JPS63210108A - Manufacture of highly water-absorptive polymer - Google Patents
Manufacture of highly water-absorptive polymerInfo
- Publication number
- JPS63210108A JPS63210108A JP62044579A JP4457987A JPS63210108A JP S63210108 A JPS63210108 A JP S63210108A JP 62044579 A JP62044579 A JP 62044579A JP 4457987 A JP4457987 A JP 4457987A JP S63210108 A JPS63210108 A JP S63210108A
- Authority
- JP
- Japan
- Prior art keywords
- water
- polymer
- added
- acrylic acid
- polymerization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000000843 powder Substances 0.000 claims abstract description 27
- 239000000178 monomer Substances 0.000 claims abstract description 25
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims abstract description 19
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims abstract description 16
- -1 alkali metal salt Chemical class 0.000 claims abstract description 15
- 238000010557 suspension polymerization reaction Methods 0.000 claims abstract description 13
- 230000018044 dehydration Effects 0.000 claims abstract description 11
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 11
- 239000003960 organic solvent Substances 0.000 claims abstract description 11
- 239000003999 initiator Substances 0.000 claims abstract description 8
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 7
- 150000003863 ammonium salts Chemical class 0.000 claims abstract description 5
- 239000007864 aqueous solution Substances 0.000 claims abstract description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000006116 polymerization reaction Methods 0.000 claims description 23
- 229920000247 superabsorbent polymer Polymers 0.000 claims description 22
- 239000000243 solution Substances 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 8
- 239000012295 chemical reaction liquid Substances 0.000 claims 2
- 230000000379 polymerizing effect Effects 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 17
- 238000010992 reflux Methods 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 7
- 239000007788 liquid Substances 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 33
- 239000012071 phase Substances 0.000 description 14
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000000084 colloidal system Substances 0.000 description 12
- 230000001681 protective effect Effects 0.000 description 12
- 239000002904 solvent Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 8
- 229910001873 dinitrogen Inorganic materials 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000001035 drying Methods 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000004583 superabsorbent polymers (SAPs) Substances 0.000 description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 239000012770 industrial material Substances 0.000 description 3
- 239000001587 sorbitan monostearate Substances 0.000 description 3
- 229940035048 sorbitan monostearate Drugs 0.000 description 3
- 235000011076 sorbitan monostearate Nutrition 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003898 horticulture Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000010558 suspension polymerization method Methods 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- JWOWFSLPFNWGEM-UHFFFAOYSA-N Cl.Cl.NC(=N)C(C)CN=NCC(C)C(N)=N Chemical compound Cl.Cl.NC(=N)C(C)CN=NCC(C)C(N)=N JWOWFSLPFNWGEM-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 239000011837 N,N-methylenebisacrylamide Substances 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 241000047703 Nonion Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の背景〕
産業上の利用分野
本発明は、高吸水性ポリマーの製造法に関するものであ
る。本発明によって得られる高吸水性ポリマーは、強度
があり、且つ粒度分布の狭い、粒径のそろった顆粒であ
るので、流動性や他の物質との混合、分散性が良く、さ
らに吸水速度が大きいことにより、衛生材料、農園芸関
係、産業資材関係等の各種材料の製造に有利に使用する
ことができる。DETAILED DESCRIPTION OF THE INVENTION [Background of the Invention] Industrial Field of Application The present invention relates to a method for producing superabsorbent polymers. The superabsorbent polymer obtained by the present invention is strong, has a narrow particle size distribution, and has uniform particle size, so it has good fluidity, good mixing with other substances, and dispersibility, and has a high water absorption rate. Due to its large size, it can be advantageously used in the production of various materials such as sanitary materials, agricultural and horticultural materials, and industrial materials.
従来の技術
近年、高吸水性ポリマーは、紙おむつ、生理用品等の衛
生材料、農園芸関係、産業資材関係等に利用されるよう
になってきており、これ迄に種々のものが提案されてい
る。例えば、澱粉グラフト重合体(特公昭53−461
99号公報等)、セルロース変性材(特開昭50−80
376号公報等)、水溶性高分子の架橋物(特公昭43
−23462号公報等)、自己架橋型アクリル酸/アル
カリ金属塩ポリマー(特公昭54−30710号公報等
)等がある。Conventional technology In recent years, superabsorbent polymers have come to be used in sanitary materials such as disposable diapers and sanitary products, agriculture and horticulture, and industrial materials, and various products have been proposed so far. . For example, starch graft polymer (Japanese Patent Publication No. 53-461
No. 99, etc.), cellulose-modified materials (Japanese Patent Application Laid-open No. 1983-1980),
376, etc.), crosslinked products of water-soluble polymers (Japanese Patent Publication No. 43)
-23462, etc.), and self-crosslinking acrylic acid/alkali metal salt polymers (Japanese Patent Publication No. 54-30710, etc.).
しかし、これらの高吸水性ポリマーの大部分は、100
メツシュ以下の微粉を多く含み、その使用に際しては、
次のような問題点がある。However, most of these superabsorbent polymers are
Contains a lot of fine powder below mesh size, and when using it,
There are the following problems.
(1) 粉塵が発生するために、環境対策が必要となる
。(1) Environmental measures are required because dust is generated.
(2) ポリマーの流動性が悪いので、ホッパーを使用
した場合にブリッジを形成してホッパーのつまりゃ定量
性に問題が出てくる。(2) Since the fluidity of the polymer is poor, when a hopper is used, bridges are formed and the hopper becomes clogged, causing problems in quantitative performance.
(3) 他の物質と混合する場合の、混合性ないし分散
性が悪い。(3) Poor mixability or dispersibility when mixed with other substances.
(4) 液体と接触した場合ママコになりやすい。(4) If it comes into contact with liquid, it is likely to become sticky.
これらの問題に対しての解決方法としては、微粉の除去
、有機バインダーを使用して顆粒化させる等が考えられ
る。しかしながら、微粉の除去は、新たに分離装置が必
要となり、分離した微粉は処分しなければならず、いず
れにしても経済的に不利である。一方、有機バインダー
を使用した場合は、衛材関係に使用する際は、安全性に
問題が残り、また高吸水性樹脂自体の性能が落ちる等の
問題が残る。Possible solutions to these problems include removal of fine powder and granulation using an organic binder. However, removing the fine powder requires a new separation device, and the separated fine powder must be disposed of, which is economically disadvantageous in any case. On the other hand, when an organic binder is used, there remain problems with safety when used in hygiene products, and problems such as a decline in the performance of the superabsorbent resin itself remain.
上記のものの他に、高吸水性樹脂粉末の表面に水性液を
噴霧して造粒させる方法(特開昭61−97333号公
報)、高吸水性樹脂を含む液に、乾燥樹脂を混合し、攪
拌しながら乾燥器内で加熱乾燥させる方法(特開昭57
−117551号公報)等が提案されている。しかしな
がら、特開昭61−97333号公報記載のものは、液
滴の大きさ、噴霧方法等の少しのばらつきにより、粒度
分布の広い粒状ポリマーとなる欠点がある。特開昭57
−117551号公報記載のものは、攪拌しながら乾燥
をする際に、粒子同志の摩擦のために、再び微粉が生成
し、結果的に均一な造粒物を作ることができない。In addition to the above-mentioned methods, there is also a method of granulating a superabsorbent resin powder by spraying an aqueous liquid onto the surface thereof (Japanese Patent Application Laid-open No. 1983-97333), a method of mixing a dry resin with a liquid containing a superabsorbent resin, A method of heating and drying in a dryer while stirring (Japanese Patent Application Laid-open No. 57
-117551) etc. have been proposed. However, the method described in JP-A No. 61-97333 has the disadvantage that due to slight variations in droplet size, spraying method, etc., it becomes a granular polymer with a wide particle size distribution. Japanese Unexamined Patent Publication 1983
In the method described in Japanese Patent Publication No. 117551, when drying is carried out while stirring, fine powder is generated again due to friction between the particles, and as a result, it is not possible to produce a uniform granulated product.
また、吸水性樹脂の製造法の一つとして逆相懸濁重合法
が知られているが、この方法で作られる球状ポリマーの
場合は、ポリマー同志の接触面積が小さいため、顆粒の
強度が弱く、また均一な顆粒化が困難である。In addition, the reverse phase suspension polymerization method is known as one of the methods for producing water absorbent resins, but in the case of spherical polymers produced by this method, the contact area between the polymers is small, so the strength of the granules is weak. , and it is difficult to form uniform granules.
本発明が解決しようとする問題点
本発明は、前記の欠点を改良して、逆相懸濁重合によっ
て得た高吸水性ポリマーを、強度を有し、即ち乾燥工程
や後処理工程において容易に微粉化せず、加えて粒度分
布の狭い、粒径が大きく、且つそろったポリマーとして
得る方法を提供するものである。Problems to be Solved by the Present Invention The present invention aims to improve the above-mentioned drawbacks and to provide a superabsorbent polymer obtained by reverse-phase suspension polymerization that has strength, that is, can be easily used in the drying process and post-treatment process. The object of the present invention is to provide a method for obtaining a polymer having a narrow particle size distribution, large particle size, and uniform size without pulverization.
問題点を解決するための手段
本発明者らは、従来技術に鑑み、逆相懸濁重合によって
得る高吸水性ポリマーの顆粒化方法に関して種々検討し
た結果、逆相懸濁重合後の重合液に、乾燥粉末ポリマー
及び水を添加し、有機溶媒還流下、ポリマー中の水分濃
度が20重量%以下となるまで、共沸脱水を行なうこと
により、強度及び粒度分布の狭く、粒径が大きく、且つ
そろったポリマーが製造でき、さらに、吸水速度等の性
能も改良されることを見出し、本発明を完成させるに至
った。Means for Solving the Problems In view of the prior art, the present inventors have conducted various studies on methods for granulating superabsorbent polymers obtained by reverse-phase suspension polymerization. , by adding dry powder polymer and water and performing azeotropic dehydration under refluxing organic solvent until the water concentration in the polymer becomes 20% by weight or less, the strength and particle size distribution are narrow, the particle size is large, and The present inventors have discovered that a uniform polymer can be produced and that performance such as water absorption rate is improved, leading to the completion of the present invention.
すなわち、本発明による高吸水性ポリマーの製造法は、
アクリル酸および(または)メタクリル酸とそれらのア
ルカリ金属塩および(または)アンモニウム塩とを主成
分とするアクリル酸モノマーを水溶性ラジカル開始剤と
共に含む水溶液を有機溶媒中に分散させて重合させるこ
とからなる油中水滴型逆相懸濁重合に付すことによって
得られた重合液に、高吸水性ポリマーの乾燥粉末および
水を添加し、該有機溶媒還流下にポリマー中の水分濃度
が20重量%以下となるまで共沸脱水を行うこと、を特
徴とするものである。That is, the method for producing a superabsorbent polymer according to the present invention is as follows:
An aqueous solution containing an acrylic acid monomer mainly composed of acrylic acid and/or methacrylic acid and their alkali metal salts and/or ammonium salts together with a water-soluble radical initiator is dispersed in an organic solvent and polymerized. Dry powder of a highly water-absorbent polymer and water are added to the polymerization solution obtained by subjecting it to water-in-oil reverse phase suspension polymerization, and the water concentration in the polymer is reduced to 20% by weight or less under reflux of the organic solvent. It is characterized by carrying out azeotropic dehydration until .
発明の効果
本発明の方法によれば、従来の造粒法では達成されなか
った、逆相懸濁重合生成物としての高吸水性ポリマーを
、強度を持った、粒度分布の狭い粒径が大きく且つそろ
った顆粒状ポリマーとして得ることができる。Effects of the Invention According to the method of the present invention, a super absorbent polymer as a reverse phase suspension polymerization product, which has not been achieved by conventional granulation methods, can be produced with strength, a narrow particle size distribution, and a large particle size. Moreover, it can be obtained as a uniform granular polymer.
これらの顆粒状ポリマーは、強度があり、微粉末が少な
いため、粉塵の発生による作業環境の悪化がなくなり、
流動性ないし混合性が良好になり、ママコの発生が少な
くなる。さらに、吸水速度等の諸物性も改良されるので
、紙おむつ、生理用品等の衛生材料、農園芸関係、産業
資材関係等の広い分野で利用できる。These granular polymers are strong and contain less fine powder, which eliminates the deterioration of the working environment due to dust generation.
The fluidity or mixability is improved, and the occurrence of lumps is reduced. Furthermore, various physical properties such as water absorption rate are improved, so it can be used in a wide range of fields such as sanitary materials such as disposable diapers and sanitary products, agriculture and horticulture, and industrial materials.
モノマ一
本発明において用いられるモノマーは、アクリル酸およ
び(または)メタクリル酸とそれらのアルカリ金属塩お
よび(または)アンモニウム塩との場合、アクリル酸モ
ノマーが、その全カルボキシル基の20%以上、好まし
くは50%以上、がアルカリ金属塩および(または)ア
ンモニウム塩に中和されていることが望ましい。中和度
が余り低くなりすぎると、吸水性のすぐれた重合体は得
られない。中和に用いるアルカリとしては、リチウム、
ナトリウム、カリウム等のアルカリ金属の水酸化物が適
しているが、工業的には水酸化ナトリウムを用いる場合
が多い。Monomer 1 When the monomer used in the present invention is acrylic acid and/or methacrylic acid and their alkali metal salt and/or ammonium salt, the acrylic acid monomer accounts for 20% or more of the total carboxyl groups, preferably It is preferable that at least 50% of the alkali metal salt and/or ammonium salt be neutralized. If the degree of neutralization is too low, a polymer with excellent water absorption cannot be obtained. The alkalis used for neutralization include lithium,
Hydroxides of alkali metals such as sodium and potassium are suitable, but sodium hydroxide is often used industrially.
本発明で使用するアクリル酸系モノマーは、上記のよう
なアクリル酸化合物を主成分とするものである。従って
、本発明でいう「アクリル酸系モノマー」は、上記のよ
うなアクリル酸化合物のみからなる場合の外に、小割合
のコモノマーを含む場合を包含するものである。そのよ
うなコモノマーも水溶性であることが望ましいが、上記
のアクリル酸化合物以外の水溶性モノマーはたとえば(
メタ)アクリルアミドをはじめとして当業者にとって周
知であって、その具体例はたとえば前記および後記の先
行技術に開示されている。このようなコモノマーの一群
は、エチレン性不飽和結合を複数個持つ架橋剤モノマー
である。このような架橋剤モノマーも、たとえばN、N
−メチレンビスアクリルアミド、エチレングリコールジ
(メタ)アクリレートをはじめとして当業者にとって周
知である。The acrylic acid monomer used in the present invention has the above-mentioned acrylic acid compound as a main component. Therefore, the term "acrylic acid monomer" as used in the present invention includes not only the case where the monomer is composed only of the acrylic acid compound as described above, but also the case where the monomer contains a small proportion of a comonomer. It is desirable that such comonomers are also water-soluble, but water-soluble monomers other than the above-mentioned acrylic acid compounds are, for example, (
Meth)acrylamides are well known to those skilled in the art, examples of which are disclosed, for example, in the prior art cited above and below. One group of such comonomers are crosslinker monomers having multiple ethylenically unsaturated bonds. Such crosslinking monomers may also include, for example, N, N
- methylene bisacrylamide, ethylene glycol di(meth)acrylate, as well as well known to those skilled in the art.
重合
本発明で用いられる重合法は、油中水滴型の逆相懸濁重
合法である。Polymerization The polymerization method used in the present invention is a water-in-oil type reverse phase suspension polymerization method.
油中水滴型の逆相懸濁重合は、モノマー水溶液を有機溶
媒中に液滴として分散させてこの液滴内でそこに添加し
である水溶性ラジカル重合用溶剤の作用によってモノマ
ーを重合させることからなるものである。In water-in-oil type reverse-phase suspension polymerization, an aqueous monomer solution is dispersed as droplets in an organic solvent, and the monomers are polymerized within the droplets by the action of a water-soluble radical polymerization solvent added thereto. It consists of
重合反応時に安定良く油中水滴型相構造が得られる保護
コロイドおよび不活性溶媒はいずれも使用することがで
きる。その具体的な例を挙げれば、(1)保護コロイド
としてα−オレフィンとα、β−不飽和多価カルボン酸
無水物との共重合体またはその誘1を用い、ヒドロキシ
エチルセルロース存在下に炭化水素系溶媒を用いる方法
(特願昭60−234878号明細書、特願昭60−2
34877号明細書) 、(2)保護コロイドとしてH
LB3〜6のソルビタン脂肪酸エステルを用い、石油系
脂肪族炭化水素溶媒を用いる方法(特公昭54−307
10号公報) 、(3)保護コロイドとして油溶性のセ
ルロースエステルまたはセルロースエーテルを用い、炭
化水素溶媒を用いる方法(特開昭58−32607号公
報) 、(4)保護コロイドとしてHLB6〜9のノニ
オン系界面活性剤を用い、炭化水素系溶媒を用いる方法
(特開昭57−167302号公報)、(5)保護コロ
イドとしてHLB8〜12のノニオン系界面活性剤を用
い、脂環族または脂肪族炭化水素溶媒を用いる方法、(
6)保護コロイドとして塩基性窒素含有重合体を用い、
炭化水素系溶媒を用いる方法(特開昭57−98513
号公報) 、(7)保護コロイドとしてカルボキシル基
含有重合体を用い、炭化水素系溶媒を用いる方法(特開
昭57−94011号公報) 、(8)保護コロイドと
してショ糖脂肪酸エステルを用い、疎水性有機溶媒を用
いる方法(特開昭61−43606号公報、特開昭61
−87702号公報)、(9)保護コロイドとして(A
)スチレン及び/又はそのアルキル置換誘導体50〜9
7モル%、(B)ジアルキルアミノアルキル−アクリレ
ート若しくは一メタクリレート及び/又はジアルキルア
ミノアルキル−アクリルアミド若しくは一メタクリルア
ミド3〜50モル%及び(C) (A)及び(B)と共
重合し得る不飽和単量体0〜30モル%からなる共重合
体を用い、疎水性有機溶媒を用いる方法(特開昭61−
40309号公報) 、(10)保護コロイドとしてソ
ルビタン脂肪酸エステル及び/又はショ糖脂肪酸エステ
ル、および(A)スチレン及び/又はそのアルキル置換
誘導体50〜97モル%、(B)ジアルキルアミノアル
キル−アクリレート若しくは−メタクリレート及び/又
はジアルキルアミノアルキル−アクリルアミド若しくは
一メタクリルアミド3〜50モル96及び(C)」二記
(A)及び(B)と共重合し得る不飽和単量体0〜30
モル%からなる共重合体を用い、疎水性有機溶媒を用い
る方法(特開昭61−53308号公報) 、(11)
保護コロイドとしてHLB3〜9のソルビタン脂肪酸エ
ステル及びポリオキシアルキレンモノエーテル型の非イ
オン界面活性剤の混合物を用い、疎水性溶媒を用いる方
法(特開昭61−97301号公報)等々が挙げられる
。Any protective colloid or inert solvent that can provide a stable water-in-oil phase structure during the polymerization reaction can be used. To give a specific example, (1) using a copolymer of α-olefin and α,β-unsaturated polycarboxylic acid anhydride or its derivative 1 as a protective colloid, hydrocarbon Method using a system solvent (Japanese Patent Application No. 60-234878, Japanese Patent Application No. 60-2
34877), (2) H as a protective colloid.
A method using sorbitan fatty acid esters of LB3 to 6 and a petroleum-based aliphatic hydrocarbon solvent (Japanese Patent Publication No. 54-307
10), (3) A method using an oil-soluble cellulose ester or cellulose ether as a protective colloid and a hydrocarbon solvent (JP-A-58-32607), (4) A nonion with an HLB of 6 to 9 as a protective colloid. method using a hydrocarbon solvent using a surfactant (JP-A-57-167302), (5) using a nonionic surfactant with an HLB of 8 to 12 as a protective colloid, and alicyclic or aliphatic carbonization. Method using hydrogen solvent, (
6) Using a basic nitrogen-containing polymer as a protective colloid,
Method using hydrocarbon solvent (Japanese Patent Application Laid-Open No. 57-98513
(7) A method using a carboxyl group-containing polymer as a protective colloid and a hydrocarbon solvent (Japanese Unexamined Patent Publication No. 1983-94011), (8) A method using a sucrose fatty acid ester as a protective colloid to create a hydrophobic Method using organic solvent (JP-A-61-43606, JP-A-61
-87702), (9) As a protective colloid (A
) Styrene and/or its alkyl substituted derivatives 50-9
7 mol%, (B) 3 to 50 mol% of dialkylaminoalkyl-acrylate or monomethacrylate and/or dialkylaminoalkyl-acrylamide or monomethacrylamide, and (C) unsaturation copolymerizable with (A) and (B). A method using a copolymer consisting of 0 to 30 mol% of monomers and a hydrophobic organic solvent (Japanese Patent Application Laid-Open No. 1986-
40309), (10) sorbitan fatty acid ester and/or sucrose fatty acid ester as a protective colloid, and (A) 50 to 97 mol% of styrene and/or its alkyl-substituted derivative, (B) dialkylaminoalkyl acrylate or - 3 to 50 moles of methacrylate and/or dialkylaminoalkyl-acrylamide or monomethacrylamide 96 and (C) 0 to 30 unsaturated monomers copolymerizable with (A) and (B)
A method using a hydrophobic organic solvent using a copolymer consisting of mol% (Japanese Patent Application Laid-open No. 61-53308), (11)
Examples include a method using a mixture of a sorbitan fatty acid ester with an HLB of 3 to 9 and a polyoxyalkylene monoether type nonionic surfactant as a protective colloid, and a hydrophobic solvent (Japanese Patent Application Laid-Open No. 61-97301).
水溶性ラジカル開始剤
本発明で用いられる水溶性ラジカル開始剤には、(イ)
過酸化水素、(ロ)過硫酸アンモニウムや過硫酸カリウ
ム等の過硫酸塩、(ハ)第三ブチルハイドロパーオキシ
ドやクメンハイドロパーオキシド等のハイドロパーオキ
シド類、(ニ)アゾイソブチロニトリル、2.2’
−アゾビス(2−アミジノプロパン)二塩酸塩等のアゾ
系開始剤、等がある。これらの水溶性ラジカル重合開始
剤は、また例えば亜硫酸水素ナトリウムの様な還元性物
質やアミン類笠を組合わせてレドックス型の開始剤とし
て用いてもよい。これら水溶性ラジカル開始剤の使用量
は、アクリル酸系モノマーに対して0.01〜10重量
%程度、好ましくは0.1〜2重量程度、である。Water-soluble radical initiator The water-soluble radical initiator used in the present invention includes (a)
Hydrogen peroxide, (b) persulfates such as ammonium persulfate and potassium persulfate, (c) hydroperoxides such as tert-butyl hydroperoxide and cumene hydroperoxide, (d) azoisobutyronitrile, 2 .2'
- Azo initiators such as azobis(2-amidinopropane) dihydrochloride, and the like. These water-soluble radical polymerization initiators may also be used as a redox type initiator in combination with a reducing substance such as sodium hydrogen sulfite or an amine compound. The amount of these water-soluble radical initiators used is about 0.01 to 10% by weight, preferably about 0.1 to 2% by weight, based on the acrylic acid monomer.
重合反応液の乾燥
本発明方法では、上記のような操作で得られた重合反応
液に、高吸水性ポリマーの乾燥粉末及び水を添加し、該
重合反応液中の有機溶媒の還流下に共沸脱水を行なって
、顆粒状の高吸水性ポリマーを得る。Drying of the polymerization reaction solution In the method of the present invention, a dry powder of a highly water-absorbing polymer and water are added to the polymerization reaction solution obtained by the above operation, and the organic solvent in the polymerization reaction solution is co-dried under reflux. A granular superabsorbent polymer is obtained by boiling and dehydrating.
添加する乾燥粉末ポリマーは、高吸水性ポリマーであれ
ば、その組成および重合法は問わないが、好ましくは対
象重合反応液中のポリマーとモノマー組成が実質的に同
じものであって、しかも逆相懸濁重合にて製造したポリ
マーであることが望ましい。これらのポリマーは、表面
架橋等の所謂、後処理を施したものであっても良い。The composition and polymerization method of the dry powder polymer to be added do not matter as long as it is a superabsorbent polymer, but it is preferable that the monomer composition is substantially the same as that of the polymer in the target polymerization reaction solution, and that the polymer is in an opposite phase. It is desirable that the polymer be produced by suspension polymerization. These polymers may be subjected to so-called post-treatment such as surface crosslinking.
添加する乾燥粉末ポリマーの粒度は、その50%以上が
100メツシュ以下の微粉であることが粒度分布幅を狭
くし、形状のそろった顆粒を得るうえで好ましい。Regarding the particle size of the dry powder polymer to be added, it is preferable that 50% or more of the particle size be fine powder of 100 mesh or less in order to narrow the particle size distribution width and obtain granules with a uniform shape.
一般に、高吸水性ポリマーは、流動性、吸水特性等を一
定に保つために乾燥工程終了後に、微粉のカットを行な
って製品とするので、この微粉を重合反応液に添加すべ
き「高吸水性ポリマーの乾燥粉末」として利用するのが
経済的にも、プロセス的にも好ましい。Generally, super absorbent polymers are made into products by cutting fine powder after the drying process in order to maintain constant fluidity, water absorption properties, etc., so this fine powder must be added to the polymerization reaction solution. It is preferable to use it as a dry polymer powder from both economical and process standpoints.
重合反応液に添加する乾燥粉末ポリマーの量は、重合反
応後に存在するポリマーに対して、10〜100市量%
が好ましい。ポリマーの添加量が10重量%未満である
と顕著な顆粒化効果は得られず、一方100重量%を越
えるとポリマー二次粒子同志が結合して塊状ポリマーと
なる確率が高い。The amount of dry powder polymer added to the polymerization reaction solution is 10 to 100% by market weight based on the polymer present after the polymerization reaction.
is preferred. If the amount of the polymer added is less than 10% by weight, no significant granulation effect will be obtained, while if it exceeds 100% by weight, there is a high probability that the secondary polymer particles will combine with each other to form a lumpy polymer.
一方、該重合液に添加する水の量は、系内に存在するポ
リマーに対して100〜300重量%となるのが好まし
い。系内の水の量が100重量%未満となる場合は、得
られるポリマーが塊状となることがあり、一方300重
量%を越えると、共沸脱水に時間がかかり、経済的にも
、ポリマーの性能的にも不利となる。水の添加方法とし
ては、新規に添加する方法もあるが、脱水時の水をリサ
イクルして添加するプロセスは、経済的には好ましい。On the other hand, the amount of water added to the polymerization solution is preferably 100 to 300% by weight based on the polymer present in the system. If the amount of water in the system is less than 100% by weight, the resulting polymer may become lumpy, while if it exceeds 300% by weight, azeotropic dehydration will take a long time, and economically, the polymer will This is also disadvantageous in terms of performance. As a method for adding water, there is a method of newly adding water, but a process of recycling and adding water during dehydration is economically preferable.
実験例
高吸水性ポリマー製造例1
特開昭61−157513号公報の実施例1にもとすい
て、高吸水性ポリマーを製造した。EXPERIMENTAL EXAMPLE Super absorbent polymer production example 1 A super absorbent polymer was produced based on Example 1 of JP-A-61-157513.
すなわち、攪拌機、還流冷却器、温度計、窒素ガス導入
管を付設した容量1リツトルの4つ日丸底フラスコにシ
クロヘキサン375gを入れ、ソルビタンモノステアレ
ート4.5gを加えて溶解させた後、窒素ガスにて溶存
酸素を追い出した。That is, 375 g of cyclohexane was placed in a 1 liter four-day round bottom flask equipped with a stirrer, reflux condenser, thermometer, and nitrogen gas inlet tube, and 4.5 g of sorbitan monostearate was added and dissolved. Dissolved oxygen was expelled with gas.
別に、容ff1500ccのフラスコにアクリル酸75
gを入れ、氷水で冷却しながら、25%水酸化ナトリウ
ム水溶液124.ggおよび水107.2gを加えて、
カルボキシル基の75.0%を中和した。この場合の水
に対するモノマー濃度は、30重量%に相当する。次い
で、これにN、N’ −メチレンビスアクリルアミド
0.05g及び過硫酸カリウム0.26gを加えて溶解
させたのち、窒素ガスを吹き込んで溶存酸素を追い出し
た。Separately, put 75 liters of acrylic acid in a flask with a capacity of 1,500 cc.
Add 124.g of 25% aqueous sodium hydroxide solution while cooling with ice water. Add gg and 107.2g of water,
75.0% of carboxyl groups were neutralized. The monomer concentration relative to water in this case corresponds to 30% by weight. Next, 0.05 g of N,N'-methylenebisacrylamide and 0.26 g of potassium persulfate were added and dissolved, and then nitrogen gas was blown in to drive out dissolved oxygen.
前記の四つロフラスコの内容物にこの500m1のフラ
スコの内容物を添加し、攪拌して分散させ、窒素ガスを
バブリングさせなから油浴によりフラスコ内温を昇温さ
せたところ、60℃付近に達してから内温か急激に」−
昇して、数十分後に72℃に達した。その内温を60〜
65℃に保持しかつ攪拌させながら、3時間反応させた
。なお、攪拌は毎分250回転に設定した。The contents of this 500ml flask were added to the contents of the four-bottle flask, stirred to disperse, and the temperature inside the flask was raised in an oil bath without bubbling nitrogen gas. After reaching that point, the internal temperature suddenly increased.
The temperature reached 72°C several tens of minutes later. Its internal temperature is 60~
The reaction was carried out for 3 hours while maintaining the temperature at 65°C and stirring. Note that stirring was set at 250 revolutions per minute.
高吸水性ポリマー製造例2
特公昭54−30710号公報の実施例1にもとづき高
吸水性ポリマーを製造した。Super absorbent polymer production example 2 A super absorbent polymer was produced based on Example 1 of Japanese Patent Publication No. 54-30710.
すなわち、攪拌機、還流冷却器、滴下ロート、窒素ガス
導入管を付した5 00 mlの四つ日丸底フラスコに
n−ヘキサン228m1を入れ、ソルビタンモノステア
レート1.8gを添加して溶解させたのち、窒素ガスを
吹き込んで溶存酸素を追出した。That is, 228 ml of n-hexane was placed in a 500 ml four-day round bottom flask equipped with a stirrer, reflux condenser, dropping funnel, and nitrogen gas inlet tube, and 1.8 g of sorbitan monostearate was added and dissolved. Afterwards, nitrogen gas was blown in to drive out the dissolved oxygen.
別に三角フラスコ中でアクリル酸30.を外部−1八
−
より水冷しながら、これに水39g溶解した13.1g
の純度95%苛性ソーダの水溶液を加えて、カルボキシ
ル基の75%を中和した。水相中のモノマー濃度は45
重量%となった。次いで、過硫酸カリウム0.1gを加
えて溶解したのち、窒素ガスを吹き込んで、溶存する酸
素を追い出した。Separately in an Erlenmeyer flask 30. external −18
- 13.1 g of 39 g of water dissolved in this while cooling with water
An aqueous solution of 95% pure caustic soda was added to neutralize 75% of the carboxyl groups. The monomer concentration in the aqueous phase is 45
weight%. Next, 0.1 g of potassium persulfate was added and dissolved, and then nitrogen gas was blown in to drive out dissolved oxygen.
この三角フラスコの内容物を、−に記の四つ目フラスコ
に加えて分散させ、窒素ガスを少量ずつ導入しながら、
かつ油浴によりフラスコの内温を60〜65℃に保持し
ながら、6時間反・応を行なわせた。Add the contents of this Erlenmeyer flask to the fourth flask described in - and disperse it, while introducing nitrogen gas little by little.
The reaction was carried out for 6 hours while maintaining the internal temperature of the flask at 60 to 65°C using an oil bath.
高吸水性ポリマー製造例3
特開昭56131608号公報の実施例1にもとづき高
吸水性ポリマーを製造した。Super absorbent polymer production example 3 A super absorbent polymer was produced based on Example 1 of JP-A-56131608.
すなわち、アクリル酸30gを容量100m1(7)フ
ラスコに入れ、冷却しながら攪拌下に22.6重量96
の苛性ソーダ水溶液58.7fを滴下して、アクリル酸
の80%を中和した。次いで、これに過硫酸カリウムo
、1gを加え、攪拌して室温で− ↓ 〇 −
溶解させた。That is, 30 g of acrylic acid was placed in a flask with a capacity of 100 m1 (7), and while cooling and stirring, 22.6 g of 96
58.7 f of an aqueous solution of caustic soda was added dropwise to neutralize 80% of the acrylic acid. This was then added with potassium persulfate
, 1 g was added and stirred to dissolve at room temperature.
別に、予め系内を窒素ガス置換した還流冷却器付きの5
00m1フラスコに、シクロヘキサン163、4 g、
及びHLBが8,69のソルビタンモノステアレート1
.9gを仕込み、室温で攪拌して界面活性剤を溶解させ
たのち、前述の過硫酸カリウムを添加したアクリル酸の
部分中和液を滴下して懸濁させた。再び系内を窒素ガス
で充分に置換したのち、昇温して油浴温度を55〜60
℃に保持しながら、3時間反応させた。Separately, a
00ml flask, 163.4 g of cyclohexane,
and sorbitan monostearate 1 with HLB of 8,69
.. After 9 g of the solution was charged and stirred at room temperature to dissolve the surfactant, the above-mentioned partially neutralized solution of acrylic acid to which potassium persulfate had been added was added dropwise and suspended. After sufficiently purging the system with nitrogen gas again, the temperature is raised to bring the oil bath temperature to 55-60℃.
The reaction was carried out for 3 hours while maintaining the temperature at °C.
実施例1
前記の製造例1と同様の方法で得られた重合液に、10
0メツシュ以下が68重量%であるような逆相懸濁重合
によって製造した乾燥粉末ポリマー(モノマー組成は製
造例1と同じ)45g及び水を55.2g加え、シクロ
ヘキサン還流下に、6時間かけて共沸脱水させた。この
時点でのポリマーの水分濃度は15%であった。このポ
リマーを減圧乾燥器にて3時間乾燥させて、142.
5gの顆粒状ポリマーを得た。Example 1 10
45 g of a dry powder polymer (monomer composition is the same as in Production Example 1) produced by reverse phase suspension polymerization with 68% by weight of 0 mesh or less and 55.2 g of water were added, and the mixture was heated under cyclohexane reflux for 6 hours. It was azeotropically dehydrated. The water concentration of the polymer at this point was 15%. This polymer was dried in a vacuum dryer for 3 hours and dried at 142.
5 g of granular polymer was obtained.
実施例2
前記の製造例1と同様の方法で得られた重合液を使用し
、それに添加する100メツシュ以下が68 FRfi
l %であるような逆相懸濁重合によって製造した乾燥
粉末ポリマーを28g1及び水を25.2gに変えた以
外は、実施例1と同処法で共沸脱水を行ない、乾燥後、
126gの顆粒状ポリマーを得た。Example 2 A polymerization solution obtained in the same manner as in Production Example 1 was used, and 100 mesh or less was added to 68 FRfi.
Azeotropic dehydration was carried out in the same manner as in Example 1, except that 28 g of dry powder polymer and 25.2 g of water were used, and after drying,
126 g of granular polymer was obtained.
実施例3
前記の製造例1と同様の方法で得られた重合液を使用し
、それに添加する100メツシュ以下が68重量26で
あるような逆相懸濁重合によって製造した乾燥粉末ポリ
マーを74g及び水を117gに変えた以外は、実施例
1と同処法で共沸脱水を行ない、乾燥後、177gの顆
粒状ポリマーを得た。Example 3 Using a polymerization solution obtained in the same manner as in Production Example 1 above, 74g of a dry powder polymer was produced by reverse phase suspension polymerization in which the amount of 100 meshes or less added was 68% by weight. Azeotropic dehydration was carried out in the same manner as in Example 1, except that the amount of water was changed to 117 g, and after drying, 177 g of granular polymer was obtained.
実施例4
前記の製造例1と同様の方法で得られた重合液を使用し
、それに添加する100メツシュ以下が68重重量であ
るような逆相懸濁重合によって製造した乾燥粉末ポリマ
ー45g及び水を25gに変えた以外は実施例1と同処
法で共沸脱水を行ない、141.8gの顆粒状ポリマー
を得た。Example 4 Using a polymerization solution obtained in the same manner as in Production Example 1 above, 45 g of a dry powder polymer and water were produced by reverse phase suspension polymerization such that 100 meshes or less added thereto weighed 68 wt. Azeotropic dehydration was carried out in the same manner as in Example 1, except that the amount was changed to 25 g, and 141.8 g of granular polymer was obtained.
実施例5
前記の製造例2と同様の方法で得られた重合液に100
メツシュ以下が68重量%であるような逆相懸濁重合に
よって製造した乾燥粉末ポリマー(モノマー組成は製造
例2と同じ)19g及び水を67.4fを加え、n−ヘ
キサン還流下に、5時間かけて、共沸脱水させた。この
時点でのポリマー中の水分濃度は13%であった。Example 5 100% of the polymerization solution obtained in the same manner as in Production Example 2
19 g of a dry powder polymer (monomer composition is the same as in Production Example 2) produced by reverse-phase suspension polymerization with a mesh content of 68% by weight and 67.4 f of water were added, and the mixture was heated under refluxing n-hexane for 5 hours. to perform azeotropic dehydration. The water concentration in the polymer at this point was 13%.
このポリマーを減圧乾燥器にて3時間乾燥させて、59
.9gの顆粒状ポリマーを得た。This polymer was dried in a vacuum dryer for 3 hours, and 59
.. 9 g of granular polymer was obtained.
比較例1
前記の製造例1と同様の方法で得られた重合液を静置さ
せ、デカンテーションでシクロヘキサン相を分離した。Comparative Example 1 A polymerization solution obtained in the same manner as in Production Example 1 was allowed to stand, and the cyclohexane phase was separated by decantation.
分離した湿潤ポリマーを減圧乾燥器にて3時間乾燥させ
て、96.6gの乾燥ポリマーを得た。The separated wet polymer was dried in a vacuum dryer for 3 hours to obtain 96.6 g of dry polymer.
以上の各実施例及び比較例で得られたポリマーについて
、これらの吸水速度、粒度分布について下記の方法で評
価した。その結果を第1表に示す。The water absorption rate and particle size distribution of the polymers obtained in each of the above Examples and Comparative Examples were evaluated by the following methods. The results are shown in Table 1.
A、吸水速度
300m1のビーカーに濃度0.9重量%の食塩水を約
200g秤量して入れ、これにポリマー約0.5gを秤
量して添加し、分散させ、所定の各時間(1分、3分、
5分)静置して膨潤させた。A. Weigh out about 200g of saline solution with a concentration of 0.9% by weight into a beaker with a water absorption rate of 300ml, add about 0.5g of polymer to it, disperse it, and leave it for each predetermined time (1 minute, 3 minutes,
5 minutes) to swell by standing still.
所定の各時間後に100メツシュフルイで水切りをした
のち、ン濾過液量を秤量し、下式によって各時間の吸水
能を求めて比較する。After each predetermined time, drain the water using a 100-mesh sieve, weigh the amount of filtrate, calculate the water absorption capacity for each time using the formula below, and compare.
仕込み食塩水量(g)
B6粒度分布
24メツシュ、42メツシュ、100メツシュおよび2
00メツシュのステンレス鋼製標準ふるいを重ねておき
、上部にポリマー40gを入れ5分間振とうさせ、各ふ
るいに残った量の重量%で示す。Amount of saline solution (g) B6 particle size distribution 24 mesh, 42 mesh, 100 mesh and 2
00 mesh standard stainless steel sieves are stacked, 40 g of polymer is placed on top and shaken for 5 minutes, and the amount remaining on each sieve is expressed in weight %.
Claims (1)
のアルカリ金属塩および(または)アンモニウム塩とを
主成分とするアクリル酸モノマーを水溶性ラジカル開始
剤と共に含む水溶液を有機溶媒中に分散させて重合させ
ることからなる油中水滴型逆相懸濁重合に付すことによ
って得られた重合液に、高吸水性ポリマーの乾燥粉末お
よび水を添加し、該有機溶媒還流下に、ポリマー中の水
分濃度が20重量%以下となるまで共沸脱水を行なうこ
とを特徴とする、高吸水性ポリマーの製造法。 2、重合反応液に添加する高吸水性ポリマー乾燥粉末が
その50%以上が100メッシュ以下のものであって、
その添加量が重合反応後に存在するポリマーに対して1
0〜100重量%であり、かつ添加する水の量が乾燥粉
末ポリマー添加後の系内に存在するポリマーに対して1
00〜300重量%となる様な量である、特許請求の範
囲第1項に記載の高吸水性ポリマーの製造法。 3、重合反応液に添加する高吸水性ポリマーが、重合反
応液中のポリマーとモノマー組成が実質的に同じであっ
て、場合により表面処理をしたものである、特許請求の
範囲第1〜2項のいずれかに記載の高吸水性ポリマーの
製造法。[Claims] 1. An aqueous solution containing an acrylic acid monomer mainly composed of acrylic acid and/or methacrylic acid and their alkali metal salts and/or ammonium salts together with a water-soluble radical initiator in an organic solvent. Dry powder of a highly water-absorbing polymer and water are added to the polymerization solution obtained by subjecting it to water-in-oil reverse-phase suspension polymerization, which consists of dispersing and polymerizing the polymer. A method for producing a superabsorbent polymer, which comprises carrying out azeotropic dehydration until the water concentration therein becomes 20% by weight or less. 2. 50% or more of the super absorbent polymer dry powder added to the polymerization reaction solution has a mesh size of 100 mesh or less,
The amount added is 1 for the polymer present after the polymerization reaction.
0 to 100% by weight, and the amount of water added is 1% to the polymer present in the system after addition of the dry powder polymer.
The method for producing a superabsorbent polymer according to claim 1, wherein the amount is such that the amount is 00 to 300% by weight. 3. Claims 1 to 2, wherein the superabsorbent polymer added to the polymerization reaction liquid has substantially the same monomer composition as the polymer in the polymerization reaction liquid, and is optionally surface-treated. A method for producing a superabsorbent polymer according to any one of paragraphs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62044579A JPS63210108A (en) | 1987-02-27 | 1987-02-27 | Manufacture of highly water-absorptive polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62044579A JPS63210108A (en) | 1987-02-27 | 1987-02-27 | Manufacture of highly water-absorptive polymer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63210108A true JPS63210108A (en) | 1988-08-31 |
Family
ID=12695410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62044579A Pending JPS63210108A (en) | 1987-02-27 | 1987-02-27 | Manufacture of highly water-absorptive polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63210108A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5478879A (en) * | 1991-01-22 | 1995-12-26 | Nippon Shokubai Co., Ltd. | Method for production of absorbent resin |
CN107522991A (en) * | 2017-09-27 | 2017-12-29 | 万华化学集团股份有限公司 | A kind of super absorbent resin prepared using a step inverse suspension polymerization and preparation method thereof |
-
1987
- 1987-02-27 JP JP62044579A patent/JPS63210108A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5478879A (en) * | 1991-01-22 | 1995-12-26 | Nippon Shokubai Co., Ltd. | Method for production of absorbent resin |
CN107522991A (en) * | 2017-09-27 | 2017-12-29 | 万华化学集团股份有限公司 | A kind of super absorbent resin prepared using a step inverse suspension polymerization and preparation method thereof |
CN107522991B (en) * | 2017-09-27 | 2020-05-08 | 万华化学集团股份有限公司 | Super absorbent resin prepared by one-step reversed phase suspension polymerization and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4340706A (en) | Alkali metal acrylate or ammonium acrylate polymer excellent in salt solution-absorbency and process for producing same | |
JP5349723B2 (en) | Method for producing water absorbent resin | |
JP3119900B2 (en) | Method for producing superabsorbent polymer | |
JP4227650B2 (en) | Spray polymerization method | |
US4541871A (en) | Water-absorbent resin having improved water-absorbency and improved water-dispersibility and process for producing same | |
JPS6187702A (en) | Production of water-absorptive resin | |
JP3155294B2 (en) | Method for producing superabsorbent polymer | |
EP0234202B1 (en) | Process for producing a water-absorbent resin | |
JP5784286B2 (en) | Polyacrylic acid (salt) water-absorbing resin and method for producing the same | |
JPH0117482B2 (en) | ||
JP3040438B2 (en) | Method for producing superabsorbent polymer | |
US5314952A (en) | Processes for producing highly water absorptive resins | |
JP3349768B2 (en) | Method and composition for producing acrylate polymer | |
JPH03195713A (en) | Production of polymer having high water absorption | |
JPS63260907A (en) | Manufacture of highly water-absorptive polymer | |
JPS6343930A (en) | Production of highly water-absorptive polymer | |
JPS63210108A (en) | Manufacture of highly water-absorptive polymer | |
JPH03137129A (en) | Pelletizing method of granular material | |
JPH0848721A (en) | Preparation of water-absorptive resin | |
JPH08157606A (en) | Production of highly water-absorbing resin | |
JPS63297408A (en) | Production of improved highly water-absorbing polymer | |
JPS61157513A (en) | Production of polymer having high water absorption property | |
JP2557951B2 (en) | Method for producing water absorbent resin with improved particle size | |
JPS6295308A (en) | Production of highly water-absorbing polymer bead | |
JP3333332B2 (en) | Treatment method for granular water absorbent resin |