing, step (c) and (d) are performed together in one step.
- steps (c) and (d) are performed neat or in a non-aqueous media.
- a method of producing a polymer comprising: combining beta-propiolactone with a metal compound in a main reactor, wherein the metal compound initiates the polymerization of at least a portion of the beta-propiolactone to produce polypropiolactone in the main reactor;
- the polymerization is performed neat or in a non-aqueous media.
- the method further comprises isolating a product stream from the main reactor, wherein the product stream comprises the polymer with polypropiolactone branches.
- the product stream further comprises unreacted beta-propiolactone.
- the method further comprises separating a polymer stream comprising the polymer with polypropiolactone branches from a recycling stream comprising the unreacted beta-propiolactone.
- the method further comprises feeding the recycling stream into the main reactor.
- the radical initiator is used to polymerize acrylic acid, and there is no need to feed additional ionic initiator because the partially neutralized polyacrylic acid initiates polymerization of the beta-propiolactone.
- Beta-propiolactone may be produced by any suitable methods or techniques known in the art.
- beta-propiolactone is produced from ethylene oxide and carbon monoxide. The ethylene oxide undergoes carbonylation in the presence of a carbonylation catalyst and optionally a solvent.
- the methods described herein further comprise: carbonylating ethylene oxide to produce the beta-propiolactone.
- the methods described herein further comprise: combining ethylene oxide, carbon monoxide, a carbonylation catalyst and optionally a solvent to produce the beta-propiolactone.
- the methods described herein further comprise: combining ethylene oxide, carbon monoxide, a carbonylation catalyst and a solvent to produce the beta-propiolactone.
- the beta-propiolactone may be isolated prior to polymerization to produce the polymers described herein.
- the methods described herein further comprise: carbonylating ethylene oxide to produce beta-propiolactone; and isolating at least a portion of the beta-propiolactone produced.
- the methods described herein further comprise: combining ethylene oxide, carbon monoxide, a carbonylation catalyst and optionally a solvent to produce beta-propiolactone; and isolating at least a portion of the beta-propiolactone produced.
- the methods described herein further comprise: combining ethylene oxide, carbon monoxide, a carbonylation catalyst and a solvent to produce beta-propiolactone; and isolating at least a portion of the beta-propiolactone produced.
- the ethylene oxide is provided in gaseous form.
- gaseous ethylene oxide is converted to liquid form and combined with a solvent, a carbonylation catalyst and gaseous carbon monoxide in the reactor.
- the carbon monoxide is provided in gaseous form.
- any suitable carbonylation catalysts may be used to produce the beta-propiolactone.
- the carbonylation catalyst comprises a metal carbonyl compound.
- the carbonylation catalyst is a solid-supported metal carbonyl compound. Suitable carbonylation catalysts are described in, for example, WO 2010/118128.
- the carbonylation catalyst comprises [(TPP)Al] [Co(CO) 4 ], [(ClTPP)Al] [Co(CO) 4 ], [(TPP)Cr] [Co(CO) 4 ], [(C1TPP)Cr] [Co(CO) 4 ], [(salcy)Cr] [Co(CO) 4 ], [(salph)Cr] [Co(CO) 4 ], or [(salph)Al] [Co(CO) 4 ].
- TPP refers to tetraphenylporphyrin
- C1TPP refers to meso-tetra(4-chlorophenyl)porphyrin
- sicy refers to (N, N′-bis(3,5-di-tert-butylsalicylidene)-1,2-diaminocyclohexane)
- siph refers to (N, N′-bis(salicylidene)-o-phenylenediamine).
- the solvent comprises an ether solvent. In one variation, the solvent comprises tetrahydrofuran.
- the ionic initiator comprises a salt of an alkali metal or a salt of an alkaline-earth metal. In certain variations, the ionic initiator comprises a carboxylate salt of an alkali metal, or a salt of an alkaline-earth metal. In one variations, wherein the ionic initiator is a salt of an alkali metal.
- the ionic initiator has a structure of formula CH 2 ⁇ CH 2 CO 2 ⁇ Z + , wherein Z + is an alkali metal, ammonium, a quaternary ammonium cation, or phosphonium.
- the ionic initiator has a structure of formula CH 2 ⁇ CH 2 CO 2 ⁇ Z + , wherein Z + is a quaternary ammonium cation.
- the quaternary ammonium cation is a lower alkyl quaternary ammonium cation.
- the ionic initiator is sodium acrylate, or potassium acrylate. In certain variations, the ionic initiator is a methacrylate. In one variation, the ionic initiator is sodium methacrylate, or potassium methacrylate.
- any combinations of the ionic initiators described herein may also be used.
- the metal compound is M, M 2 O, MOH, or M + (CH 2 ⁇ CHCOO ⁇ ). In certain variations, the metal compound is M, M 2 O, or MOH. In some variations, M is a Group I metal. In certain variations, M is sodium. For example, sodium metal, sodium oxide or sodium hydroxide may be used. Any combinations of the foregoing may also be used.
- the polymerizing in step (d) of the methods described herein is performed in the presence of a polymerization initiator.
- a method of producing a polymer comprising:
- polymer comprises repeating units of
- a method of producing a polymer comprising:
- polymer comprises repeating units of
- the polymerization initiator is a radical initiator.
- the radical initiator comprises a peroxide, a persulfate, or an azo compound.
- the radical initiator is a redox initiator.
- the radical initiator comprises a hydroperoxide.
- the radical initiator comprises hydrogen peroxide.
- the polymerization initiator is a thermal initiator, or a photo initiator, or a combination thereof.
- the polymerization initiator is a peroxide or an acid. In one variation, the polymerization initiator is hydrogen peroxide or ascorbic acid.
- any combinations of the polymerization initiators described herein may also be used.
- the methods described herein further comprise adding a cross-linker to the reactor in step (d) to polymerize at least a portion of the mixture in the reactor to produce the polymer, wherein the polymer is cross-linked.
- a method of producing a polymer comprising:
- polymer comprises repeating units of
- a method of producing a polymer comprising:
- polymer comprises repeating units of
- the cross-linker is an organic compound comprising one or more vinyl groups.
- the organic compound comprises multiple vinyl groups.
- the cross-linkers comprising vinyl groups may radically copolymerize with acrylic acids to form a network of crosslinks.
- the cross-linkers may include, for example, N,N′-methylene-bisacrylamide, N,N′-ethylene-bis-methacrylamide, hexamethylene-bis-acrylamide, triallyl amine, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, pentaerythritol trimethacrylate, and ally methacrylate.
- any combinations of the cross-linkers described herein may also be used.
- system 100 is an exemplary system for producing the polymers described herein.
- System 100 includes reactor 110 .
- the top of reactor 110 is connected to the distillation column portion of vessel 120 , which connects reactor 110 to the kneader reactor portion of vessel 120 .
- Various inputs are fed into vessel 120 , including radical initiator and optional cross-linker 104 , metal or metal salt 106 , and heat transfer fluid 108 .
- Reactor 110 has an inlet to receive beta-propiolactone stream 102 , and an outlet to output product stream 150 comprising the polymers described herein.
- stream 102 comprising beta-propiolactone is fed into reactor 110 containing a mixture of metal or metal salt and heat transfer fluid.
- the metal or metal salt initiates the polymerization of beta-propiolactone to form polypropiolactone in the reactor.
- Reactor 110 may be operated under suitable conditions (for example, at a temperature of 180° C. or higher) to thermolyze at least a portion of the polypropiolactone to form acrylic acid.
- the acrylic acid produced is volatized under the conditions in reactor 110 and distilled as it passes upwardly through the distillation column and into the kneader reaction portion of vessel 120 .
- a continuous feed of radical initiator, cross-linker, and metal or metal salt may be added into the kneader reactor portion of vessel 120 containing acrylic acid from the distillation column to produce cross-linked partially neutralized polyacrylic acid.
- the polymer produced in the kneader reactor may be continuously fed into reactor 110 via the distillation column.
- the carboxylate end groups on the polymer initiate the polymerization of beta-propiolactone to produce a polymer with polypropiolactone branches.
- the polypropiolactone chains on the polymer are thermolyzed to form acrylic acid in reactor 110 .
- a portion of the reaction mixture comprising beta-propiolactone, the polymer, and heat transfer fluid is flowed out of reactor 110 to form product stream 150 .
- product stream 150 may be separated into a polymer stream and a recycling stream comprising beta-propiolactone and the heat-transfer fluid.
- the recycling stream may be fed back into the kneader reactor.
- the separation method for the polymer may include, for example, filtration of product stream 150 .
- system 100 to carry out the methods described herein may have different configurations, including fewer or additional operating units to the system. Moreover, the inputs into system 100 may vary according to the methods described herein.
- a system comprising:
- a vessel comprising a distillation column and a kneader reactor, wherein the distillation column is connected to the top of the main reactor,
- the main reactor is configured to:
- the distillation column is configured to receive the volatized acrylic acid from the main reactor, and feed the acrylic acid to the kneader reactor;
- the kneader reactor is configured to:
- the main reactor is further configured to:
- the main reactor further comprises an outlet configured to output a product stream comprising beta-propiolactone, the polymer and heat transfer fluid.
- a system comprising:
- the main reactor is configured to:
- the distillation column is configured to receive the volatized acrylic acid from the main reactor;
- the kneader reactor is configured to:
- the main reactor is further configured to:
- the main reactor further comprises an outlet configured to output a product stream comprising beta-propiolactone, the polymer and heat transfer fluid.
- the systems described herein may be configured to receive beta-propiolactone provided or produced according to any of the methods described herein.
- the input stream comprising beta-propiolactone is produced by carbonylating ethylene oxide.
- the system further comprises a carbonylation reactor configured to carbonylate ethylene oxide to produce the input stream.
- system further comprises separation unit to isolate the polymer in the product stream.
- separation unit separates the product stream into a polymer stream and a recycling stream comprising beta-propiolactone and the heat-transfer fluid.
- the recycling stream may be fed back into the main reactor.
- the systems described herein may also be configured to receive any of the initiators, cross-linkers, and metal compounds described herein.
- the metal compound is M, M 2 O, MOH, or M + (CH 2 ⁇ CHCOO ⁇ ).
- M is a Group I metal.
- the metal compound is sodium metal.
- the metal compound is, sodium oxide, sodium hydroxide, or sodium acrylate. A combination of such metal compounds may also be used.
- a cross-linker is used, and the partially neutralized polyacrylic acid produced is cross-linked. Any of the cross-linkers described herein may be used in the systems.
- the heat transfer fluid may be any aprotic organic solvent with a boiling point higher than the boiling point of acrylic acid. In one variation, the heat transfer fluid is a high boiler.
- polymers produced according to any of the methods described herein are provided.
- the polymer has a bio-content of greater than 0%, and less than 100%. In certain variations of the foregoing, the polymer has a bio-content of at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.5%, at least 99.9%, at least 99.99%, or 100%.
- the bio-content of the polymers may depend based on the bio-content of the beta-propiolactone used.
- the beta-propiolactone used to produce the polymers described herein may have a bio-content of greater than 0%, and less than 100%.
- the beta-propiolactone used to produce the polymers described herein may have a bio-content of at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.5%, at least 99.9%, at least 99.99%, or 100%.
- beta-propiolactone derived from renewable sources is used.
- at least a portion of the beta-propiolactone used is derived from renewable sources, and at least a portion of the beta-propiolactone is derived from non-renewable sources.
- the bio-content of the beta-propiolactone may depend on, for example, the bio-content of the ethylene oxide and carbon monoxide used. In some variations, both ethylene oxide and carbon monoxide are derived from renewable sources.
- the polymer has a biodegradability of at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.5%, at least 99.9%, at least 99.99%, or 100%.
- biodegradable is as defined and determined based on ASTM D5338-15 (Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions, Incorporating Thermophilic Temperatures).
- absorbent articles comprising the polymers described herein, or produced according to the methods described herein.
- the adsorbent article further includes at least one inorganic or organic additive.
- Suitable inorganic additives may include, for example, metals (such as aluminum or tin), as well as clays. The incorporation of such solids may enhance the absorbent properties of the polymer or polymer compositions.
- organic additives may include, for example, plasticizers such as polybutene, polypropene, polybutadiene, polyisobutene and/or polyisoprene.
- the absorbent article is a diaper, an adult incontinence product, or a feminine hygiene product.
- the absorbent article is bio-based and/or biodegradable.
- biodegradable fabric comprising any of the polymers described herein, or produced according to the methods described herein.
- the biodegradable fabric further comprises at least one inorganic or organic additive.
- the polymers described herein, or produced according to the methods described herein may also be suitable for agricultural use.
- an agricultural product comprising the polymers described herein, or produced according to the methods described herein.
- Such agricultural product may be a material used in the planting and/or growing of plants, or a seed or a crop.
- the polymers described herein, or produced according to the methods described herein may be used as agricultural materials to hold water for crops.
- an agricultural material comprising the polymers described herein, or produced according to the methods described herein.
- the agricultural material further includes at least one inorganic or organic additive.
- a seed coated with the polymers described herein, or produced according to the methods described herein is provided.
- a seed mix comprising seeds, wherein at least a portion of the seeds is coated with the polymers described herein, or produced according to the methods described herein. When the polymer or polymer compositions bio-degrade, water may be released.
- a method comprising planting seeds, wherein at least a portion of the seeds is coated with the polymers described herein, or produced according to the methods described herein.
- the method further comprises growing plants from at least a portion of the planted seeds under conditions in which the polymers bio-degrade to release water to the seeds and/or plants.
- This Example demonstrates the synthesis of a polymer from beta-propiolactone (bPL).
- Thermolysis of PPL branched poly(sodium acrylate) The resulting product from the step above was then thermolyzed at 160° C.-180° C., and acrylic acid generated from the thermolysis was isolated by vacuum distillation. The remaining residue from the thermolysis was poly(sodium acrylate) as determined by 1 H NMR, and the collected liquid from the vacuum distillation was confirmed to be acrylic acid by 1 H NMR.
- the resulting solid material was ground to a fine powder with a mortar and pestle, then added to a 100 mL medium course fritted filter. The material was rinsed three times with deionized (DI) water, 50 mL each aliquot. The gel-like material was dried overnight in a vacuum oven at 105° C., yielding 0.285 g of white solid.
- DI deionized
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- Environmental Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Hematology (AREA)
- Soil Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Agronomy & Crop Science (AREA)
- Dentistry (AREA)
- Pest Control & Pesticides (AREA)
- Thermal Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Toxicology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Forests & Forestry (AREA)
- Ecology (AREA)
- Botany (AREA)
- Vascular Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
-
- receive an input stream comprising beta-propiolactone,
- receive a mixture of a metal compound and heat transfer fluid,
- polymerize at least a portion of the beta-propiolactone in the input stream in the presence of the metal compound to produce polypropiolactone,
- thermolyze at least a portion of the polypropiolactone to produce acrylic acid, and
- volatize at least a portion of the acrylic acid;
-
- receive at least a portion of the acrylic acid from the distillation column,
- receive a radical initiator, optionally a cross-linker and a metal compound,
- produce a partially neutralized polyacrylic acid from at least a portion of the acrylic acid in the kneader reactor, and
- feed at least a portion of the partially neutralized polyacrylic acid back into the main reactor,
-
- receive the partially neutralized polyacrylic acid from the kneader reactor, and
- polymerize beta-propiolactone to produce a polymer with polypropiolactone branches, and
-
- receive an input stream comprising beta-propiolactone,
- polymerize at least a portion of the beta-propiolactone in the input stream to produce polypropiolactone,
- thermolyze at least a portion of the polypropiolactone to produce acrylic acid, and
- volatize at least a portion of the acrylic acid;
-
- receive at least a portion of the acrylic acid distilled from the distillation column,
- receive a radical initiator, optionally a cross-linker, and a metal compound,
- produce a partially neutralized polyacrylic acid from at least a portion of the acrylic acid in the kneader reactor, and
- feed at least a portion of the partially neutralized polyacrylic acid back into the main reactor,
-
- receive the partially neutralized polyacrylic acid from the kneader reactor, and
- polymerize beta-propiolactone to produce a polymer with polypropiolactone branches, and
% Bio-content or Bio-based content=[Bio (Organic) Carbon]/[Total (Organic) Carbon]*100%,
as determined by ASTM D6866 (Standard Test Methods for Determining the Bio-based Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis).
Claims (36)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/346,853 US11351519B2 (en) | 2016-11-02 | 2017-10-31 | Absorbent polymers, and methods and systems of producing thereof and uses thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662416611P | 2016-11-02 | 2016-11-02 | |
US16/346,853 US11351519B2 (en) | 2016-11-02 | 2017-10-31 | Absorbent polymers, and methods and systems of producing thereof and uses thereof |
PCT/US2017/059249 WO2018085254A1 (en) | 2016-11-02 | 2017-10-31 | Absorbent polymers, and methods and systems of producing thereof and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190255512A1 US20190255512A1 (en) | 2019-08-22 |
US11351519B2 true US11351519B2 (en) | 2022-06-07 |
Family
ID=62076256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/346,853 Active 2039-03-26 US11351519B2 (en) | 2016-11-02 | 2017-10-31 | Absorbent polymers, and methods and systems of producing thereof and uses thereof |
Country Status (15)
Country | Link |
---|---|
US (1) | US11351519B2 (en) |
EP (1) | EP3535235A4 (en) |
JP (1) | JP2020502289A (en) |
KR (1) | KR20190083348A (en) |
CN (1) | CN109890785A (en) |
AR (1) | AR110022A1 (en) |
AU (1) | AU2017353611A1 (en) |
BR (1) | BR102017023554A2 (en) |
CA (1) | CA3042253A1 (en) |
CO (1) | CO2019003134A2 (en) |
MA (1) | MA46720A (en) |
MX (1) | MX2019005098A (en) |
TW (1) | TW201823191A (en) |
WO (1) | WO2018085254A1 (en) |
ZA (1) | ZA201901938B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11780958B2 (en) | 2020-08-17 | 2023-10-10 | Novomer, Inc. | Betapropiolactone and functionalized betapropiolactone based polymer systems |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3838403A1 (en) | 2011-05-13 | 2021-06-23 | Novomer, Inc. | Carbonylation catalysts and method |
CN106170334B (en) | 2013-12-07 | 2019-07-09 | 诺沃梅尔公司 | Nano-filtration membrane and application method |
WO2015171372A1 (en) | 2014-05-05 | 2015-11-12 | Novomer, Inc. | Catalyst recycle methods |
SG11201610058QA (en) | 2014-05-30 | 2016-12-29 | Novomer Inc | Integrated methods for chemical synthesis |
EP3171976B1 (en) | 2014-07-25 | 2023-09-06 | Novomer, Inc. | Synthesis of metal complexes and uses thereof |
KR20170129735A (en) | 2015-02-13 | 2017-11-27 | 노보머, 인코포레이티드 | Flexible chemical manufacturing platform |
MA41513A (en) | 2015-02-13 | 2017-12-19 | Novomer Inc | DISTILLATION PROCESS FOR ACRYLIC ACID PRODUCTION |
EP3696161A1 (en) | 2015-02-13 | 2020-08-19 | Novomer, Inc. | Continuous carbonylation processes |
MA41514A (en) | 2015-02-13 | 2017-12-19 | Novomer Inc | INTEGRATED CHEMICAL SYNTHESIS PROCESSES |
MA41510A (en) | 2015-02-13 | 2017-12-19 | Novomer Inc | ACRYLIC ACID PRODUCTION PROCESS |
MA41507A (en) | 2015-02-13 | 2017-12-19 | Novomer Inc | POLYMER PRODUCTION SYSTEMS AND PROCESSES |
MA41508A (en) | 2015-02-13 | 2017-12-19 | Novomer Inc | POLYACRYLIC ACID PRODUCTION SYSTEMS AND PROCESSES |
CN107428921B (en) | 2015-02-13 | 2020-09-08 | 诺沃梅尔公司 | Polypropiolactone production method and system |
CN115449058A (en) | 2015-07-31 | 2022-12-09 | 诺沃梅尔公司 | Production system/production method for acrylic acid and precursor thereof |
BR112018069019A2 (en) | 2016-03-21 | 2019-01-22 | Novomer Inc | acrylic acid and production methods |
KR20180127429A (en) | 2016-03-21 | 2018-11-28 | 노보머, 인코포레이티드 | Systems and methods for the preparation of superabsorbent polymers |
JP2020502289A (en) | 2016-11-02 | 2020-01-23 | ノボマー, インコーポレイテッド | Absorbent polymers, and methods and systems for producing the same and uses thereof |
US10144802B2 (en) | 2016-12-05 | 2018-12-04 | Novomer, Inc. | Beta-propiolactone based copolymers containing biogenic carbon, methods for their production and uses thereof |
US10500104B2 (en) | 2016-12-06 | 2019-12-10 | Novomer, Inc. | Biodegradable sanitary articles with higher biobased content |
US10065914B1 (en) | 2017-04-24 | 2018-09-04 | Novomer, Inc. | Thermolysis of polypropiolactone to produce acrylic acid |
US10676426B2 (en) | 2017-06-30 | 2020-06-09 | Novomer, Inc. | Acrylonitrile derivatives from epoxide and carbon monoxide reagents |
US10590099B1 (en) | 2017-08-10 | 2020-03-17 | Novomer, Inc. | Processes for producing beta-lactone with heterogenous catalysts |
WO2020014466A1 (en) | 2018-07-13 | 2020-01-16 | Novomer, Inc. | Polylactone foams and methods of making the same |
CN113614064A (en) | 2019-03-08 | 2021-11-05 | 诺沃梅尔公司 | Integrated process and system for producing amide and nitrile compounds |
KR102176952B1 (en) * | 2020-02-17 | 2020-11-10 | 우현정 | Hydrogel for vegetable cultivation and vegetable cultivation kit using the same |
Citations (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3800006A (en) | 1968-05-25 | 1974-03-26 | Denki Onkyo Co Ltd | Graft polymers from vinyl compounds with beta-propiolactone, epsilon-caprolactone and ethylene oxide |
US6013590A (en) | 1994-01-28 | 2000-01-11 | The Procter & Gamble Company | Fibers, nonwoven fabrics, and absorbent articles comprising a biodegradable polyhydroxyalkanoate comprising 3-hydroxybutyrate and 3-hydroxyhexanoate |
WO2006131213A1 (en) | 2005-06-06 | 2006-12-14 | Ciba Specialty Chemicals Holding Inc. | Coated plant seeds and a method for coating seeds |
WO2010118128A1 (en) | 2009-04-08 | 2010-10-14 | Novomer, Inc. | Process for beta-lactone production |
US20110301027A1 (en) | 2008-12-19 | 2011-12-08 | Sca Hygiene Products Ab | Superabsorbent polymer composite comprising a superabsorbent polymer and cellulosic nanofibrils |
WO2012030619A1 (en) | 2010-08-28 | 2012-03-08 | Novomer, Inc. | Succinic anhydride from ethylene oxide |
WO2012051219A2 (en) | 2010-10-11 | 2012-04-19 | Novomer, Inc. | Polymer blends |
WO2012158573A1 (en) | 2011-05-13 | 2012-11-22 | Novomer, Inc. | Catalytic carbonylation catalysts and methods |
WO2013063191A1 (en) | 2011-10-26 | 2013-05-02 | Novomer, Inc. | Process for production of acrylates from epoxides |
WO2013122905A1 (en) | 2012-02-13 | 2013-08-22 | Novomer, Inc. | Process for the production of acid anhydrides from epoxides |
WO2013126375A1 (en) | 2012-02-22 | 2013-08-29 | Novomer, Inc. | Acrylic acid production methods |
WO2014004858A1 (en) | 2012-06-27 | 2014-01-03 | Novomer, Inc. | Catalysts and methods for polyester production |
WO2014008232A2 (en) | 2012-07-02 | 2014-01-09 | Novomer, Inc. | Process for acrylate production |
WO2015085295A2 (en) | 2013-12-07 | 2015-06-11 | Novomer, Inc. | Nanofiltration membranes and methods of use |
WO2015138975A1 (en) | 2014-03-14 | 2015-09-17 | Novomer, Inc. | Catalysts for epoxide carbonylation |
WO2015171372A1 (en) | 2014-05-05 | 2015-11-12 | Novomer, Inc. | Catalyst recycle methods |
WO2015184289A1 (en) | 2014-05-30 | 2015-12-03 | Novomer Inc. | Integrated methods for chemical synthesis |
WO2016015019A1 (en) | 2014-07-25 | 2016-01-28 | Novomer, Inc. | Synthesis of metal complexes and uses thereof |
WO2016130947A1 (en) | 2015-02-13 | 2016-08-18 | Novomer, Inc. | Systems and processes for polymer production |
WO2016131001A1 (en) | 2015-02-13 | 2016-08-18 | Novomer Inc. | Process and system for production of polypropiolactone |
WO2016130998A1 (en) | 2015-02-13 | 2016-08-18 | Novomer, Inc. | Continuous carbonylation processes |
WO2016131003A1 (en) | 2015-02-13 | 2016-08-18 | Novomer, Inc. | Distillation process for production of acrylic acid |
WO2016130977A1 (en) | 2015-02-13 | 2016-08-18 | Novomer, Inc. | Systems and processes for polyacrylic acid production |
WO2016130993A1 (en) | 2015-02-13 | 2016-08-18 | Novomer, Inc. | Process for production of acrylic acid |
WO2016131004A1 (en) | 2015-02-13 | 2016-08-18 | Novomer, Inc. | Integrated methods for chemical synthesis |
WO2016130988A1 (en) | 2015-02-13 | 2016-08-18 | Novomer, Inc. | Flexible chemical production platform |
US20170029352A1 (en) | 2015-07-31 | 2017-02-02 | Sadesh H. Sookraj | Production system/production process for acrylic acid and precursors thereof |
US20170267618A1 (en) | 2016-03-21 | 2017-09-21 | Novomer, Inc. | Acrylic acid production process |
WO2017165345A1 (en) | 2016-03-21 | 2017-09-28 | Novomer, Inc. | Systems and methods for producing superabsorbent polymers |
WO2018085251A1 (en) | 2016-11-02 | 2018-05-11 | Novomer, Inc. | Absorbent polymers, and methods of producing thereof and uses thereof |
WO2018085254A1 (en) | 2016-11-02 | 2018-05-11 | Novomer, Inc. | Absorbent polymers, and methods and systems of producing thereof and uses thereof |
US20180155491A1 (en) | 2016-12-05 | 2018-06-07 | Novomer, Inc | Beta-propiolactone based copolymers containing biogenic carbon, methods for their production and uses thereof |
US20180155490A1 (en) | 2016-12-05 | 2018-06-07 | Novomer, Inc. | Biodegradable polyols having higher biobased content |
US20180153746A1 (en) | 2016-12-06 | 2018-06-07 | Novomer, Inc. | Biodegradable sanitary articles with higher biobased content |
WO2018136638A1 (en) | 2017-01-19 | 2018-07-26 | Novomer, Inc. | Methods and systems for treatment of ethylene oxide |
US10065914B1 (en) | 2017-04-24 | 2018-09-04 | Novomer, Inc. | Thermolysis of polypropiolactone to produce acrylic acid |
WO2018170006A1 (en) | 2017-03-17 | 2018-09-20 | Novomer Inc. | Polyamides, and methods of producing thereof |
US20180282251A1 (en) | 2017-03-21 | 2018-10-04 | Novomer, Inc. | Systems and processes for producing organic acids direct from beta-lactones |
US20180305286A1 (en) | 2016-03-21 | 2018-10-25 | Novomer, Inc. | Systems and Processes for Producing Organic Acids Direct from Beta-Lactones |
WO2019006377A1 (en) | 2017-06-30 | 2019-01-03 | Novomer, Inc. | Compositions for improved production of acrylic acid |
US20190031592A1 (en) | 2017-06-30 | 2019-01-31 | Novomer, Inc. | Compositions for Improved Production of Acrylic Acid |
US20190047972A1 (en) | 2017-08-10 | 2019-02-14 | Novomer, Inc. | Processes for producing beta-lactone and beta-lactone derivatives with heterogenous catalysts |
WO2019050649A1 (en) | 2017-09-11 | 2019-03-14 | Novomer, Inc. | Processes using multifunctional catalysts converting epoxides and co; catalysts |
US20190076834A1 (en) | 2017-09-11 | 2019-03-14 | Novomer, Inc. | Processes Using Multifunctional Catalysts |
WO2019051184A1 (en) | 2017-09-09 | 2019-03-14 | Novomer, Inc. | Amide and nitrile compounds and methods of producing and using thereof |
WO2019070981A1 (en) | 2017-10-05 | 2019-04-11 | Novomer, Inc. | Isocyanates, derivatives, and processes for producing the same |
-
2017
- 2017-10-31 JP JP2019521453A patent/JP2020502289A/en active Pending
- 2017-10-31 BR BR102017023554-8A patent/BR102017023554A2/en not_active Application Discontinuation
- 2017-10-31 CN CN201780065068.XA patent/CN109890785A/en active Pending
- 2017-10-31 AU AU2017353611A patent/AU2017353611A1/en not_active Abandoned
- 2017-10-31 MA MA046720A patent/MA46720A/en unknown
- 2017-10-31 WO PCT/US2017/059249 patent/WO2018085254A1/en unknown
- 2017-10-31 KR KR1020197015831A patent/KR20190083348A/en unknown
- 2017-10-31 EP EP17866578.2A patent/EP3535235A4/en not_active Withdrawn
- 2017-10-31 US US16/346,853 patent/US11351519B2/en active Active
- 2017-10-31 CA CA3042253A patent/CA3042253A1/en not_active Abandoned
- 2017-10-31 MX MX2019005098A patent/MX2019005098A/en unknown
- 2017-11-01 AR ARP170103032A patent/AR110022A1/en unknown
- 2017-11-02 TW TW106137876A patent/TW201823191A/en unknown
-
2019
- 2019-03-28 ZA ZA2019/01938A patent/ZA201901938B/en unknown
- 2019-03-29 CO CONC2019/0003134A patent/CO2019003134A2/en unknown
Patent Citations (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3800006A (en) | 1968-05-25 | 1974-03-26 | Denki Onkyo Co Ltd | Graft polymers from vinyl compounds with beta-propiolactone, epsilon-caprolactone and ethylene oxide |
US6013590A (en) | 1994-01-28 | 2000-01-11 | The Procter & Gamble Company | Fibers, nonwoven fabrics, and absorbent articles comprising a biodegradable polyhydroxyalkanoate comprising 3-hydroxybutyrate and 3-hydroxyhexanoate |
WO2006131213A1 (en) | 2005-06-06 | 2006-12-14 | Ciba Specialty Chemicals Holding Inc. | Coated plant seeds and a method for coating seeds |
US20110301027A1 (en) | 2008-12-19 | 2011-12-08 | Sca Hygiene Products Ab | Superabsorbent polymer composite comprising a superabsorbent polymer and cellulosic nanofibrils |
US20130281715A1 (en) | 2009-04-08 | 2013-10-24 | Novomer, Inc. | Process for beta-lactone production |
US9493391B2 (en) | 2009-04-08 | 2016-11-15 | Novomer, Inc. | Process for beta-lactone production |
US20140275575A1 (en) | 2009-04-08 | 2014-09-18 | Novomer, Inc. | Process for beta-lactone production |
US20120123137A1 (en) | 2009-04-08 | 2012-05-17 | Novomer, Inc. | Process for beta-lactone production |
US8796475B2 (en) | 2009-04-08 | 2014-08-05 | Novomer, Inc. | Process for beta-lactone production |
US20160102040A1 (en) | 2009-04-08 | 2016-04-14 | Novomer, Inc. | Process for beta-lactone production |
US8445703B2 (en) | 2009-04-08 | 2013-05-21 | Novomer, Inc. | Process for beta-lactone production |
WO2010118128A1 (en) | 2009-04-08 | 2010-10-14 | Novomer, Inc. | Process for beta-lactone production |
US9206144B2 (en) | 2009-04-08 | 2015-12-08 | Novomer, Inc. | Process for beta-lactone production |
US9156803B2 (en) | 2010-08-28 | 2015-10-13 | Novomer, Inc. | Succinic anhydride from ethylene oxide |
US20160102068A1 (en) | 2010-08-28 | 2016-04-14 | Novomer, Inc. | Succinic anhydride from ethylene oxide |
US20130165670A1 (en) | 2010-08-28 | 2013-06-27 | Novomer, Inc. | Succinic anhydride from ethylene oxide |
WO2012030619A1 (en) | 2010-08-28 | 2012-03-08 | Novomer, Inc. | Succinic anhydride from ethylene oxide |
US20130209775A1 (en) | 2010-10-11 | 2013-08-15 | Novomer, Inc. | Polymer blends |
US9738784B2 (en) | 2010-10-11 | 2017-08-22 | Novomer, Inc. | Polymer blends |
WO2012051219A2 (en) | 2010-10-11 | 2012-04-19 | Novomer, Inc. | Polymer blends |
US20170073463A1 (en) | 2011-05-13 | 2017-03-16 | Novomer, Inc. | Catalytic carbonylation catalysts and methods |
US9327280B2 (en) | 2011-05-13 | 2016-05-03 | Novomer, Inc. | Catalytic carbonylation catalysts and methods |
US20140296522A1 (en) | 2011-05-13 | 2014-10-02 | Novomer, Inc | Catalytic carbonylation catalysts and methods |
WO2012158573A1 (en) | 2011-05-13 | 2012-11-22 | Novomer, Inc. | Catalytic carbonylation catalysts and methods |
US10221278B2 (en) | 2011-05-13 | 2019-03-05 | Novomer, Inc. | Catalytic carbonylation catalysts and methods |
US20140309399A1 (en) | 2011-10-26 | 2014-10-16 | Novomer, Inc. | Process for production of acrylates from epoxides |
US20170247309A1 (en) | 2011-10-26 | 2017-08-31 | Novomer, Inc. | Process for production of acrylates from epoxides |
US9096510B2 (en) | 2011-10-26 | 2015-08-04 | Novomer, Inc. | Process for production of acrylates from epoxides |
WO2013063191A1 (en) | 2011-10-26 | 2013-05-02 | Novomer, Inc. | Process for production of acrylates from epoxides |
US20150299083A1 (en) | 2011-10-26 | 2015-10-22 | Novomer, Inc. | Process for production of acrylates from epoxides |
US9914689B2 (en) | 2011-10-26 | 2018-03-13 | Novomer, Inc. | Process for production of acrylates from epoxides |
US20150005513A1 (en) | 2012-02-13 | 2015-01-01 | Novomer, Inc. | Process for the production of acid anhydrides from epoxides |
US9403788B2 (en) | 2012-02-13 | 2016-08-02 | Novomer, Inc. | Process for the production of acid anhydrides from epoxides |
WO2013122905A1 (en) | 2012-02-13 | 2013-08-22 | Novomer, Inc. | Process for the production of acid anhydrides from epoxides |
US20170145126A1 (en) | 2012-02-22 | 2017-05-25 | Novomer, Inc. | Acrylic acid production methods |
WO2013126375A1 (en) | 2012-02-22 | 2013-08-29 | Novomer, Inc. | Acrylic acid production methods |
US20160016876A1 (en) | 2012-02-22 | 2016-01-21 | Novomer, Inc. | Acrylic acid production methods |
US20150368394A1 (en) | 2012-06-27 | 2015-12-24 | Novomer, Inc. | Catalysts and methods for polyester production |
WO2014004858A1 (en) | 2012-06-27 | 2014-01-03 | Novomer, Inc. | Catalysts and methods for polyester production |
US20150141693A1 (en) | 2012-07-02 | 2015-05-21 | Novomer, Inc. | Process for acrylate production |
WO2014008232A2 (en) | 2012-07-02 | 2014-01-09 | Novomer, Inc. | Process for acrylate production |
WO2015085295A2 (en) | 2013-12-07 | 2015-06-11 | Novomer, Inc. | Nanofiltration membranes and methods of use |
US10245559B2 (en) | 2013-12-07 | 2019-04-02 | Novomer, Inc. | Nanofiltration membranes and methods of use |
US20160288057A1 (en) | 2013-12-07 | 2016-10-06 | Novomer, Inc. | Nanofiltration membranes and methods of use |
WO2015138975A1 (en) | 2014-03-14 | 2015-09-17 | Novomer, Inc. | Catalysts for epoxide carbonylation |
US20170080409A1 (en) | 2014-03-14 | 2017-03-23 | Novomer, Inc. | Catalysts for epoxide carbonylation |
US20170096407A1 (en) | 2014-05-05 | 2017-04-06 | Novomer, Inc. | Catalyst recycle methods |
WO2015171372A1 (en) | 2014-05-05 | 2015-11-12 | Novomer, Inc. | Catalyst recycle methods |
US20170107103A1 (en) | 2014-05-30 | 2017-04-20 | Novomer, Inc. | Integrated methods for chemical synthesis |
WO2015184289A1 (en) | 2014-05-30 | 2015-12-03 | Novomer Inc. | Integrated methods for chemical synthesis |
US20190030520A1 (en) | 2014-07-25 | 2019-01-31 | Novomer, Inc. | Synthesis of metal complexes and uses thereof |
WO2016015019A1 (en) | 2014-07-25 | 2016-01-28 | Novomer, Inc. | Synthesis of metal complexes and uses thereof |
US20170225157A1 (en) | 2014-07-25 | 2017-08-10 | Novomer, Inc. | Synthesis of metal complexes and uses thereof |
WO2016131003A1 (en) | 2015-02-13 | 2016-08-18 | Novomer, Inc. | Distillation process for production of acrylic acid |
US20180016219A1 (en) | 2015-02-13 | 2018-01-18 | Novomer, Inc. | Process for production of acrylic acid |
WO2016130977A1 (en) | 2015-02-13 | 2016-08-18 | Novomer, Inc. | Systems and processes for polyacrylic acid production |
WO2016130998A1 (en) | 2015-02-13 | 2016-08-18 | Novomer, Inc. | Continuous carbonylation processes |
WO2016130993A1 (en) | 2015-02-13 | 2016-08-18 | Novomer, Inc. | Process for production of acrylic acid |
WO2016131001A1 (en) | 2015-02-13 | 2016-08-18 | Novomer Inc. | Process and system for production of polypropiolactone |
WO2016130947A1 (en) | 2015-02-13 | 2016-08-18 | Novomer, Inc. | Systems and processes for polymer production |
US10099988B2 (en) | 2015-02-13 | 2018-10-16 | Novomer, Inc. | Process for production of acrylic acid |
US20180354881A1 (en) | 2015-02-13 | 2018-12-13 | Novomer, Inc. | Process for production of acrylic acid |
WO2016130988A1 (en) | 2015-02-13 | 2016-08-18 | Novomer, Inc. | Flexible chemical production platform |
US10221150B2 (en) | 2015-02-13 | 2019-03-05 | Novomer, Inc. | Continuous carbonylation processes |
US10099989B2 (en) | 2015-02-13 | 2018-10-16 | Novomer, Inc. | Distillation process for production of acrylic acid |
US20180022677A1 (en) | 2015-02-13 | 2018-01-25 | Novorner, Inc. | Distillation process for production of acrylic acid |
US20180030014A1 (en) | 2015-02-13 | 2018-02-01 | Novomer, Inc. | Integrated methods for chemical synthesis |
US20180029005A1 (en) | 2015-02-13 | 2018-02-01 | Novomer, Inc. | Flexible chemical production platform |
US20180030201A1 (en) | 2015-02-13 | 2018-02-01 | Novomer, Inc. | Process and system for production of polypropiolactone |
US20180030015A1 (en) | 2015-02-13 | 2018-02-01 | Novomer, Inc. | Continuous carbonylation processes |
US20180057619A1 (en) | 2015-02-13 | 2018-03-01 | Novomer, Inc. | Systems and processes for polyacrylic acid production |
US20180354882A1 (en) | 2015-02-13 | 2018-12-13 | Novomer, Inc. | Distillation process for production of acrylic acid |
US20180094100A1 (en) | 2015-02-13 | 2018-04-05 | Novomer, Inc. | Systems and processes for polymer production |
WO2016131004A1 (en) | 2015-02-13 | 2016-08-18 | Novomer, Inc. | Integrated methods for chemical synthesis |
US20170029352A1 (en) | 2015-07-31 | 2017-02-02 | Sadesh H. Sookraj | Production system/production process for acrylic acid and precursors thereof |
WO2017023777A1 (en) | 2015-07-31 | 2017-02-09 | Novomer, Inc. | Production system/production process for acrylic acid and precursors thereof |
WO2017023820A1 (en) | 2015-07-31 | 2017-02-09 | Novomer, Inc. | Production system/production process for acrylic acid and precursors thereof |
WO2017165344A1 (en) | 2016-03-21 | 2017-09-28 | Novomer, Inc. | Acrylic acid, and methods of producing thereof |
US20180305286A1 (en) | 2016-03-21 | 2018-10-25 | Novomer, Inc. | Systems and Processes for Producing Organic Acids Direct from Beta-Lactones |
US20190106532A1 (en) | 2016-03-21 | 2019-04-11 | Novomer, Inc. | Systems and methods for producing superabsorbent polymers |
US20170267618A1 (en) | 2016-03-21 | 2017-09-21 | Novomer, Inc. | Acrylic acid production process |
WO2017165345A1 (en) | 2016-03-21 | 2017-09-28 | Novomer, Inc. | Systems and methods for producing superabsorbent polymers |
WO2017165323A1 (en) | 2016-03-21 | 2017-09-28 | Novomer, Inc. | Improved acrylic acid production process |
WO2018085251A1 (en) | 2016-11-02 | 2018-05-11 | Novomer, Inc. | Absorbent polymers, and methods of producing thereof and uses thereof |
WO2018085254A1 (en) | 2016-11-02 | 2018-05-11 | Novomer, Inc. | Absorbent polymers, and methods and systems of producing thereof and uses thereof |
US20190071538A1 (en) | 2016-12-05 | 2019-03-07 | Novomer, Inc. | Beta-propiolactone based copolymers containing biogenic carbon, methods for their production and uses thereof |
WO2018144998A1 (en) | 2016-12-05 | 2018-08-09 | Novomer Inc. | Beta-propiolactone based copolymers containing biogenic carbon, methods for their production and uses thereof |
US20180155490A1 (en) | 2016-12-05 | 2018-06-07 | Novomer, Inc. | Biodegradable polyols having higher biobased content |
WO2018107185A1 (en) | 2016-12-05 | 2018-06-14 | Novomer Inc. | Biodegradable polyols having higher biobased content |
US10144802B2 (en) | 2016-12-05 | 2018-12-04 | Novomer, Inc. | Beta-propiolactone based copolymers containing biogenic carbon, methods for their production and uses thereof |
US20180155491A1 (en) | 2016-12-05 | 2018-06-07 | Novomer, Inc | Beta-propiolactone based copolymers containing biogenic carbon, methods for their production and uses thereof |
WO2018106824A1 (en) | 2016-12-06 | 2018-06-14 | Novomer, Inc. | Biodegradable sanitary articles with higher biobased content |
US20180153746A1 (en) | 2016-12-06 | 2018-06-07 | Novomer, Inc. | Biodegradable sanitary articles with higher biobased content |
WO2018136638A1 (en) | 2017-01-19 | 2018-07-26 | Novomer, Inc. | Methods and systems for treatment of ethylene oxide |
WO2018170006A1 (en) | 2017-03-17 | 2018-09-20 | Novomer Inc. | Polyamides, and methods of producing thereof |
US20180282251A1 (en) | 2017-03-21 | 2018-10-04 | Novomer, Inc. | Systems and processes for producing organic acids direct from beta-lactones |
US10065914B1 (en) | 2017-04-24 | 2018-09-04 | Novomer, Inc. | Thermolysis of polypropiolactone to produce acrylic acid |
WO2018200471A1 (en) | 2017-04-24 | 2018-11-01 | Novomer, Inc. | Systems and processes for thermolysis of polylactones to produce organic acids |
WO2018200466A1 (en) | 2017-04-24 | 2018-11-01 | Novomer, Inc. | Thermolysis of polypropiolactone to produce acrylic acid |
US20180305289A1 (en) | 2017-04-24 | 2018-10-25 | Novomer, Inc. | Systems and processes for thermolysis of polylactones to produce organic acids |
US20190031592A1 (en) | 2017-06-30 | 2019-01-31 | Novomer, Inc. | Compositions for Improved Production of Acrylic Acid |
US20190002385A1 (en) | 2017-06-30 | 2019-01-03 | Novomer, Inc. | Compositions for improved production of acrylic acid |
WO2019006377A1 (en) | 2017-06-30 | 2019-01-03 | Novomer, Inc. | Compositions for improved production of acrylic acid |
WO2019006366A1 (en) | 2017-06-30 | 2019-01-03 | Novomer, Inc. | Process for the preparation of organic acids from beta lactones |
US20190047972A1 (en) | 2017-08-10 | 2019-02-14 | Novomer, Inc. | Processes for producing beta-lactone and beta-lactone derivatives with heterogenous catalysts |
WO2019051184A1 (en) | 2017-09-09 | 2019-03-14 | Novomer, Inc. | Amide and nitrile compounds and methods of producing and using thereof |
WO2019050649A1 (en) | 2017-09-11 | 2019-03-14 | Novomer, Inc. | Processes using multifunctional catalysts converting epoxides and co; catalysts |
US20190076834A1 (en) | 2017-09-11 | 2019-03-14 | Novomer, Inc. | Processes Using Multifunctional Catalysts |
US20190076835A1 (en) | 2017-09-11 | 2019-03-14 | Novomer, Inc. | Processses using multifunctional catalysts |
WO2019070981A1 (en) | 2017-10-05 | 2019-04-11 | Novomer, Inc. | Isocyanates, derivatives, and processes for producing the same |
Non-Patent Citations (4)
Title |
---|
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/059249, dated May 16, 2019, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2017/059249, dated Feb. 22, 2018, 11 pages. |
Office Action in co-pending Application No. CN 201780065068.X dated Aug. 11, 2021, with English translation (15 pages). |
Supplementary European Search Report, dated Jun. 5, 2020, 12 pages. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11780958B2 (en) | 2020-08-17 | 2023-10-10 | Novomer, Inc. | Betapropiolactone and functionalized betapropiolactone based polymer systems |
Also Published As
Publication number | Publication date |
---|---|
WO2018085254A1 (en) | 2018-05-11 |
JP2020502289A (en) | 2020-01-23 |
CN109890785A (en) | 2019-06-14 |
CA3042253A1 (en) | 2018-05-11 |
AU2017353611A1 (en) | 2019-04-11 |
TW201823191A (en) | 2018-07-01 |
AR110022A1 (en) | 2019-02-13 |
BR102017023554A2 (en) | 2019-02-19 |
EP3535235A1 (en) | 2019-09-11 |
KR20190083348A (en) | 2019-07-11 |
MA46720A (en) | 2019-09-11 |
MX2019005098A (en) | 2019-08-12 |
US20190255512A1 (en) | 2019-08-22 |
ZA201901938B (en) | 2019-12-18 |
EP3535235A4 (en) | 2020-07-08 |
CO2019003134A2 (en) | 2019-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11351519B2 (en) | Absorbent polymers, and methods and systems of producing thereof and uses thereof | |
CN109843947A (en) | Absorbable polymer and its manufacturing method and application thereof | |
JP2021073338A (en) | Systems and processes for polyacrylic acid production | |
EP2565211B1 (en) | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same | |
JP5780763B2 (en) | Polyacrylic acid (salt) water-absorbing resin and method for producing the same | |
AU2017238018A1 (en) | Acrylic acid, and methods of producing thereof | |
KR101520127B1 (en) | Water-absorbing resin suitable for use in sanitary products | |
US20180127348A1 (en) | Purification Of Bio Based Acrylic Acid To Crude And Glacial Acrylic Acid | |
EP2768917A2 (en) | Multifunctional monomers, methods for making multifunctional monomers, polymerizable compositions and products formed therefrom | |
EP2414456B1 (en) | Degradable polymer compositions and uses thereof | |
JP2012031292A (en) | Polyacrylic acid (polyacrylate)-based water-absorbing resin, and method for producing the same | |
WO2022004782A1 (en) | Vinyl acetate, vinyl acetate polymer, and vinyl alcohol polymer | |
JP2020172628A (en) | Preparation of Aqueous Dispersion of Copolymer Particles of Vinyl Acetate and Cyclic Ketene Acetal Monomer | |
CN111433267B (en) | Novel crosslinker compounds and polymers prepared using the same | |
WO2016037775A1 (en) | Method for the continuous dehydration of 3-hydroxypropanoic acid to form acrylic acid | |
JP2018199792A (en) | Water-absorbing resin composition | |
JPS63210108A (en) | Manufacture of highly water-absorptive polymer | |
Winkler | Monomers and Polymers from Renewable Resources by straightforward Modification and/or catalytic Processes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: NOVOMER, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SOOKRAJ, SADESH H.;REEL/FRAME:056851/0247 Effective date: 20170120 Owner name: NOVOMER, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, HAN;RUHL, JOHN B.;LAPOINTE, ROBERT E.;AND OTHERS;SIGNING DATES FROM 20210504 TO 20210712;REEL/FRAME:056851/0172 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: TRUIST BANK, GEORGIA Free format text: SECURITY INTEREST;ASSIGNOR:NOVOMER, INC.;REEL/FRAME:058922/0803 Effective date: 20220128 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: NOVOMER, INC., GEORGIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRUIST BANK;REEL/FRAME:061088/0116 Effective date: 20220805 |