US11236406B2 - Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same - Google Patents

Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same Download PDF

Info

Publication number
US11236406B2
US11236406B2 US16/620,615 US201816620615A US11236406B2 US 11236406 B2 US11236406 B2 US 11236406B2 US 201816620615 A US201816620615 A US 201816620615A US 11236406 B2 US11236406 B2 US 11236406B2
Authority
US
United States
Prior art keywords
less
steel sheet
hot
cold
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/620,615
Other languages
English (en)
Other versions
US20200370140A1 (en
Inventor
Katsutoshi Takashima
Takashi Kobayashi
Yoshimasa Funakawa
Seiji Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Assigned to JFE STEEL CORPORATION reassignment JFE STEEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUNAKAWA, YOSHIMASA, KOBAYASHI, TAKASHI, NAKAJIMA, SEIJI, TAKASHIMA, KATSUTOSHI
Publication of US20200370140A1 publication Critical patent/US20200370140A1/en
Application granted granted Critical
Publication of US11236406B2 publication Critical patent/US11236406B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present disclosure relates to a hot-pressed member and a method for manufacturing the same, and a cold-rolled steel sheet for hot pressing and a method for manufacturing the same, and particularly to the improvement of nut projection weldability of a hot-pressed member.
  • hot-pressed member refers to a member obtained by hot press forming a cold-rolled steel sheet having quench hardenability to increase its strength.
  • examples of the cold-rolled steel sheet disclosed herein include not only general cold-rolled steel sheets, but also hot-dip galvanized cold-rolled steel sheets (including galvannealed cold-rolled steel sheets), electrogalvanized cold-rolled steel sheets (including zinc-nickel alloy-electroplated cold-rolled steel sheets), and aluminum-coated or aluminum-plated cold-rolled steel sheets.
  • high-strength steel sheets used for structural members and reinforcing members of automobiles are required to have excellent formability.
  • TS TS of 1780 MPa or more
  • cracking would occur during cold press forming due to low ductility and large spring back would occur due to high yield strength. Therefore, after cold press forming, high dimension accuracy can not be obtained.
  • Hot pressing is a forming method that enables forming with high dimensional accuracy by heating a steel sheet to the temperature range of austenite single phase and then forming (processing) the steel sheet at the high temperature, and that enables increase of the strength through quenching by cooling the steel sheet after the forming.
  • JP2012-157900A (PTL 1) describes a technique for improving the indentation peeling strength by controlling the welding conditions.
  • JP2012-126943A (PTL 2) describes a technique for improving the indentation peeling strength by controlling the concentration of solute Si and the concentration of solute Al on a surface of a steel sheet.
  • the technique of PTL 2 is directed to a steel sheet having a tensile strength of about 1000 MPa, and in this component range, melting occurs between the nut and the steel sheet in resistance welding and a nugget is formed.
  • a tensile strength of about 1000 MPa melting occurs between the nut and the steel sheet in resistance welding and a nugget is formed.
  • deformation resistance is increased, and welding is accomplished by crimping, rather than welding which forms nuggets. Therefore, in such a case, the technique of PTL 2 can not be expected to improve the indentation peeling strength.
  • the present inventors discovered that in order to improve the indentation peeling strength of a hot-pressed member after being subjected to projection welding with a nut, it is effective to finely disperse Nb or Ti carbonitrides within a depth range of 20 ⁇ m to 100 ⁇ m in a thickness direction of the member from a surface of the member, which makes it possible to refine the prior austenite grain size after welding, to improve the toughness, and thus to improve the indentation peeling strength of the nut after projection welding.
  • the member is tightened with a bolt, and the peeling strength (indentation peeling strength) when pressing the bolt is important. Therefore, as a result of further intensive studies, the inventors discovered that a microstructure in a range of 20 ⁇ m to 100 ⁇ m in the thickness direction from the surface of the member after being subjected to hot pressing strongly influences the indentation peeling strength.
  • the prior austenite average grain size becomes finer, strengthening by precipitation of Nb and Ti carbonitrides improves the yield strength, and thus the indentation peel strength is improved.
  • a hot-pressed member comprising: a steel chemical composition containing (consisting of), by mass %, C: 0.28% or more and less than 0.42%, Si: 1.5% or less, Mn: 1.1% or more and 2.4% or less, P: 0.05% or less, S: 0.005% or less, Al: 0.01% or more and 0.50% or less, N: 0.010% or less, Nb: 0.005% or more and 0.15% or less, and Ti: 0.005% or more and 0.15% or less, with the balance being Fe and inevitable impurities; a microstructure in which a prior austenite average grain size is 7 ⁇ m or less within a range of 50 ⁇ m or less in a thickness direction from a surface of the member, a volume fraction of martensite is 90% or more, an average intergrain distance of Nb and Ti carbonitrides having a grain size of less than 0.10 ⁇ m within a depth range of 20 ⁇ m to 100 ⁇ m in the thickness direction from the surface of the member is 5
  • the steel chemical composition further contains, by mass %, at least one selected from the group consisting of B: 0.0050% or less, Mo: 0.50% or less, Cr: 0.50% or less, Sb: 0.001% or more and 0.020% or less, Ca: 0.005% or less, Mg: 0.005 or less, REM: 0.005% or less, V: 0.15% or less, Cu: 0.50% or less, Ni: 0.50% or less, Sn: 0.50% or less, Zn: 0.10% or less, Co: 0.10% or less, Zr: 0.10% or less, Ta: 0.10% or less, and W: 0.10% or less.
  • the hot-pressed member according to 1. or 2. comprising, on a surface layer thereof, an Al or Al alloy coating or plating layer or a Zn or Zn alloy coating or plating layer.
  • a cold-rolled steel sheet for hot pressing comprising: a chemical composition containing (consisting of), by mass %, C: 0.28% or more and less than 0.42%, Si: 1.5% or less, Mn: 1.1% or more and 2.4% or less, P: 0.05% or less, S: 0.005% or less, Al: 0.01% or more and 0.50% or less, N: 0.010% or less, Nb: 0.005% or more and 0.15% or less, and Ti: 0.005% or more and 0.15% or less, with the balance being Fe and inevitable impurities; and a microstructure which contains 30% or less by volume fraction of pearlite, and in which at least 10 Nb and Ti carbonitrides having a grain size of less than 0.10 ⁇ m are present on average per 100 ⁇ m 2 of a cross section parallel to a thickness direction of the steel sheet within a range of 150 ⁇ m in the thickness direction from the surface of the steel sheet, and the Nb and Ti carbonitrides have an average intergrain distance of 5
  • the cold-rolled steel sheet for hot pressing according to 4. wherein the chemical composition further contains, by mass %, at least one selected from B: 0.0050% or less, Mo: 0.50% or less, Cr: 0.50% or less, Sb: 0.001% or more and 0.020% or less, Ca: 0.005% or less, Mg: 0.005% or less, REM: 0.005% or less, V: 0.15% or less, Cu: 0.50% or less, Ni: 0.50% or less, Sn: 0.50% or less, Zn: 0.10% or less, Co: 0.10% or less, Zr: 0.10% or less, Ta: 0.10% or less, and W: 0.10% or less.
  • the cold-rolled steel sheet for hot pressing according to 4. or 5. wherein the steel sheet comprises on a surface thereof an Al or Al alloy coating or plating layer or a Zn or Zn alloy coating or plating layer.
  • a method for manufacturing the cold-rolled steel sheet for hot pressing as recited in 4. comprising: preparing a steel raw material comprising a chemical composition containing (consisting of), by mass %, C: 0.28% or more and less than 0.42%, Si: 1.5% or less, Mn: 1.1% or more and 2.4% or less, P: 0.05% or less, S: 0.005% or less, Al: 0.01% or more and 0.50% or less, N: 0.010% or less, Nb: 0.005% or more and 0.15% or less, and Ti: 0.005% or more and 0.15% or less, with the balance being Fe and inevitable impurities; hot rolling the steel raw material to obtain a hot-rolled steel sheet under a condition of a finisher delivery temperature of 860° C.
  • the hot rolling being started after heating of the steel raw material for 30 minutes or longer at a temperature of 1200° C. or higher; after the hot rolling, subjecting the hot-rolled steel sheet to primary cooling whereby the hot-rolled steel sheet is cooled to a cooling end temperature of 700° C. or lower at a first average cooling rate of 70° C./s or higher up to the cooling end temperature; after the primary cooling, subjecting the steel sheet to secondary cooling whereby the steel sheet is coiled at a coiling temperature of 500° C.
  • the chemical composition further contains, by mass %, at least one selected from the group consisting of B: 0.0050% or less, Mo: 0.50% or less, Cr: 0.50% or less, Sb: 0.001% or more and 0.020% or less, Ca: 0.005% or less, Mg: 0.005% or less, REM: 0.005% or less, V: 0.15% or less, Cu: 0.50% or less, Ni: 0.50% or less, Sn: 0.50% or less, Zn: 0.10% or less, Co: 0.10% or less, Zr: 0.10% or less, Ta: 0.10% or less, and W: 0.10% or less.
  • the method for manufacturing the cold-rolled steel sheet for hot pressing according to 7. or 8. the method further comprising: after the second annealing, applying an Al or Al alloy coating or plating treatment or a Zn or Zn alloy coating or plating treatment to a surface of the cold-rolled steel sheet.
  • a method for manufacturing a hot-pressed member comprising: heating the cold-rolled steel sheet for hot pressing as recited in any one of 4. to 6. in a temperature range of an Ac 3 transformation temperature to 1000° C.; and then hot pressing the steel sheet.
  • a hot-pressed member which has extremely high tensile strength after hot pressing and also has excellent nut projection weldability.
  • the microstructure of the hot-pressed member is a microstructure in which a prior austenite average grain size is 7 ⁇ m or less within a range of 50 ⁇ m or less in a thickness direction from a surface of the member, a volume fraction of martensite is 90% or more, and an average intergrain distance of Nb and Ti carbonitrides having a grain size of less than 0.10 ⁇ m within a depth range of 20 ⁇ m to 100 ⁇ m in the thickness direction from the surface of the member is 5 ⁇ m or less.
  • the upper limit of the prior austenite average crystal grain size is 7 ⁇ m. It is preferably 6 ⁇ m or less, and more preferably 5.5 ⁇ m or less.
  • the volume fraction of martensite when the volume fraction of martensite is less than 90% within a range of 50 ⁇ m in the thickness direction from the surface of the member, it is difficult to achieve a tensile strength of 1780 MPa or more. Therefore, the volume fraction of martensite within a range of 50 ⁇ m in the thickness direction from the surface of the member is 90% or more. It is preferably 93% or more, and more preferably 95% or more. It may be 100%.
  • the residual microstructures include ferrite, bainite, pearlite, and the like, and a total content of 4% or less is allowable.
  • an average intergrain distance of Nb and Ti carbonitrides having a grain size of less than 0.10 ⁇ m within a depth range of 20 ⁇ m to 100 ⁇ m in the thickness direction from the surface of the member should be 5 ⁇ m or less, and preferably 4 ⁇ m or less.
  • the cross section parallel to the thickness direction of the member to be measured is not particularly limited, and may be taken at any position.
  • examples of Nb carbonitrides include NbC, NbN, Nb(C,N), and the like
  • examples of Ti carbonitrides include TiC, TiN, Ti(C,N), and the like.
  • the microstructure of the cold-rolled steel sheet for hot pressing is a microstructure which contains 30% or less by volume fraction of pearlite, and in which at least 10 Nb and Ti carbonitrides having a grain size of less than 0.10 ⁇ m are present on average per 100 ⁇ m 2 of a cross section parallel to a thickness direction of the steel sheet within a range of 150 ⁇ m in the thickness direction from the surface of the steel sheet, and the Nb and Ti carbonitrides have an average intergrain distance of 5 ⁇ m or less.
  • the volume fraction of pearlite exceeds 30%, the average intergrain distance of Nb and Ti carbonitrides having a grain size of less than 0.10 ⁇ m within a range of 150 ⁇ m in the thickness direction from the surface of the steel sheet exceeds 5 ⁇ m, resulting in a lower indentation peeling strength after projection welding.
  • pearlite contains precipitated cementite which is composed of Fe and C, and the amount of C to be bonded with Nb or Ti becomes insufficient.
  • the volume fraction of pearlite is preferably 25% or less, and more preferably 20% or less.
  • the lower limit of the volume ratio of pearlite is preferably 1%.
  • the residual microstructures of the cold-rolled steel sheet for hot pressing include, for example, ferrite and martensite, and a ferrite content of 30% to 90% and a martensite content of 1% to 50% are allowable, respectively.
  • Nb and Ti carbonitrides which are coarsened by hot pressing.
  • the number of Nb and Ti carbonitrides having a grain size of less than 0.10 ⁇ m within a range of 150 ⁇ m in the thickness direction from the surface of the steel sheet is less than 10 on average per 100 ⁇ m 2 of a cross section parallel to the thickness direction of the steel sheet, the desired Nb and Ti carbonitrides distribution pattern can not be obtained after hot pressing, resulting in a lower indentation peeling strength after projection welding.
  • the number of Nb and Ti carbonitrides having a grain size of less than 0.10 ⁇ m within a range from 150 ⁇ m in the thickness direction from the surface of the steel sheet is at least 10, preferably at least 15, on average per 100 ⁇ m 2 of a cross section parallel to the thickness direction of the steel sheet.
  • no particular limitation is placed on the cross section parallel to the thickness direction of the steel sheet to be measured, and a so-called C or L cross section may be used.
  • the microstructure of the cold-rolled steel sheet before being subjected to hot pressing contains 20% or more by volume fraction of ferrite having an average grain size of 7 ⁇ m or less.
  • a preferred upper limit of this volume fraction is 85%. The reason is that C and Mn are concentrated in hard phases other than ferrite, and a desired prior austenite grain size can not be obtained on the surface layer of the member after being subjected to hot pressing.
  • the requirement that the content of pearlite be in the range of 30% or less by volume fraction is mainly satisfied by the cooling step and the second annealing step after the hot rolling during the manufacturing process of a cold-rolled steel sheet described later.
  • the requirement that at least 10 Nb and Ti carbonitrides having a grain size of less than 0.10 ⁇ m be present on average per 100 ⁇ m 2 of a cross section parallel to the thickness direction of the steel sheet within a range of 150 ⁇ m in the thickness direction from the surface of the steel sheet, and that the intergrain distance of the Nb and Ti carbonitrides be 5 ⁇ m or less is mainly satisfied by the hot rolling step and the first and second annealing steps.
  • C is an element effective for increasing the strength of the steel sheet, and is an important element for strengthening martensite after hot pressing to increase the strength of the steel.
  • the C content is preferably 0.30% or more.
  • the C content is less than 0.40%.
  • it is less than 0.39%.
  • Si is an element effective for solid solution strengthening of ferrite and increasing the strength.
  • excessive addition of Si increases the hardness of the steel sheet in the vicinity of the interface between the nut and the steel sheet after projection welding, with the result that the toughness decreases and the indentation peeling strength decreases. Therefore, the Si content is 1.5% or less. It is preferably 1.0% or less, and more preferably 0.7% or less.
  • the lower limit of the Si content is not particularly specified, it is preferable to set it at 0.005% because making the Si content extremely low leads to an increase in cost.
  • Mn 1.1% or more and 2.4% or less
  • Mn is an element that increases the quench hardenability during hot pressing, and thus contributes to the formation of martensite after hot pressing, that is, the increase in strength. To obtain this effect, the Mn content needs to be 1.1% or more. Preferably, it is 1.3% or more. On the other hand, when Mn is excessively added, P segregates at the interface between the nut and the member after projection welding, and the indentation peeling strength is lowered. Therefore, the Mn content is 2.4% or less. Preferably, it is 2.2% or less, and more preferably less than 2.0%.
  • the P content is 0.05% or less.
  • it is 0.04% or less, and more preferably 0.03% or less.
  • the lower limit of the P content is not particularly specified, it is preferable to set it at 0.0005% because making the P content extremely low leads to an increase in steelmaking cost.
  • an upper limit of the S content is 0.005%. Preferably, it is 0.0045% or less.
  • the lower limit of the S content is not particularly specified, it is preferable to set it at 0.0002% because, as is the case with P, making the S content extremely low leads to an increase in steelmaking cost.
  • Al 0.01% or more and 0.50% or less
  • Al is an element necessary for deoxidation. To obtain this effect, the Al content needs to be 0.01% or more. On the other hand, adding Al beyond 0.50% does not increase this effect. Therefore, the Al content is 0.50% or less. Preferably, it is 0.40% or less.
  • N forms a coarse nitride, and after projection welding such a nitride serves as a starting point of cracking, causing deterioration of the indentation peeling strength, it is necessary to suppress the content.
  • the N content exceeds 0.010%, this tendency becomes remarkable. Therefore, the N content is 0.010% or less. Preferably, it is 0.008% or less.
  • Nb 0.005% or more and 0.15% or less
  • Nb is an element that contributes to the increase in strength by forming fine carbonitrides. Furthermore, in the present disclosure, since fine Nb-based precipitates (Nb carbonitrides) suppress the coarsening of the prior austenite grain size, the indentation peeling strength after projection welding can be improved. To obtain this effect, the Nb content needs to be 0.005% or more. Preferably, it is 0.010% or more. On the other hand, adding a large amount of Nb fails to further increase the above effect, but instead increases the cost. Therefore, the Nb content is 0.15% or less. It is preferably 0.12% or less, and more preferably 0.10% or less.
  • Ti is an element that contributes to the increase in strength by forming a fine carbonitride. Furthermore, in the present disclosure, since fine Ti-based precipitates (Ti carbonitrides) suppress the coarsening of the prior austenite grain size, the indentation peeling strength after projection welding can be improved. To obtain this effect, the Ti content needs to be 0.005% or more. Preferably, it is 0.010% or more. On the other hand, even if a large amount of Ti is added, the above effect is saturated and the cost is increased. Therefore, the Ti content is 0.15% or less. Preferably, it is 0.12% or less, and more preferably 0.10% or less.
  • B is an element that increases the quench hardenability during hot pressing, and thus contributes to the formation of martensite after hot pressing, that is, the increase in strength. Since B also improves the grain boundary strength by segregation at grain boundaries, it is effective for increasing the indentation peeling strength after projection welding. To obtain this effect, the B content is preferably 0.0002% or more. However, it is preferable that the B content be 0.0040% or less, because excessive addition of B deteriorates toughness and reduces the indentation peeling strength after projection welding. The B content is more preferably 0.0035% or less.
  • Mo is an element that increases the quench hardenability during hot pressing, and thus contributes to the formation of martensite after hot pressing, that is, the increase in strength.
  • the Mo content is preferably 0.005% or more. It is more preferably 0.01% or more.
  • the Mo content is preferably 0.50% or less. It is more preferably 0.35% or less.
  • the Cr content is preferably 0.005% or more. It is more preferably 0.01% or more.
  • the Cr content is preferably 0.50% or less. It is more preferably 0.35% or less.
  • Sb has the effect of suppressing the formation of a decarburized layer in a surface layer part of a steel sheet before heating of the steel sheet prior to hot pressing and subsequent cooling through a series of processes of hot pressing. Accordingly, the hardness distribution of the sheet surface becomes uniform, and the indentation peeling strength after projection welding is improved. To obtain this effect, the Sb content is preferably 0.001% or more. On the other hand, if Sb is added in excess of 0.020%, the rolling load increases and the productivity decreases. Therefore, the Sb content is preferably 0.020% or less.
  • Ca, Mg, and REM control the shapes of sulfides and oxides, and suppress the formation of coarse inclusions, thereby improving the delayed fracture resistance after projection welding.
  • the content of each added element is preferably 0.005% or less.
  • REM is an element containing Sc, Y, and lanthanoid elements.
  • V 0.15% or less
  • V is an element that contributes to the increase in strength by forming a fine carbonitride.
  • the V content is preferably 0.01% or more.
  • the V content is preferably 0.15% or less. It is more preferably 0.05% or less.
  • the Cu can be added as needed because not only does it contribute to the increase in strength by solid solution strengthening, but it improves the corrosion resistance and thus can improve the delayed fracture resistance after projection welding. To obtain these effects, the Cu content is preferably 0.05% or more. On the other hand, if Cu is added in excess of 0.50%, the effect is saturated and surface defects resulting from Cu tend to occur more frequently. Therefore, the Cu content is preferably 0.50% or less.
  • Ni can also be added as needed because it can improve the delayed fracture resistance after projection welding by improving the corrosion resistance.
  • Ni when added simultaneously with Cu, Ni has the effect of suppressing surface defects caused by Cu.
  • the Ni content is 0.05% or more.
  • the Ni content is preferably 0.50% or less.
  • the Sn content is 0.05% or more.
  • the addition of a large amount of Sn lowers the toughness after projection welding and reduces the indentation peeling strength. Therefore, the Sn content is preferably 0.50% or less.
  • Zn is an element that contributes to the formation of martensite after hot pressing, and thus contributes to the formation of martensite after hot pressing, that is, the increase in strength.
  • the Zn content is preferably 0.005% or more.
  • the addition of a large amount of Zn lowers the toughness after projection welding and reduces the indentation peeling strength. Therefore, the Zn content is preferably 0.10% or less.
  • Co can also be added as needed because it can improve the delayed fracture resistance after projection welding as it increases the corrosion resistance by improving the hydrogen overvoltage.
  • the Co content is preferably 0.005% or more.
  • the addition of a large amount of Co lowers the toughness after projection welding and reduces the indentation peeling strength. Therefore, the Co content is preferably 0.10% or less.
  • the Zr content is preferably 0.005% or more.
  • the addition of a large amount of Zr lowers the toughness after projection welding and reduces the indentation peeling strength. Therefore, the Zr content is preferably 0.10% or less.
  • Ta 0.10% or less
  • Ta like Ti, forms alloy carbides and alloy nitrides and contributes to the increase in strength.
  • the Ta content is preferably 0.005% or more. Excessively adding Ta, however, fails to increase the addition effect, but instead results in a rise in alloying cost. Therefore, the Ta content is 0.10% or less.
  • W can also be added as needed since it can improve the delayed fracture resistance after projection welding by improving the corrosion resistance.
  • the W content is preferably 0.005% or more.
  • the W content is preferably 0.10% or less.
  • the balance other than the above is Fe and inevitable impurities.
  • the cold-rolled steel sheet for hot pressing disclosed herein may be a cold-rolled steel sheet to which a coating or plating layer is not applied, yet in order to prevent oxidation by hot pressing or to improve corrosion resistance, a coating or plating layer may be applied onto the surface of the cold-rolled steel sheet before being subjected to hot pressing.
  • an Al or Al alloy coating or plating layer or a Zn or Zn alloy coating or plating layer is suitable. Applying such coating or plating layer onto the surface of the cold-rolled steel sheet for hot pressing prevents oxidation of the surface of the steel sheet by hot pressing, and the corrosion resistance of the hot-pressed member is further improved.
  • Examples of the Al or Al alloy coating or plating layer include an Al—Si coating layer formed by hot dip coating.
  • examples of the Zn or Zn alloy coating or plating layer include a hot-dip galvanizing layer formed by hot dip coating, a galvannealing layer formed by alloying it, a Zn electroplating layer formed by electroplating, and a Zn—Ni alloy electroplating layer.
  • the Al or Al alloy coating or plating layer or the Zn or Zn alloy coating or plating layer is not limited to the above-described coating or plating layers, and may be a coating or plating layer which contains at least one of Si, Mg, Ni, Fe, Co, Mn, Sn, Pb, Be, B, P, S, Ti, V, W, Mo, Sb, Cd, Nb, Cr, and Sr in addition to the main component, Al or Zn.
  • the method for forming the Al or Al alloy coating or plating layer or the Zn or Zn alloy coating or plating layer is not limited to the disclosed method at all, and any known hot dip coating, electroplating, vapor deposition plating, or the like is applicable.
  • the Al or Al alloy coating or plating layer or the Zn or Zn alloy coating or plating layer may be a coating or plating layer subjected to an alloying treatment after the coating or plating step.
  • the Zn or Zn alloy coating or plating layer is a Zn—Ni alloy coating or plating layer in order to further improve the corrosion resistance of the hot-pressed member or to prevent liquid metal embrittlement cracking caused by molten Zn during hot press forming.
  • the coating weight of the coating or plating layer is not particularly limited, and may be set in a general manner. For example, it is preferable to have a coating or plating layer with a coating weight of 5 g/m 2 to 150 g/m 2 per surface. If the coating weight is less than 5 g/m 2 , it may be difficult to ensure corrosion resistance, while if it exceeds 150 g/m 2 , the resistance to coating or plating exfoliation may deteriorate.
  • an Al—Si coating or plating layer when heated, it changes to a coating or plating layer mainly composed of an Fe—Al intermetallic compound containing Si. Further, when a hot-dip galvanizing layer, a galvannealing layer, a Zn electroplating layer, and the like are heated, an FeZn solid solution phase in which Zn is dissolved in Fe, a ZnFe intermetallic compound, a ZnO layer in the surface layer, and the like are formed.
  • a solid solution layer containing Ni in which a coating or plating layer component is dissolved in Fe, an intermetallic compound mainly composed of ZnNi, a ZnO layer in the surface layer, and the like are formed.
  • a coating or plating layer containing Al formed by heating a cold-rolled steel sheet for hot pressing to which an Al or Al alloy coating or plating layer is applied is referred to as an Al or Al alloy coating or plating layer
  • a coating or plating layer containing Zn formed by heating a cold-rolled steel sheet for hot pressing to which a Zn or Zn alloy coating or plating layer is applied is referred to as a Zn or Zn alloy coating or plating layer.
  • a steel material (slab) having the above-described predetermined composition is hot rolled to obtain a hot-rolled steel sheet under a condition of a finisher delivery temperature of 860° C. to 950° C., the hot rolling being started after heating of the steel material for 30 minutes or longer at a temperature of 1200° C. or higher.
  • the hot-rolled steel sheet is subjected to primary cooling whereby the hot-rolled steel sheet is cooled to a cooling end temperature of 700° C. or lower at a first average cooling rate of 70° C./s or higher up to the cooling end temperature.
  • the steel sheet After the primary cooling, the steel sheet is subjected to secondary cooling whereby the steel sheet is coiled at a coiling temperature of 500° C. or lower at a second average cooling rate of 5° C./s to 50° C./s up to the coiling temperature.
  • the coiled hot-rolled steel sheet is then pickled and cold-rolled to obtain a cold-rolled steel sheet, and then the cold-rolled steel sheet is subjected to a first annealing whereby the cold-rolled steel sheet is held for 600 seconds or shorter in a temperature range of 850° C. to 950° C. as a soaking temperature, then cooled to room temperature by water cooling, and subjected to 60 seconds to 1800 seconds of tempering in a temperature range of 150° C. to 300° C.
  • the steel sheet is subjected to a second annealing whereby the steel sheet is heated to a temperature range of 720° C. to 850° C. at an average heating rate of 3° C./s to 30° C./s, held for 15 seconds or longer in a temperature range of 720° C. to 850° C. as a soaking temperature, and cooled to a cooling end temperature of 600° C. or lower at a third average cooling rate of 5° C./s or higher.
  • hot rolling is started after holding of the steel slab for 30 minutes or longer at a temperature of 1200° C. or higher without reheating, or after reheating of the steel slab to 1200° C. or higher and then holding for 30 minutes or longer.
  • This treatment is important in order for Ti and Nb precipitated during casting to be solid-solved again.
  • an energy saving process is also applicable without any problem, such as hot direct rolling or direct rolling, in which a steel slab is charged into a heating furnace as a warm slab without being cooled, in which a steel slab is rolled immediately after heat retention, or in which a steel slab is rolled directly after casting.
  • Finisher Delivery Temperature 860° C. to 950° C.
  • the hot rolling needs to be finished in the austenite single phase region in order to improve the resistance to resistance welding cracking after annealing by increasing the uniformity of the microstructure of the steel sheet and reducing the anisotropy of the material property. Therefore, the finisher delivery temperature is 860° C. or higher. On the other hand, when the finisher delivery temperature exceeds 950° C., the crystal grains in the microstructure after hot rolling become coarse, and the crystal grains after annealing are also coarsened. Therefore, the upper limit of the finisher delivery temperature is 950° C.
  • Primary cooling Cooling to 700° C. or lower at a first average cooling rate of 70° C./s or higher
  • the austenite undergoes ferrite transformation during the cooling process after the end of the hot rolling.
  • quenching is performed after the end of the hot rolling to homogenize the microstructure as much as possible, while at the same time suppressing generation of Nb-based precipitates.
  • at first as primary cooling, cooling is performed to 700° C. or lower at a first average cooling rate of 70° C./s or higher. If the first average cooling rate is lower than 70° C./s, the ferrite is coarsened, and the microstructure of the hot-rolled steel sheet becomes inhomogeneous, leading to a reduction in the indentation peeling strength after projection welding.
  • the average cooling rate in this secondary cooling is lower than 5° C./s, ferrite or pearlite is excessively formed in the microstructure of the hot-rolled steel sheet, and the microstructure of the steel sheet eventually becomes heterogeneous, and Nb and Ti carbonitrides coarsen, leading to a reduction in the indentation peeling strength after projection welding.
  • the average cooling rate in the secondary cooling is higher than 50° C./s, pearlite is excessively formed in the microstructure of the hot-rolled steel sheet, and the element distribution of C becomes uneven, leading to a reduction in the indentation peeling strength after projection welding following the hot pressing.
  • cooling to temperatures above 500° C. causes excessive formation of ferrite or pearlite in the microstructure of the hot-rolled steel sheet and coarsening of the Nb and Ti carbonitrides, again leading to a reduction in the indentation peeling strength after projection welding.
  • Coiling temperature 500° C. or lower
  • the coiling temperature is higher than 500° C.
  • ferrite and pearlite are excessively formed in the microstructure of the hot-rolled steel sheet, and the microstructure of the steel sheet eventually becomes heterogeneous, leading to a reduction in the indentation peeling strength after projection welding.
  • the upper limit of the coiling temperature is 500° C. It is preferably 470° C. or lower.
  • the lower limit of the coiling temperature is not particularly specified, yet if the coiling temperature is too low, hard martensite is excessively formed to increase the cold rolling load. Therefore, the lower limit is preferably 300° C. or higher.
  • pickling is performed to remove scale from the surface of the hot-rolled sheet.
  • the pickling treatment is not particularly limited and may be carried out according to a conventional method.
  • Cold rolling is performed to roll a steel sheet into a cold-rolled sheet having a predetermined thickness.
  • the cold rolling is not particularly limited and may be carried out according to a conventional method.
  • This annealing is carried out to promote recrystallization after cold rolling and to control the microstructure of the steel sheet after being subjected to hot pressing and the intergrain state of Nb and Ti carbonitrides.
  • Nb and Ti in a solid-solved state after hot rolling are finely precipitated through annealing and quenching in an austenite single phase region.
  • more nucleation sites are formed in the second annealing step, and crystal grains in the microstructure of the steel sheet are refined.
  • Soaking temperature 850° C. to 950° C.
  • the soaking temperature is set to a temperature range in the austenite range. If the temperature is lower than 850° C., crystal grains in the microstructure of the steel sheet formed in the second annealing step are coarsened, and the desired austenite grain size after hot pressing can not be obtained. Therefore, the lower limit of the soaking temperature is 850° C. However, when the soaking temperature is too high, Nb and Ti carbonitrides become coarse, and the desired precipitation state can not be obtained after hot pressing. Therefore, the soaking temperature is 950° C. or lower. Preferably, it is 900° C. or lower.
  • Soaking duration 600 seconds or shorter
  • the soaking duration is 600 seconds or shorter. Preferably, it is 300 seconds or shorter. However, when the soaking duration is too short, Nb and Ti remain in a solid-solved state. Therefore, the soaking duration is preferably 5 seconds or longer.
  • Tempering temperature 150° C. to 300° C.
  • tempering is performed at 150° C. to 300° C. If the tempering temperature is lower than 150° C., nucleation sites are insufficient, and the desired austenite grain size can not be obtained after hot pressing. However, if the temperature exceeds 300° C., Nb and Ti carbonitrides are coarsened, and the desired precipitation state can not be obtained after hot pressing.
  • Tempering time 60 seconds to 1800 seconds
  • tempering is performed for 60 seconds to 1800 seconds. If the tempering time is shorter than 60 seconds, nucleation sites are insufficient, and the desired austenite grain size can not be obtained after hot pressing. On the other hand, if the tempering time exceeds 1800 seconds, Nb and Ti carbonitrides coarsen, and the desired precipitation state can not be obtained after hot pressing.
  • the upper limit of the average heating rate is set at 30° C./s.
  • an average heating rate of 3° C./s or higher is required. It is preferably 8° C./s or higher.
  • the steel sheet is heated to a soaking temperature range of 720° C. to 850° C. described later.
  • Soaking temperature 720° C. to 850° C.
  • the soaking temperature is set in a temperature range of a ferrite and austenite dual phase region. Below 720° C., coarse cementite precipitates form. Therefore, the lower limit of the soaking temperature is set at 720° C. On the other hand, if the soaking temperature is too high, crystal grain growth of austenite becomes remarkable, the crystal grains and Ti and Nb carbonitrides become coarse, and the indentation peeling strength after projection welding decreases. Therefore, the soaking temperature is 850° C. or lower. It is preferably 830° C. or lower.
  • Soaking duration 15 seconds or longer
  • a holding time of at least 15 seconds is necessary for progress of recrystallization and austenite transformation of some or all of the microstructures.
  • the holding time is preferably 600 seconds or shorter.
  • Cooling conditions after soaking Cooling to a temperature range of 600° C. or lower at a third average cooling rate of 5° C./s or higher
  • the above-described soaking treatment it is necessary to perform cooling at an average cooling rate of 5° C./s or higher from the soaking temperature to a temperature range (cooling end temperature) of 600° C. or lower. If the average cooling rate is lower than 5° C./s, ferrite transformation proceeds during cooling, and the volume fraction of martensite in the cold-rolled steel sheet decreases and Nb and Ti carbonitrides become coarse, resulting in a lower indentation peeling strength after projection welding.
  • the upper limit of the average cooling rate is not particularly specified, yet is preferably 30° C./s or lower from the viewpoint of equipment and cost.
  • the cooling end temperature is higher than 600° C., pearlite is excessively formed, and a predetermined volume fraction in the microstructure of the steel sheet can not be obtained, causing deterioration of the indentation peeling strength after projection welding.
  • the hot rolling step including the subsequent two-stage cooling step
  • two-stage annealing steps including the subsequent cooling step
  • pearlite can be contained in an amount of 30% or less by volume ratio.
  • the cold-rolled steel sheet may be subjected to a coating or plating treatment such as hot-dip galvanizing, or used as it is without being subjected to such treatment.
  • a coating or plating treatment such as hot-dip galvanizing
  • the cold-rolled steel sheet for hot pressing disclosed herein may be used as the cold-rolled steel sheet manufactured by the above-described manufacturing process or, depending on the purpose, may be subjected to an Al or Al alloy coating or plating treatment or a Zn or Zn alloy coating or plating treatment to form an Al or Al alloy coating or plating layer or a Zn or Zn alloy coating or plating layer.
  • Such coating or plating treatment is not limited at all, and any known hot-dip coating, electroplating, vapor deposition plating, and the like can be applied.
  • an alloying treatment may be performed after the coating or plating step.
  • examples of the Al or Al alloy coating or plating treatment include a treatment to apply hot-dip aluminum (Al) coating and a treatment to apply hot-dip Al—Si coating
  • examples of zinc or zinc alloy coating or plating treatment include a treatment to apply hot-dip galvanizing or zinc-nickel electroplating and a treatment to apply hot-dip galvanizing followed by an alloying treatment.
  • Temper rolling may also be carried out on the cold-rolled steel sheet.
  • a preferred elongation ratio is 0.05% to 2.0%.
  • the cold-rolled steel sheet thus obtained is hot-pressed to form a hot-pressed member.
  • the method of hot pressing is not particularly limited and may be performed according to a conventional method.
  • a cold-rolled steel sheet for hot pressing as a raw material may be heated to a temperature range of an Ac 3 transformation temperature to 1000° C. using an electric furnace, a gas furnace, an electric heating furnace, a far infrared heating furnace, or the like, held in this temperature range for 0 seconds to 600 seconds, transported to a press, and subjected to hot pressing in a temperature range of 550° C. to 800° C.
  • the heating rate at the time of heating the cold-rolled steel sheet for hot pressing may be 3° C./s to 200° C./s.
  • each element symbol represents the content by mass % of the corresponding element. For any element not contained, it is calculated as zero.
  • each hot-rolled sheet thus obtained was pickled, and then cold rolled with a rolling reduction listed in Table 2 to obtain a cold-rolled sheet (sheet thickness: 1.4 mm).
  • each cold-rolled steel sheet thus obtained was subjected to a first annealing treatment under the conditions listed in Table 2 in a continuous annealing line (CAL) to obtain a cold-rolled steel sheet.
  • CAL continuous annealing line
  • each cold-rolled steel sheet was subjected to a second annealing treatment under the conditions listed in Table 2 in a continuous annealing line (CAL) or a continuous galvanizing line (CGL), and cold-rolled steel sheets (CR) were obtained for those having passed through CAL and hot-dip galvanized steel sheets (GI) were obtained for those having passed through CGL.
  • CAL continuous annealing line
  • CGL continuous galvanizing line
  • GI hot-dip galvanized steel sheets
  • the mold used in the hot pressing had a punch width of 70 mm, a punch shoulder radius of 4 mm, and a die shoulder radius of 4 mm, and the forming depth was 30 mm.
  • Heating of each cold-rolled steel sheet was performed in the atmosphere using either an infrared heating furnace or an atmosphere heating furnace depending on the heating rate.
  • cooling after pressing was performed by combining sandwiching of each steel sheet between the punch and the die with air cooling on the die released from the sandwiching, and each steel sheet was cooled from the press (start) temperature to 150° C. At this time, the cooling rate was adjusted by changing the holding time of the punch at the bottom dead center in a range of 1 second to 60 seconds.
  • a JIS No. 5 tensile test specimen was collected from the position of the hat bottom portion of each hot-pressed member thus obtained, and a tensile test was performed according to JIS Z 2241 to measure the tensile strength (TS).
  • test specimens of 50 mm ⁇ 150 mm were collected from various hot-pressed members.
  • a hole of 10 mm in diameter was made at the center, and an M6-welding nut having four projection parts was set on an alternating current welding machine such that the center of the hole of the specimen would coincide with the center of the hole of the nut.
  • the welding was performed by resistance welding using a single phase alternating current (50 Hz) resistance welding machine of servomotor pressure type attached to a welding gun, and test specimens having projection welds were produced.
  • the pair of electrode tips used was a flat 30 mm ⁇ electrode pair.
  • the welding conditions were a pressing force of 3000 N, an energization time of 7 cycles (50 Hz), a welding current of 12 kA, and a hold time of 10 cycles (50 Hz).
  • the load when the nut was peeled off from the steel sheet was measured by the indentation-peel test according to JIS B 1196: 2001.
  • the indentation peeling strength of the projection weld was judged as “Good” if the load at that time was 8 kN or more, “Fair” if the load was 6.5 kN or more and less than 8 kN, or “Poor” if the load was less than 6.5 kN.
  • micrographs in which crystal grains of prior austenite and ferrite had been respectively identified in advance were captured from the microstructural micrographs of each steel sheet (taken at 10 locations of 20 ⁇ m ⁇ 20 ⁇ m at 5000 times magnification) to determine the area of each crystal grain.
  • the equivalent circular diameter of each crystal grain was calculated, the results were averaged, and the average was used as the area of each crystal grain.
  • a cross section parallel to the thickness direction was observed at 10 locations of 0.5 ⁇ m ⁇ 0.5 ⁇ m under a transmission electron microscope (TEM) at 10000 times magnification, and the equivalent circle diameter was calculated using Image-Pro available from Media Cybernetics with a lower limit of 0.005 ⁇ m to determine the grain size.
  • TEM transmission electron microscope
  • the cross section was observed at 10 locations of 0.5 ⁇ m ⁇ 0.5 ⁇ m under a transmission electron microscope (TEM) at 10000 times magnification, and the average number density of these 10 locations was obtained. In this method, it was possible to count Nb and Ti carbonitrides having a grain size of 0.005 ⁇ m or more.
  • Table 4 The microstructures of the cold-rolled steel sheets and the hot-pressed members thus obtained are listed in Table 4.
  • Table 5 lists the measurement results of the tensile properties and the indentation peeling strength after projection welding of the hot-pressed members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)
US16/620,615 2017-06-30 2018-03-30 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same Active 2039-01-01 US11236406B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/024260 2017-06-30
PCT/JP2017/024260 WO2019003450A1 (fr) 2017-06-30 2017-06-30 Élément pressé à chaud et son procédé de fabrication, et tôle d'acier laminée à froid en vue d'un pressage à chaud
WOPCT/JP2017/024260 2017-06-30
PCT/JP2018/013725 WO2019003542A1 (fr) 2017-06-30 2018-03-30 Élément pressé à chaud et son procédé de fabrication et tôle d'acier laminée à froid et son procédé de fabrication

Publications (2)

Publication Number Publication Date
US20200370140A1 US20200370140A1 (en) 2020-11-26
US11236406B2 true US11236406B2 (en) 2022-02-01

Family

ID=64740456

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/620,615 Active 2039-01-01 US11236406B2 (en) 2017-06-30 2018-03-30 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same

Country Status (7)

Country Link
US (1) US11236406B2 (fr)
EP (1) EP3647450B1 (fr)
JP (1) JP6540908B2 (fr)
KR (1) KR102356747B1 (fr)
CN (1) CN110832097B (fr)
MX (1) MX2019015322A (fr)
WO (2) WO2019003450A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2021010128A (es) * 2019-02-21 2021-09-23 Jfe Steel Corp Miembro prensado en caliente, chapa de acero laminada en frio para prensado en caliente y metodo de fabricacion de los mismos.
KR20210127193A (ko) * 2019-03-12 2021-10-21 제이에프이 스틸 가부시키가이샤 열간 프레스 부재, 열간 프레스용 강판의 제조 방법, 및 열간 프레스 부재의 제조 방법
CN113544296B (zh) * 2019-03-20 2023-01-10 日本制铁株式会社 热冲压成形体
JP7255634B2 (ja) * 2020-05-15 2023-04-11 Jfeスチール株式会社 熱間プレス部材およびその製造方法
CN113352708B (zh) * 2021-07-06 2022-02-22 华北电力大学 一种轻质高强Mg-Ta复合金属板材及其室温轧制成形方法
CN117957337A (zh) * 2021-09-22 2024-04-30 杰富意钢铁株式会社 热压用钢板、其制造方法、热压构件及其制造方法
WO2023214731A1 (fr) * 2022-05-06 2023-11-09 주식회사 포스코 Pièce formée par pressage à chaud et son procédé de fabrication

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303186A (ja) 2000-04-21 2001-10-31 Nippon Steel Corp バーリング加工性に優れる複合組織鋼板およびその製造方法
JP2007314817A (ja) 2006-05-23 2007-12-06 Sumitomo Metal Ind Ltd 熱間プレス用鋼板および熱間プレス鋼板部材ならびにそれらの製造方法
JP2010065295A (ja) 2008-09-12 2010-03-25 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP4464861B2 (ja) 2005-04-27 2010-05-19 株式会社神戸製鋼所 耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼
CN101713046A (zh) 2009-12-14 2010-05-26 钢铁研究总院 纳米析出相强化及控制的超细晶粒马氏体钢的制备方法
JP2010174283A (ja) 2009-01-28 2010-08-12 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010174282A (ja) 2009-01-28 2010-08-12 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010215954A (ja) 2009-03-16 2010-09-30 Sumitomo Metal Ind Ltd 熱間プレス用鋼板およびその製造方法ならびに熱間プレス用鋼板部材の製造方法
JP2012126943A (ja) 2010-12-14 2012-07-05 Sumitomo Metal Ind Ltd 抵抗溶接用冷延鋼板およびその製造方法
JP2012157900A (ja) 2011-01-13 2012-08-23 Nippon Steel Corp プロジェクション溶接継手およびその製造方法
JP2012179646A (ja) 2011-03-02 2012-09-20 Nippon Steel Corp 溶接部の遅れ破壊特性並びに静的強度特性に優れた自動車用構造部材、および、その製造方法
EP2581465A1 (fr) 2010-06-14 2013-04-17 Nippon Steel & Sumitomo Metal Corporation Article moulé estampé à chaud, procédé pour la production d'une tôle d'acier pour l'estampage à chaud et procédé pour la production d'un article moulé estampé à chaud
EP2803746A1 (fr) 2012-01-13 2014-11-19 Nippon Steel & Sumitomo Metal Corporation Article moulé par estampage à chaud et son procédé de production
CN104508163A (zh) 2012-07-31 2015-04-08 杰富意钢铁株式会社 成形性及定形性优异的高强度热浸镀锌钢板及其制造方法
CN105940134A (zh) 2014-01-29 2016-09-14 杰富意钢铁株式会社 高强度冷轧钢板及其制造方法
US20170029913A1 (en) 2015-07-30 2017-02-02 Hyundai Motor Company Hot stamping steel and producing method thereof

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303186A (ja) 2000-04-21 2001-10-31 Nippon Steel Corp バーリング加工性に優れる複合組織鋼板およびその製造方法
JP4464861B2 (ja) 2005-04-27 2010-05-19 株式会社神戸製鋼所 耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼
JP2007314817A (ja) 2006-05-23 2007-12-06 Sumitomo Metal Ind Ltd 熱間プレス用鋼板および熱間プレス鋼板部材ならびにそれらの製造方法
JP2010065295A (ja) 2008-09-12 2010-03-25 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010174283A (ja) 2009-01-28 2010-08-12 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010174282A (ja) 2009-01-28 2010-08-12 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010215954A (ja) 2009-03-16 2010-09-30 Sumitomo Metal Ind Ltd 熱間プレス用鋼板およびその製造方法ならびに熱間プレス用鋼板部材の製造方法
CN101713046A (zh) 2009-12-14 2010-05-26 钢铁研究总院 纳米析出相强化及控制的超细晶粒马氏体钢的制备方法
US20130095347A1 (en) * 2010-06-14 2013-04-18 Kaoru Kawasaki Hot-stamped steel, method of producing of steel sheet for hot stamping, and method of producing hot-stamped steel
EP2581465A1 (fr) 2010-06-14 2013-04-17 Nippon Steel & Sumitomo Metal Corporation Article moulé estampé à chaud, procédé pour la production d'une tôle d'acier pour l'estampage à chaud et procédé pour la production d'un article moulé estampé à chaud
JP2012126943A (ja) 2010-12-14 2012-07-05 Sumitomo Metal Ind Ltd 抵抗溶接用冷延鋼板およびその製造方法
JP2012157900A (ja) 2011-01-13 2012-08-23 Nippon Steel Corp プロジェクション溶接継手およびその製造方法
JP2012179646A (ja) 2011-03-02 2012-09-20 Nippon Steel Corp 溶接部の遅れ破壊特性並びに静的強度特性に優れた自動車用構造部材、および、その製造方法
EP2803746A1 (fr) 2012-01-13 2014-11-19 Nippon Steel & Sumitomo Metal Corporation Article moulé par estampage à chaud et son procédé de production
US9725782B2 (en) * 2012-01-13 2017-08-08 Nippon Steel & Sumitomo Metal Corporation Hot stamped steel and method for producing the same
CN104508163A (zh) 2012-07-31 2015-04-08 杰富意钢铁株式会社 成形性及定形性优异的高强度热浸镀锌钢板及其制造方法
EP2881481A1 (fr) 2012-07-31 2015-06-10 JFE Steel Corporation Tôle d'acier galvanisée par immersion à chaud à résistance élevée qui présente une excellente aptitude au moulage et une excellente aptitude à la fixation de formes, ainsi que procédé de fabrication de cette dernière
CN105940134A (zh) 2014-01-29 2016-09-14 杰富意钢铁株式会社 高强度冷轧钢板及其制造方法
US10174396B2 (en) 2014-01-29 2019-01-08 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing the same (as amended)
US20170029913A1 (en) 2015-07-30 2017-02-02 Hyundai Motor Company Hot stamping steel and producing method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Dec. 18, 2020, Office Action issued by the China National Intellectual Property Administration in the corresponding Chinese Patent Application No. 201880042603.4 with English language search report.
Jul. 3, 2018, International Search Report issued in the International Patent Application No. PCT/JP2018/013725.
Mar. 10, 2020, the Extended European Search Report issued by the European Patent Office in the corresponding European Patent Application No. 18825409.8.

Also Published As

Publication number Publication date
CN110832097B (zh) 2021-10-29
WO2019003450A1 (fr) 2019-01-03
EP3647450A4 (fr) 2020-05-06
JP6540908B2 (ja) 2019-07-10
MX2019015322A (es) 2020-02-17
JPWO2019003542A1 (ja) 2019-06-27
US20200370140A1 (en) 2020-11-26
KR20200013703A (ko) 2020-02-07
KR102356747B1 (ko) 2022-01-27
EP3647450B1 (fr) 2021-04-28
CN110832097A (zh) 2020-02-21
WO2019003542A1 (fr) 2019-01-03
EP3647450A1 (fr) 2020-05-06

Similar Documents

Publication Publication Date Title
US11111558B2 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
US11085101B2 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
US11420247B2 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
US11293074B2 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
US11236406B2 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
US11377709B2 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
US20220186339A1 (en) Hot-pressed member, cold-rolled steel sheet for hot pressing, and manufacturing methods therefor

Legal Events

Date Code Title Description
AS Assignment

Owner name: JFE STEEL CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKASHIMA, KATSUTOSHI;KOBAYASHI, TAKASHI;FUNAKAWA, YOSHIMASA;AND OTHERS;REEL/FRAME:051216/0172

Effective date: 20191003

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE