US11229044B2 - Uplink transmission method, and terminal device - Google Patents

Uplink transmission method, and terminal device Download PDF

Info

Publication number
US11229044B2
US11229044B2 US16/619,163 US201716619163A US11229044B2 US 11229044 B2 US11229044 B2 US 11229044B2 US 201716619163 A US201716619163 A US 201716619163A US 11229044 B2 US11229044 B2 US 11229044B2
Authority
US
United States
Prior art keywords
configuration information
terminal device
transmissions
pucch resource
maximum number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/619,163
Other versions
US20200163110A1 (en
Inventor
Hai Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Oppo Mobile Telecommunications Corp Ltd
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp Ltd filed Critical Guangdong Oppo Mobile Telecommunications Corp Ltd
Assigned to GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LTD. reassignment GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TANG, HAI
Publication of US20200163110A1 publication Critical patent/US20200163110A1/en
Application granted granted Critical
Publication of US11229044B2 publication Critical patent/US11229044B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/1284
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W72/0413
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release

Definitions

  • the present application relates to the field of communications, and more particularly, to a method for uplink transmission and a terminal device.
  • SR Scheduling Requests
  • the embodiments of the present application provide a method for uplink transmission and a terminal device, which can implement uplink transmission in a scenario of a plurality of SR configuration information.
  • a method for uplink transmission including:
  • each SR configuration information includes a maximum number of transmissions of a corresponding SR
  • PUCCH Physical Uplink Control Channel
  • the terminal device can receive a plurality of SR configuration information configured by the network device, each SR configuration information including the maximum number of transmissions of the corresponding SR, and the terminal device can process the PUCCH resources corresponding to the plurality of SR configuration information according to the maximum number of transmissions of the corresponding SR in the plurality of SR configuration information to achieve the uplink transmission.
  • the maximum numbers of transmissions of the corresponding SRs included in individual SR configuration information may be the same, or may be different.
  • the plurality of SR configuration information includes first SR configuration information
  • the first SR configuration information corresponds to a first SR
  • the processing, by the terminal device, the Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information includes:
  • the method further includes:
  • the maximum number of transmissions of the SR included in each SR configuration information is used to determine the release timing of the PUCCH resource corresponding to each SR configuration information, i.e., the maximum number of transmissions of the first SR included in the first SR configuration information is used to determine the release timing of the PUCCH resource corresponding to the first SR configuration information, and the maximum number of transmissions of the second SR included in the second SR configuration information is used to determine the release timing of the PUCCH resource corresponding to the second SR configuration information, that is to say, the release timing of the PUCCH resources corresponding to individual SR configuration information is separately managed.
  • the plurality of SR configuration information includes second SR configuration information
  • the second SR configuration information corresponds to a second SR
  • the processing, by the terminal device, the Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information includes:
  • the method further includes:
  • the PUCCH resources corresponding to individual SR configuration information may be considered to be uniformly managed, i.e., as long as the number of transmissions of the SR corresponding to any SR configuration information reaches the maximum number of transmissions of any SR, the terminal device may be triggered to release the PUCCH resource corresponding to each SR configuration information, or the number of transmissions of any of the SRs reaching the maximum number of transmissions of any of the SRs is the release timing of the PUCCH resource corresponding to each of the SR configuration information.
  • the plurality of SR configuration information includes third SR configuration information
  • the third SR configuration information has a higher priority than other SR configuration information
  • said other SR configuration information includes fourth SR configuration information
  • the fourth SR configuration information corresponds to a fourth SR
  • the processing, by the terminal device, the Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information includes:
  • the method further includes:
  • the plurality of SR configuration information includes third SR configuration information
  • the third SR configuration information has a higher priority than other SR configuration information
  • said other SR configuration information includes fourth SR configuration information
  • the third configuration information corresponds to a third SR
  • the processing, by the terminal device, the Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information includes:
  • the method further includes:
  • a transmission reliability of the PUCCH resource corresponding to the third SR configuration information is higher than a transmission reliability of the PUCCH resource corresponding to the fourth SR configuration information.
  • the maximum number of transmissions of the SR included in each non-default SR configuration information may be used to determine the release timing of the PUCCH resource corresponding to each non-default SR configuration information
  • the maximum number of transmissions of the SR included in the default SR configuration information may be used to determine the release timing of the PUCCH resource corresponding to each SR configuration information
  • a method for uplink transmission including:
  • each SR configuration information includes a maximum number of transmissions of the SR, and the maximum number of transmissions of the SR is used to indicate a cumulative maximum number of transmissions of all the SRs;
  • PUCCH Physical Uplink Control Channel
  • the processing, by the terminal device, the Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information includes:
  • the terminal device releasing, by the terminal device, the PUCCH resource corresponding to each SR configuration information, in a case that a cumulative number of transmissions of all the SRs reaches the maximum number of transmissions of the SR.
  • the terminal device may count the number of transmissions of each SR, and processes the PUCCH resource corresponding to each SR configuration information according to the cumulative number of transmissions of all SRs, specifically, when the cumulative number of transmissions of all the SRs reaches the maximum number of transmissions of the SR, the terminal device may release the PUCCH resource corresponding to each SR configuration information.
  • the method further includes:
  • a terminal device for executing the method in the above first aspect or any possible implementation manners of the first aspect.
  • the terminal device includes units for executing the method in the above first aspect or any possible implementation manners of the first aspect.
  • a terminal device for executing the method in the above second aspect or any possible implementation manners of the second aspect.
  • the terminal device includes units for executing the method in the above second aspect or any possible implementation manners of the second aspect.
  • a terminal device including: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is configured for storing instructions
  • the processor is configured for executing the instructions stored in the memory for executing the method in the above first aspect or any possible implementation manners of the first aspect.
  • a terminal device including: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is configured for storing instructions
  • the processor is configured for executing the instructions stored in the memory for executing the method in the above second aspect or any possible implementation manners of the second aspect.
  • a computer storage medium for storing computer software instructions, the computer software instructions are used for executing the method in the above first aspect or any possible implementation manners of the first aspect, or the method in the above second aspect or any possible implementation manners of the second aspect, and the computer storage medium includes a program designed to perform the above aspects.
  • a computer program product when the computer program product is executed in a computer, the computer is enabled to execute the method in the above first aspect or any optional implementation manners of the first aspect, or the method in the above second aspect or any optional implementation manners of the second aspect.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for uplink transmission according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for uplink transmission according to another embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a terminal device according to still another embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device according to still another embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 may include a network device 110 .
  • the network device 110 may be a device that communicates with a terminal device.
  • the network device 110 may provide communication coverage for a particular geographic area and may communicate with the terminal device (e.g., UE) located within the coverage area.
  • the terminal device e.g., UE
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in the GSM system or the CDMA system, or may be a base station (NodeB, NB) in the WCDMA system, or may be an evolved base station (Evolutional Node B, eNB or eNodeB) in the LTE system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, a network side device in a future 5G network or a network device in a Public Land Mobile Network (PLMN) in the future.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB evolved base station
  • CRAN Cloud Radio Access Network
  • the network device may be a relay station, an access point, an in-vehicle device, a wearable device, a network side device in a future 5G network or a network device in a Public Land Mobile Network (
  • the wireless communication system 100 also includes at least one terminal device 120 located within the coverage of the network device 110 .
  • the terminal device 120 may be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, a User Equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile stage, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user apparatus.
  • UE User Equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a handheld device with wireless communication function, a computing device or other processing devices connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in future 5G network, or a terminal device in future evolved PLMN, and the like.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • D2D communication may be performed between the terminal devices 120 .
  • the 5G system or network may also be referred to as a New Radio (NR) system or network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device, which is not limited by the embodiments of the present application.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like, which is not limited by the embodiments of the present application.
  • network entities such as a network controller, a mobility management entity, and the like, which is not limited by the embodiments of the present application.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in the present disclosure is merely used for describing an association between the associated objects, indicating that there may be three relationships, for example, A and/or B may indicate three situations: A exists separately, both A and B exist at the same time, and B exists separately.
  • the character “/” in the present disclosure generally indicates that the contextual objects has an “or” relationship.
  • the triggering process of the SR specified in the existing Medium Access Control (MAC) protocol is: when the terminal device has data to be sent, optionally, the data may be data cached in a Radio Link Control (RLC) Layer or a Packet Data Convergence Protocol (PDCP) layer, the terminal device may determine whether there is a PUCCH resource in a current Transmission Time Interval (TTI), and if there is the Physical Uplink Control Channel (PUCCH) resource, and a timer (sr-ProhibitTimer) for limiting a number of transmissions of SR is not running, a MAC layer of the terminal device instructs the physical layer to transmit the SR on the corresponding PUCCH resource.
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the terminal device may be configured with a plurality of SR configuration information, by which it is possible to indicate to the network device which type of uplink authorization resource is required by the terminal device.
  • the specific content included in the SR configuration information is not clearly defined. Therefore, in the scenario where the terminal device is configured with a plurality of SR configuration information, it is an urgent problem to be solved how the terminal device could manage the PUCCH resources corresponding to individual SR configuration information to achieve uplink transmission.
  • FIG. 2 is a schematic flowchart of a method 200 for uplink transmission according to an embodiment of the present application. As shown in FIG. 2 , the method 200 includes the following steps.
  • a terminal device receives a plurality of Scheduling Request (SR) configuration information of a network device, where each SR configuration information includes a maximum number of transmissions of a corresponding SR.
  • SR Scheduling Request
  • the terminal device processes Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information.
  • PUCCH Physical Uplink Control Channel
  • the network device may configure a plurality of SR configuration information for the terminal device, and each SR configuration information is used to indicate configuration information of the corresponding SR.
  • each of the SR configuration information may include a maximum number of transmissions of the corresponding SR, where the maximum number of transmissions of the SR is used to prevent the SR from being frequently transmitted to occupy the PUCCH resource.
  • each of the SR configuration information may further include a PUCCH resource for transmitting a corresponding SR, where the PUCCH resource may include a time domain resource and/or a frequency domain resource of PUCCH for transmitting the SR.
  • each of the SR configuration information may further include other configuration information in the existing SR configuration, which is not limited by the embodiments of the present application.
  • the maximum numbers of transmissions of the corresponding SRs included in individual SR configuration information may be the same or different, which is not specifically limited in the embodiments of the present application.
  • the plurality of SR configuration information includes first SR configuration information and second SR configuration information, where the first SR configuration information corresponds to a first SR, and the second SR configuration information corresponds to a second SR.
  • the first SR configuration information includes a maximum number of transmissions of the first SR, and the maximum number of transmissions of the first SR is used to indicate a maximum number of times that the first SR may be frequently transmitted.
  • the second SR configuration information includes a maximum number of transmissions of the second SR, and the maximum number of transmissions of the second SR is used to indicate the maximum number of times that the second SR may be frequently transmitted.
  • the maximum number of transmissions of the first SR and the maximum number of transmissions of the second SR may be the same or different.
  • the terminal device may process the PUCCH resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information, for example, the terminal device may, according to the maximum number of transmissions of a certain SR in each SR configuration information, determine a release timing of a corresponding PUCCH resource; or the terminal device may determine the release timing of each PUCCH resource according to the maximum number of transmissions of each of the plurality of SR configuration information, that is, the terminal device may uniformly manage or separately manage the PUCCH resources corresponding to individual SR configuration information according to the plurality of SR configuration information, which is not limited in the embodiments of the present application.
  • the plurality of SR configuration information includes first SR configuration information, the first SR configuration information corresponds to the first SR, and the S 220 may include:
  • the terminal device releases the PUCCH resource corresponding to the first SR configuration information.
  • the first SR configuration information is any one of the plurality of SR configuration information, and when the number of transmissions of the first SR reaches the maximum number of transmissions of the first SR, the terminal device may release the PUCCH resource corresponding to the first SR configuration information without releasing the PUCCH resource corresponding to the other SR configuration information.
  • the MAC entity of the terminal device may notify the Radio Resource Control (RRC) entity of the terminal device to release the PUCCH resource corresponding to the first SR configuration information, and after the MAC entity of the terminal device notifies the RRC entity to release the PUCCH resource corresponding to the first SR configuration information, the RRC entity of the terminal device may notify the RRC entity of the network device that the terminal device has released the PUCCH resource corresponding to the first SR configuration information, so that when reconfiguring the plurality of SR configuration information, the RRC entity of the network device may only reconfigure the released PUCCH resource, i.e., the PUCCH resource corresponding to the first SR configuration information.
  • RRC Radio Resource Control
  • the reconfiguration of the PUCCH resource corresponding to the first SR configuration information may refer to configuring the PUCCH resource corresponding to the first SR configuration information as an original value, or configuring to be a value different from the original value.
  • the period value of the reconfigured PUCCH resource may be 4, or may be other values, which is not limited by the embodiments of the present application.
  • the maximum number of transmissions of the SR included in each SR configuration information is used to determine the release timing of the PUCCH resource corresponding to each SR configuration information, that is, the maximum number of transmissions of the first SR included in the first SR configuration information is used to determine the release timing of the PUCCH resource corresponding to the first SR configuration information, and the maximum number of transmissions of the second SR included in the second SR configuration information is used to determine the release timing of the PUCCH resource corresponding to the second SR configuration information. That is to say, the release timing of the PUCCH resources corresponding to individual SR configuration information is separately managed.
  • the terminal device may cancel the first SR to be sent, that is, after the PUCCH resource used to send the first SR is released, the terminal device may choose not to send the first SR, or the terminal device may send the first SR by using other PUCCH resource that is not released, which is not limited in the embodiments of the present application.
  • method 200 may further include:
  • the terminal device may also initiate a random access procedure, and requests to acquire a PUCCH resource corresponding to the first SR configuration information.
  • the specific implementation process of requesting to acquire the PUCCH resource for sending the SR is similar to the related art, and details are not described herein again.
  • the plurality of SR configuration information includes second SR configuration information, the second SR configuration information corresponds to the second SR, and the S 220 includes:
  • the terminal device releasing, by the terminal device, the PUCCH resource corresponding to each SR configuration information.
  • the second SR configuration information is any one of the plurality of SR configuration information, and the second SR configuration information and the first SR configuration information may be the same SR configuration information, or may be different SR configuration information.
  • the terminal device releases the PUCCH resource corresponding to each of the SR configuration information.
  • the PUCCH resource corresponding to each of the SR configuration information may be considered to be uniformly managed, that is, when the number of transmissions of the SR corresponding to any SR configuration information reaches the maximum number of transmissions of any of the SRs, the terminal device may be triggered to release the PUCCH resource corresponding to each SR configuration information, in other words, the maximum number of transmissions of any SR reaching the maximum number of transmissions of the SR is a releasing timing for the terminal device to release the PUCCH resource corresponding to each SR configuration information.
  • the RRC entity of the terminal device may further notify the RRC entity of the network device that the terminal device has released the PUCCH resource corresponding to each SR configuration information. In this way, when reconfiguring the plurality of SR configuration information, the RRC entity of the network device may reconfigure the PUCCH resource corresponding to each SR configuration information.
  • method 200 further includes:
  • the terminal device may further clear the downlink allocation information and the uplink authorization information that are issued by the network device (referred to as step 1).
  • the downlink allocation information and the uplink authorization information include a resource of a data channel, that is, the downlink allocation information and the uplink authorization information are information of a resource for transmitting data on the data channel.
  • the downlink allocation information may include the resource of the downlink data channel
  • the uplink grant information may include the resource of the uplink data channel.
  • the terminal device may also cancel sending each SR to be sent (referred to as step 2).
  • the terminal device may further initiate a random access procedure (referred to as step 3), and request to acquire a PUCCH resource corresponding to each of the plurality of SR configuration information.
  • a random access procedure referred to as step 3
  • the terminal device may further receive a plurality of SR configuration information sent by the network device (referred to as step 4), where the plurality of SR configuration information is used to reconfigure each of the SR configuration information.
  • the plurality of SR configuration information includes third SR configuration information, the third SR configuration information has a higher priority than other SR configuration information, the other SR configuration information includes fourth SR configuration information, the fourth SR configuration information corresponds to the fourth SR, and S 220 may include:
  • the terminal device releasing the PUCCH resource corresponding to the fourth SR configuration information.
  • the third SR configuration information has a higher priority than the other SR configuration information. It may be understood that the third SR configuration information is the default SR configuration information, and the other SR configuration information is the non-default SR configuration information.
  • the terminal device may use the PUCCH resource corresponding to the default SR configuration information, i.e., the third SR configuration information, to transmit the corresponding SR.
  • the release timing of the PUCCH resource corresponding to the non-default SR configuration information may be that the number of transmissions of the SR corresponding to the non-default SR configuration information reaches the maximum number of transmissions of the non-default SR.
  • the non-default SR configuration information includes the fourth SR configuration information
  • the fourth SR configuration information is corresponding to the fourth SR
  • the terminal device may release the PUCCH resource corresponding the fourth SR configuration information without releasing the PUCCH resource corresponding to the other SR configuration information.
  • the maximum number of transmissions of the SR included in each non-default SR configuration information is used to determine the release timing of the PUCCH resource corresponding to each non-default SR configuration information, i.e., in the third embodiment, the release timing of the PUCCH resource corresponding to each non-default SR configuration information is separately managed.
  • method 200 further includes:
  • the terminal device sending the fourth SR by using the PUCCH resource corresponding to the third SR configuration information.
  • the terminal device may transmit the fourth SR by using the PUCCH resource corresponding to the default SR configuration information, i.e., the third SR configuration information. That is, when the PUCCH resource corresponding to the non-default SR configuration information is released, if the terminal device needs to transmit the SR corresponding to the non-default SR configuration information, the PUCCH resource corresponding to the default SR configuration information may be used.
  • the transmission reliability of the PUCCH resource corresponding to the third SR configuration information is higher than the transmission reliability of the PUCCH resource corresponding to the fourth SR configuration information.
  • the PUCCH resource corresponding to the third SR configuration information has a lower code rate and/or higher transmission power and the like than the PUCCH corresponding to the fourth SR configuration information.
  • S 220 may further include:
  • the terminal device releasing the PUCCH resource corresponding to each SR configuration information.
  • the maximum number of transmissions of the SR included in the default SR configuration information is used to determine the release timing of the PUCCH resource corresponding to each SR configuration information, that is, when the number of transmissions of the SR corresponding to the default SR configuration information reaches the maximum number of transmissions of the SR, the terminal device releases the PUCCH resource corresponding to each SR configuration information.
  • the maximum number of transmissions of the SR included in each non-default SR configuration information is used to determine the release timing of the PUCCH resource corresponding to each non-default SR configuration information
  • the maximum number of transmissions of the SR included in the default SR configuration information may be used to determine a release timing of the PUCCH resource corresponding to each SR configuration information
  • method 200 further includes:
  • the terminal device clearing downlink allocation information and uplink authorization information delivered by the network device
  • the terminal device initiating a random access procedure and cancelling sending each SR to be sent.
  • the terminal device may perform the foregoing steps 1 to 4.
  • the specific implementation process is similar to the foregoing embodiments, and details are not given herein again.
  • FIG. 3 is a schematic flowchart of a method for uplink transmission according to another embodiment of the present application. As shown in FIG. 3 , the method 300 includes the following steps.
  • a terminal device receives a plurality of Scheduling Request (SR) configuration information of a network device, where each SR configuration information includes a maximum number of transmissions of the SR, and the maximum number of transmissions of the SR is used to indicate a cumulative maximum number of transmissions of all the SRs.
  • SR Scheduling Request
  • the terminal device processes Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information.
  • PUCCH Physical Uplink Control Channel
  • each SR configuration information includes the maximum transmission number information of the SR.
  • the maximum number of transmissions of the SR is used to indicate the cumulative maximum number of transmissions of all SRs.
  • the terminal device may count the number of transmissions of each SR, and process the PUCCH resource corresponding to each SR configuration information according to the cumulative number of transmissions of all SRs. For example, when the cumulative number of transmissions of all the SRs reaches the maximum number of transmissions of the SR, the terminal device may release the PUCCH resource corresponding to each SR configuration information.
  • S 320 may include:
  • the terminal device releasing the PUCCH resource corresponding to each SR configuration information of the plurality of SRs.
  • the maximum number of transmissions of the SR included in each SR configuration information is 5, the plurality of SR configuration information includes 3 SR configuration information, which are first SR configuration information, second SR configuration information, and third SR configuration information, and corresponding to the first SR, the second SR, and the third SR respectively, and the maximum number of transmissions of the SRs included in each SR configuration information is 5, when the number of transmissions of the first SR is 2, the number of transmissions of the second SR is 1, and when the number of transmissions of the third SR is 2, the number of transmissions of all the SRs reaches the maximum number of transmissions of the SR, i.e., 5, then the terminal device releases the PUCCH resource corresponding to each SR configuration information.
  • 3 SR configuration information which are first SR configuration information, second SR configuration information, and third SR configuration information, and corresponding to the first SR, the second SR, and the third SR respectively
  • the maximum number of transmissions of the SRs included in each SR configuration information
  • the method 300 further includes:
  • the terminal device clearing downlink allocation information and uplink authorization information delivered by the network device
  • the terminal device initiating a random access procedure and cancelling sending each SR to be sent.
  • the terminal device may perform the foregoing steps 1 to 4.
  • the specific implementation process is similar to the foregoing embodiment, and details are not given herein again.
  • FIG. 4 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • a communication module 410 configured to receive a plurality of Scheduling Request (SR) configuration information of a network device, where each SR configuration information includes a maximum number of transmissions of a corresponding SR;
  • a processing module 420 configured to process Physical Uplink Control Channel (PUCCH) resource corresponding to the plurality of SR configuration information according to the plurality of SR configuration information.
  • PUCCH Physical Uplink Control Channel
  • the plurality of SR configuration information includes first SR configuration information
  • the first SR configuration information corresponds to the first SR
  • the processing module 420 is specifically configured to:
  • the processing module 420 is further configured to:
  • the plurality of SR configuration information includes second SR configuration information
  • the second SR configuration information corresponds to the second SR
  • the processing module 420 is further configured to:
  • the processing module 420 is further configured to:
  • the plurality of SR configuration information includes third SR configuration information, where the third SR configuration information has a higher priority than other SR configuration information, the other SR configuration information includes the fourth SR configuration information, the fourth SR configuration information is corresponding to the fourth SR, and the processing module 420 is further configured to:
  • the communications module 410 is further configured to:
  • the plurality of SR configuration information includes third SR configuration information, where the third SR configuration information has a higher priority than other SR configuration information, the other SR configuration information includes the fourth SR configuration information, the third configuration information is corresponding to the third SR, and the processing module 420 is further configured to:
  • the processing module 420 is further configured to:
  • the transmission reliability of the PUCCH resource corresponding to the third SR configuration information is higher than the transmission reliability of the PUCCH resource corresponding to the fourth SR configuration information.
  • terminal device 400 may correspond to the terminal device in the method embodiments of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 400 respectively implement the corresponding process of the terminal device in the method 200 shown in FIG. 2 , which is not elaborated here for brevity.
  • FIG. 5 shows a schematic block diagram of a terminal device 500 according to another embodiment of the present application.
  • the terminal device 500 includes:
  • a communication module 510 configured to receive a plurality of Scheduling Request (SR) configuration information of a network device, where each SR configuration information includes a maximum number of transmissions of the SR, and the maximum number of transmissions of the SR is used to indicate a cumulative maximum number of transmissions of all the SRs; and
  • SR Scheduling Request
  • a processing module 520 configured to process Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information.
  • PUCCH Physical Uplink Control Channel
  • the processing module 520 is specifically configured to:
  • the processing module 520 is further configured to:
  • terminal device 500 may correspond to the network device in the method embodiments of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 500 respectively implement the corresponding process of the terminal device in the method 300 shown in FIG. 3 , which is not elaborated here for brevity.
  • the embodiment of the present application further provides a terminal device 600 , which may be the terminal device 400 in FIG. 4 , and may be used to execute the content of the terminal device corresponding to the method 200 in FIG. 2 .
  • the device 600 includes an input interface 610 , an output interface 620 , a processor 630 , and a memory 640 .
  • the input interface 610 , the output interface 620 , the processor 630 , and the memory 640 may be connected by a bus system.
  • the memory 640 is used to store programs, instructions or code.
  • the processor 630 is configured to execute the programs, the instructions or the code in the memory 640 to control the input interface 610 to receive a signal, control the output interface 620 to send a signal, and complete the operations in the foregoing method embodiments.
  • the processor 630 may be a Central Processing Unit (“CPU”), and the processor 630 may also be other general-purpose processor, Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 640 may include a read only memory and a random access memory, and provides instructions and data to the processor 630 .
  • a portion of the memory 640 may also include a non-volatile random access memory.
  • the memory 640 may also store information of the device type.
  • individual contents of the foregoing methods may be completed by an integrated logic circuit of hardware or an instruction in a form of software in the processor 630 .
  • the contents of the methods disclosed in the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a conventional storage medium such as a random access memory, a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 640 , and the processor 630 reads the information in the memory 640 and combines the hardware to complete the contents of the above methods. To avoid repetition, it will not be described in detail here.
  • the communication module 410 in FIG. 4 may be implemented by the input interface 610 and the output interface 620 of FIG. 6
  • the processing module 420 of FIG. 4 may be implemented by the processor 630 of FIG. 6 .
  • the embodiment of the present application further provides a terminal device 700 , which may be the terminal device 500 in FIG. 5 , and which may be used to execute the content of the terminal device corresponding to the method 300 in FIG. 3 .
  • the terminal device 700 includes an input interface 710 , an output interface 720 , a processor 730 , and a memory 740 .
  • the input interface 710 , the output interface 720 , the processor 730 , and the memory 740 may be connected by a bus system.
  • the memory 740 is configured to store programs, instructions or code.
  • the processor 730 is configured to execute the programs, the instructions or the code in the memory 740 to control the input interface 710 to receive a signal, control the output interface 720 to send a signal, and complete the operations in the foregoing method embodiments.
  • the processor 730 may be a Central Processing Unit (“CPU”), and the processor 730 may also be other general-purpose processor, Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 740 may include a read only memory and a random access memory, and provides instructions and data to the processor 730 .
  • a portion of the memory 740 may also include a non-volatile random access memory.
  • the memory 740 may also store information of the device type.
  • individual contents of the foregoing methods may be completed by an integrated logic circuit of hardware or an instruction in a form of software in the processor 730 .
  • the contents of the methods disclosed in the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a conventional storage medium such as a random access memory, a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 740 , and the processor 730 reads the information in the memory 740 and combines the hardware to complete the contents of the above methods. To avoid repetition, it will not be described in detail here.
  • the communication module 510 in FIG. 5 may be implemented by the input interface 710 and the output interface 720 of FIG. 7
  • the processing module 520 of FIG. 5 may be implemented by the processor 730 of FIG. 7 .
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only one kind of logical function division. In practice, there may be other division manner.
  • a plurality of units or components may be combined or integrated into another system, or some features may be ignored or not performed.
  • the illustrated or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separated parts may or may not be physically separated, and the parts displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on a plurality of network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions in the embodiments.
  • each functional unit in each embodiment of the present disclosure may be integrated in one processing unit, or each unit may exist alone physically, or two or more units may be integrated in one unit.
  • the functions may also be stored in a computer-readable storage medium if being implemented in the form of a software functional unit and sold or used as an independent product. Based on such understanding, the essence of the technical solutions of the present disclosure, or the part contributing to the related art or a part of the technical solutions, may be embodied in the form of a software product.
  • the computer software product is stored in a storage medium including a number of instructions such that a computer device (which may be a personal computer, a server, or a network device, etc.) performs all or a part of steps of the method described in each of the embodiments of the present disclosure.
  • the foregoing storage medium includes: any medium that is capable of storing program codes such as a USB disk, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Provided in an embodiment of the present invention are an uplink transmission method, and a terminal device capable of realizing uplink transmission at existence of multiple scheduling request (SR) configuration information items. The method includes: a terminal device receiving, from a network device, multiple scheduling request (SR) configuration information items, each SR configuration information item comprising a maximum transmission count of a corresponding SR; and the terminal device performing, according to the multiple SR configuration information items, processing of physical uplink control channel (PUCCH) resources corresponding to the multiple SR configuration information items.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application is a U.S. national phase application of International Application No. PCT/CN2017/095701, filed Aug. 2, 2017, the entire disclosure of which is incorporated herein by reference.
TECHNICAL FIELD
The present application relates to the field of communications, and more particularly, to a method for uplink transmission and a terminal device.
BACKGROUND
In the existing discussion of the New Radio (NR), it has been agreed to configure for the terminal device a plurality of Scheduling Requests (SR) configuration information, and the terminal device may indicate to the network device by using the plurality of SR configurations which type of uplink authorization resource is required by the terminal device.
However, the current discussion does not give a clear definition of the SR configuration. Therefore, how to implement uplink transmission under a plurality of SR configurations is an urgent problem to be solved for the terminal device.
SUMMARY
The embodiments of the present application provide a method for uplink transmission and a terminal device, which can implement uplink transmission in a scenario of a plurality of SR configuration information.
In a first aspect, there is provided a method for uplink transmission, including:
receiving, by a terminal device, a plurality of Scheduling Request (SR) configuration information of a network device, wherein each SR configuration information includes a maximum number of transmissions of a corresponding SR; and
processing, by the terminal device, Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information.
Therefore, according to the method for uplink transmission in the embodiments of the present application, the terminal device can receive a plurality of SR configuration information configured by the network device, each SR configuration information including the maximum number of transmissions of the corresponding SR, and the terminal device can process the PUCCH resources corresponding to the plurality of SR configuration information according to the maximum number of transmissions of the corresponding SR in the plurality of SR configuration information to achieve the uplink transmission.
Optionally, in the embodiments of the present application, the maximum numbers of transmissions of the corresponding SRs included in individual SR configuration information may be the same, or may be different.
In combination with the first aspect, in some implementation manners of the first aspect, the plurality of SR configuration information includes first SR configuration information, the first SR configuration information corresponds to a first SR, and the processing, by the terminal device, the Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information includes:
when a number of transmissions of the first SR reaches the maximum number of transmissions of the first SR, releasing, by the terminal device, a PUCCH resource corresponding to the first SR configuration information.
In combination with the first aspect, in some implementation manners of the first aspect, the method further includes:
initiating a random access procedure and requesting to acquire the PUCCH resource corresponding to the first SR configuration information, by the terminal device.
That is, the maximum number of transmissions of the SR included in each SR configuration information is used to determine the release timing of the PUCCH resource corresponding to each SR configuration information, i.e., the maximum number of transmissions of the first SR included in the first SR configuration information is used to determine the release timing of the PUCCH resource corresponding to the first SR configuration information, and the maximum number of transmissions of the second SR included in the second SR configuration information is used to determine the release timing of the PUCCH resource corresponding to the second SR configuration information, that is to say, the release timing of the PUCCH resources corresponding to individual SR configuration information is separately managed.
In combination with the first aspect, in some implementation manners of the first aspect, the plurality of SR configuration information includes second SR configuration information, the second SR configuration information corresponds to a second SR, and the processing, by the terminal device, the Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information includes:
when a number of transmissions of the second SR reaches the maximum number of transmissions of the second SR, releasing, by the terminal device, the PUCCH resource corresponding to each SR configuration information.
In combination with the first aspect, in some implementation manners of the first aspect, the method further includes:
clearing downlink allocation information and uplink authorization information delivered by the network device, and cancelling sending each SR to be sent, by the terminal device; and
initiating a random access procedure and reconfiguring each of the SR configuration information, by the terminal device.
That is, the PUCCH resources corresponding to individual SR configuration information may be considered to be uniformly managed, i.e., as long as the number of transmissions of the SR corresponding to any SR configuration information reaches the maximum number of transmissions of any SR, the terminal device may be triggered to release the PUCCH resource corresponding to each SR configuration information, or the number of transmissions of any of the SRs reaching the maximum number of transmissions of any of the SRs is the release timing of the PUCCH resource corresponding to each of the SR configuration information.
In combination with the first aspect, in some implementation manners of the first aspect, the plurality of SR configuration information includes third SR configuration information, the third SR configuration information has a higher priority than other SR configuration information, said other SR configuration information includes fourth SR configuration information, the fourth SR configuration information corresponds to a fourth SR, and the processing, by the terminal device, the Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information includes:
when a number of transmissions of the fourth SR reaches the maximum number of transmissions of the fourth SR, releasing, by the terminal device, a PUCCH resource corresponding to the fourth SR configuration information.
In combination with the first aspect, in some implementation manners of the first aspect, the method further includes:
sending, by the terminal device, the fourth SR by using the PUCCH resource corresponding to the third SR configuration information.
In combination with the first aspect, in some implementation manners of the first aspect, the plurality of SR configuration information includes third SR configuration information, the third SR configuration information has a higher priority than other SR configuration information, said other SR configuration information includes fourth SR configuration information, the third configuration information corresponds to a third SR, and the processing, by the terminal device, the Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information includes:
when a number of transmissions of the third SR reaches the maximum number of transmissions of the third SR, releasing, by the terminal device, the PUCCH resource corresponding to each SR configuration information.
In combination with the first aspect, in some implementation manners of the first aspect, the method further includes:
clearing, by the terminal device, downlink allocation information and uplink authorization information delivered by the network device; and
initiating a random access procedure and cancelling sending each SR to be sent, by the terminal device.
In combination with the first aspect, in some implementation manners of the first aspect, a transmission reliability of the PUCCH resource corresponding to the third SR configuration information is higher than a transmission reliability of the PUCCH resource corresponding to the fourth SR configuration information.
In general, the maximum number of transmissions of the SR included in each non-default SR configuration information may be used to determine the release timing of the PUCCH resource corresponding to each non-default SR configuration information, and the maximum number of transmissions of the SR included in the default SR configuration information may be used to determine the release timing of the PUCCH resource corresponding to each SR configuration information.
In a second aspect, there is provided a method for uplink transmission, including:
receiving, by a terminal device, a plurality of Scheduling Request (SR) configuration information of a network device, wherein each SR configuration information includes a maximum number of transmissions of the SR, and the maximum number of transmissions of the SR is used to indicate a cumulative maximum number of transmissions of all the SRs; and
processing, by the terminal device, Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information.
In combination with the second aspect, in some implementation manners of the second aspect, the processing, by the terminal device, the Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information includes:
releasing, by the terminal device, the PUCCH resource corresponding to each SR configuration information, in a case that a cumulative number of transmissions of all the SRs reaches the maximum number of transmissions of the SR.
In the present embodiment, the terminal device may count the number of transmissions of each SR, and processes the PUCCH resource corresponding to each SR configuration information according to the cumulative number of transmissions of all SRs, specifically, when the cumulative number of transmissions of all the SRs reaches the maximum number of transmissions of the SR, the terminal device may release the PUCCH resource corresponding to each SR configuration information.
In combination with the second aspect, in some implementation manners of the second aspect, the method further includes:
clearing, by the terminal device, downlink allocation information and uplink authorization information delivered by the network device; and
initiating a random access procedure and cancelling sending each SR to be sent, by the terminal device.
In a third aspect, there is provided a terminal device for executing the method in the above first aspect or any possible implementation manners of the first aspect. In particular, the terminal device includes units for executing the method in the above first aspect or any possible implementation manners of the first aspect.
In a fourth aspect, there is provided a terminal device for executing the method in the above second aspect or any possible implementation manners of the second aspect. In particular, the terminal device includes units for executing the method in the above second aspect or any possible implementation manners of the second aspect.
In a fifth aspect, there is provided a terminal device, including: a memory, a processor, an input interface, and an output interface. The memory, the processor, the input interface, and the output interface are connected by a bus system. The memory is configured for storing instructions, and the processor is configured for executing the instructions stored in the memory for executing the method in the above first aspect or any possible implementation manners of the first aspect.
In a sixth aspect, there is provided a terminal device, including: a memory, a processor, an input interface, and an output interface. The memory, the processor, the input interface, and the output interface are connected by a bus system. The memory is configured for storing instructions, and the processor is configured for executing the instructions stored in the memory for executing the method in the above second aspect or any possible implementation manners of the second aspect.
In a seventh aspect, there is provided a computer storage medium for storing computer software instructions, the computer software instructions are used for executing the method in the above first aspect or any possible implementation manners of the first aspect, or the method in the above second aspect or any possible implementation manners of the second aspect, and the computer storage medium includes a program designed to perform the above aspects.
In an eighth aspect, there is provided a computer program product, and when the computer program product is executed in a computer, the computer is enabled to execute the method in the above first aspect or any optional implementation manners of the first aspect, or the method in the above second aspect or any optional implementation manners of the second aspect.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
FIG. 2 is a schematic flowchart of a method for uplink transmission according to an embodiment of the present application.
FIG. 3 is a schematic flowchart of a method for uplink transmission according to another embodiment of the present application.
FIG. 4 is a schematic block diagram of a terminal device according to an embodiment of the present application.
FIG. 5 is a schematic block diagram of a terminal device according to another embodiment of the present application.
FIG. 6 is a schematic block diagram of a terminal device according to still another embodiment of the present application.
FIG. 7 is a schematic block diagram of a terminal device according to still another embodiment of the present application.
DETAILED DESCRIPTION
The technical solutions in the embodiments of the present application will be described below with reference to the accompanying drawings in the embodiments of the present application.
The technical solutions of the embodiments of the present application may be applied to various communication systems, for example, a Global System of Mobile communication (“GSM”), a Code Division Multiple Access (CDMA) system, a Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (“GPRS”), a Long Term Evolution (“LTE”) system, a LTE Frequency Division Duplex (“FDD”) system, LTE Time Division Duplex (“TDD”), a Universal Mobile Telecommunication System (“UMTS”), a Worldwide Interoperability for Microwave Access (“WiMAX”) communication system, or a future 5G system, and the like.
FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied. The wireless communication system 100 may include a network device 110. The network device 110 may be a device that communicates with a terminal device. The network device 110 may provide communication coverage for a particular geographic area and may communicate with the terminal device (e.g., UE) located within the coverage area. Optionally, the network device 110 may be a base station (Base Transceiver Station, BTS) in the GSM system or the CDMA system, or may be a base station (NodeB, NB) in the WCDMA system, or may be an evolved base station (Evolutional Node B, eNB or eNodeB) in the LTE system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, a network side device in a future 5G network or a network device in a Public Land Mobile Network (PLMN) in the future.
The wireless communication system 100 also includes at least one terminal device 120 located within the coverage of the network device 110. The terminal device 120 may be mobile or fixed. Optionally, the terminal device 120 may refer to an access terminal, a User Equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile stage, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user apparatus. The access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a handheld device with wireless communication function, a computing device or other processing devices connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in future 5G network, or a terminal device in future evolved PLMN, and the like.
Optionally, Device to Device (D2D) communication may be performed between the terminal devices 120.
Optionally, the 5G system or network may also be referred to as a New Radio (NR) system or network.
FIG. 1 exemplarily shows one network device and two terminal devices. Alternatively, the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device, which is not limited by the embodiments of the present application.
Optionally, the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like, which is not limited by the embodiments of the present application.
It should be understood that the terms “system” and “network” are used interchangeably herein. The term “and/or” in the present disclosure is merely used for describing an association between the associated objects, indicating that there may be three relationships, for example, A and/or B may indicate three situations: A exists separately, both A and B exist at the same time, and B exists separately. In addition, the character “/” in the present disclosure generally indicates that the contextual objects has an “or” relationship.
The triggering process of the SR specified in the existing Medium Access Control (MAC) protocol is: when the terminal device has data to be sent, optionally, the data may be data cached in a Radio Link Control (RLC) Layer or a Packet Data Convergence Protocol (PDCP) layer, the terminal device may determine whether there is a PUCCH resource in a current Transmission Time Interval (TTI), and if there is the Physical Uplink Control Channel (PUCCH) resource, and a timer (sr-ProhibitTimer) for limiting a number of transmissions of SR is not running, a MAC layer of the terminal device instructs the physical layer to transmit the SR on the corresponding PUCCH resource.
As described above, in the existing NR discussion, the terminal device may be configured with a plurality of SR configuration information, by which it is possible to indicate to the network device which type of uplink authorization resource is required by the terminal device. However, in the current discussion, the specific content included in the SR configuration information is not clearly defined. Therefore, in the scenario where the terminal device is configured with a plurality of SR configuration information, it is an urgent problem to be solved how the terminal device could manage the PUCCH resources corresponding to individual SR configuration information to achieve uplink transmission.
FIG. 2 is a schematic flowchart of a method 200 for uplink transmission according to an embodiment of the present application. As shown in FIG. 2, the method 200 includes the following steps.
In S210, a terminal device receives a plurality of Scheduling Request (SR) configuration information of a network device, where each SR configuration information includes a maximum number of transmissions of a corresponding SR.
In S220, the terminal device processes Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information.
In the embodiments of the present application, the network device may configure a plurality of SR configuration information for the terminal device, and each SR configuration information is used to indicate configuration information of the corresponding SR. For example, each of the SR configuration information may include a maximum number of transmissions of the corresponding SR, where the maximum number of transmissions of the SR is used to prevent the SR from being frequently transmitted to occupy the PUCCH resource. Optionally, each of the SR configuration information may further include a PUCCH resource for transmitting a corresponding SR, where the PUCCH resource may include a time domain resource and/or a frequency domain resource of PUCCH for transmitting the SR.
Optionally, each of the SR configuration information may further include other configuration information in the existing SR configuration, which is not limited by the embodiments of the present application.
It should be noted that, in the embodiments of the present application, the maximum numbers of transmissions of the corresponding SRs included in individual SR configuration information may be the same or different, which is not specifically limited in the embodiments of the present application.
For example, the plurality of SR configuration information includes first SR configuration information and second SR configuration information, where the first SR configuration information corresponds to a first SR, and the second SR configuration information corresponds to a second SR. The first SR configuration information includes a maximum number of transmissions of the first SR, and the maximum number of transmissions of the first SR is used to indicate a maximum number of times that the first SR may be frequently transmitted. The second SR configuration information includes a maximum number of transmissions of the second SR, and the maximum number of transmissions of the second SR is used to indicate the maximum number of times that the second SR may be frequently transmitted. The maximum number of transmissions of the first SR and the maximum number of transmissions of the second SR may be the same or different.
In the embodiments of the present application, the terminal device may process the PUCCH resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information, for example, the terminal device may, according to the maximum number of transmissions of a certain SR in each SR configuration information, determine a release timing of a corresponding PUCCH resource; or the terminal device may determine the release timing of each PUCCH resource according to the maximum number of transmissions of each of the plurality of SR configuration information, that is, the terminal device may uniformly manage or separately manage the PUCCH resources corresponding to individual SR configuration information according to the plurality of SR configuration information, which is not limited in the embodiments of the present application.
First Embodiment
The plurality of SR configuration information includes first SR configuration information, the first SR configuration information corresponds to the first SR, and the S220 may include:
if the number of transmissions of the first SR reaches the maximum number of transmissions of the first SR, the terminal device releases the PUCCH resource corresponding to the first SR configuration information.
The first SR configuration information is any one of the plurality of SR configuration information, and when the number of transmissions of the first SR reaches the maximum number of transmissions of the first SR, the terminal device may release the PUCCH resource corresponding to the first SR configuration information without releasing the PUCCH resource corresponding to the other SR configuration information. Specifically, the MAC entity of the terminal device may notify the Radio Resource Control (RRC) entity of the terminal device to release the PUCCH resource corresponding to the first SR configuration information, and after the MAC entity of the terminal device notifies the RRC entity to release the PUCCH resource corresponding to the first SR configuration information, the RRC entity of the terminal device may notify the RRC entity of the network device that the terminal device has released the PUCCH resource corresponding to the first SR configuration information, so that when reconfiguring the plurality of SR configuration information, the RRC entity of the network device may only reconfigure the released PUCCH resource, i.e., the PUCCH resource corresponding to the first SR configuration information.
It should be noted that, in the embodiments of the present application, the reconfiguration of the PUCCH resource corresponding to the first SR configuration information may refer to configuring the PUCCH resource corresponding to the first SR configuration information as an original value, or configuring to be a value different from the original value. For example, when the original value of a period of the PUCCH resource corresponding to the first SR configuration information is 4, the period value of the reconfigured PUCCH resource may be 4, or may be other values, which is not limited by the embodiments of the present application.
In the first embodiment, the maximum number of transmissions of the SR included in each SR configuration information is used to determine the release timing of the PUCCH resource corresponding to each SR configuration information, that is, the maximum number of transmissions of the first SR included in the first SR configuration information is used to determine the release timing of the PUCCH resource corresponding to the first SR configuration information, and the maximum number of transmissions of the second SR included in the second SR configuration information is used to determine the release timing of the PUCCH resource corresponding to the second SR configuration information. That is to say, the release timing of the PUCCH resources corresponding to individual SR configuration information is separately managed.
Optionally, after the PUCCH resource corresponding to the first SR configuration information is released, the terminal device may cancel the first SR to be sent, that is, after the PUCCH resource used to send the first SR is released, the terminal device may choose not to send the first SR, or the terminal device may send the first SR by using other PUCCH resource that is not released, which is not limited in the embodiments of the present application.
Further, the method 200 may further include:
initiating a random access procedure and requesting to acquire a PUCCH resource corresponding to the first SR configuration information, by the terminal device.
That is, in a case that the PUCCH resource corresponding to the first SR configuration information is released, the terminal device may also initiate a random access procedure, and requests to acquire a PUCCH resource corresponding to the first SR configuration information. The specific implementation process of requesting to acquire the PUCCH resource for sending the SR is similar to the related art, and details are not described herein again.
Second Embodiment
The plurality of SR configuration information includes second SR configuration information, the second SR configuration information corresponds to the second SR, and the S220 includes:
if the number of transmissions of the second SR reaches the maximum number of transmissions of the second SR, releasing, by the terminal device, the PUCCH resource corresponding to each SR configuration information.
The second SR configuration information is any one of the plurality of SR configuration information, and the second SR configuration information and the first SR configuration information may be the same SR configuration information, or may be different SR configuration information.
In the second embodiment, when the number of transmissions of the SR corresponding to any one of the plurality of SR configuration information reaches the maximum number of transmissions of any of the SRs, the terminal device releases the PUCCH resource corresponding to each of the SR configuration information. In the second embodiment, the PUCCH resource corresponding to each of the SR configuration information may be considered to be uniformly managed, that is, when the number of transmissions of the SR corresponding to any SR configuration information reaches the maximum number of transmissions of any of the SRs, the terminal device may be triggered to release the PUCCH resource corresponding to each SR configuration information, in other words, the maximum number of transmissions of any SR reaching the maximum number of transmissions of the SR is a releasing timing for the terminal device to release the PUCCH resource corresponding to each SR configuration information.
Similar to the foregoing embodiment, after the MAC entity of the terminal device notifies the RRC entity to release the PUCCH resource corresponding to each SR configuration information, the RRC entity of the terminal device may further notify the RRC entity of the network device that the terminal device has released the PUCCH resource corresponding to each SR configuration information. In this way, when reconfiguring the plurality of SR configuration information, the RRC entity of the network device may reconfigure the PUCCH resource corresponding to each SR configuration information.
Further, the method 200 further includes:
clearing downlink allocation information and uplink authorization information delivered by the network device, and cancelling sending each SR to be sent, by the terminal device; and
initiating a random access procedure and reconfiguring each of the SR configuration information, by the terminal device.
Specifically, after the terminal device releases the PUCCH resource corresponding to each of the SR configuration information, the terminal device may further clear the downlink allocation information and the uplink authorization information that are issued by the network device (referred to as step 1). The downlink allocation information and the uplink authorization information include a resource of a data channel, that is, the downlink allocation information and the uplink authorization information are information of a resource for transmitting data on the data channel. For example, the downlink allocation information may include the resource of the downlink data channel, and the uplink grant information may include the resource of the uplink data channel.
Optionally, since the PUCCH resource corresponding to each SR configuration information is released at this time, the terminal device may also cancel sending each SR to be sent (referred to as step 2).
Optionally, the terminal device may further initiate a random access procedure (referred to as step 3), and request to acquire a PUCCH resource corresponding to each of the plurality of SR configuration information.
Optionally, the terminal device may further receive a plurality of SR configuration information sent by the network device (referred to as step 4), where the plurality of SR configuration information is used to reconfigure each of the SR configuration information.
It should be understood that the order of the above-mentioned steps 1 to 4 does not mean the order of execution, and the order of execution of each step should be determined by its function and internal logic, and should not be construed as limiting the implementation process of the embodiments of the present application.
Third Embodiment
The plurality of SR configuration information includes third SR configuration information, the third SR configuration information has a higher priority than other SR configuration information, the other SR configuration information includes fourth SR configuration information, the fourth SR configuration information corresponds to the fourth SR, and S220 may include:
if the number of transmissions of the fourth SR of the plurality of SRs reaches the maximum number of transmissions of the fourth SR, the terminal device releasing the PUCCH resource corresponding to the fourth SR configuration information.
In the third embodiment, the third SR configuration information has a higher priority than the other SR configuration information. It may be understood that the third SR configuration information is the default SR configuration information, and the other SR configuration information is the non-default SR configuration information. When the PUCCH resource corresponding to the other SR configuration information is released, the terminal device may use the PUCCH resource corresponding to the default SR configuration information, i.e., the third SR configuration information, to transmit the corresponding SR.
In the third embodiment, the release timing of the PUCCH resource corresponding to the non-default SR configuration information may be that the number of transmissions of the SR corresponding to the non-default SR configuration information reaches the maximum number of transmissions of the non-default SR. For example, the non-default SR configuration information includes the fourth SR configuration information, the fourth SR configuration information is corresponding to the fourth SR, and when the number of transmissions of the fourth SR reaches the maximum number of transmissions of the fourth SR, the terminal device may release the PUCCH resource corresponding the fourth SR configuration information without releasing the PUCCH resource corresponding to the other SR configuration information.
That is, the maximum number of transmissions of the SR included in each non-default SR configuration information is used to determine the release timing of the PUCCH resource corresponding to each non-default SR configuration information, i.e., in the third embodiment, the release timing of the PUCCH resource corresponding to each non-default SR configuration information is separately managed.
Further, the method 200 further includes:
the terminal device sending the fourth SR by using the PUCCH resource corresponding to the third SR configuration information.
Specifically, if the PUCCH resource corresponding to the fourth SR configuration information has been released, the terminal device may transmit the fourth SR by using the PUCCH resource corresponding to the default SR configuration information, i.e., the third SR configuration information. That is, when the PUCCH resource corresponding to the non-default SR configuration information is released, if the terminal device needs to transmit the SR corresponding to the non-default SR configuration information, the PUCCH resource corresponding to the default SR configuration information may be used.
Optionally, in the embodiments of the present application, the transmission reliability of the PUCCH resource corresponding to the third SR configuration information is higher than the transmission reliability of the PUCCH resource corresponding to the fourth SR configuration information.
For example, the PUCCH resource corresponding to the third SR configuration information has a lower code rate and/or higher transmission power and the like than the PUCCH corresponding to the fourth SR configuration information.
In the third embodiment, S220 may further include:
if the number of transmissions of the third SR reaches the maximum number of transmissions of the third SR, the terminal device releasing the PUCCH resource corresponding to each SR configuration information.
That is, the maximum number of transmissions of the SR included in the default SR configuration information is used to determine the release timing of the PUCCH resource corresponding to each SR configuration information, that is, when the number of transmissions of the SR corresponding to the default SR configuration information reaches the maximum number of transmissions of the SR, the terminal device releases the PUCCH resource corresponding to each SR configuration information.
In general, the maximum number of transmissions of the SR included in each non-default SR configuration information is used to determine the release timing of the PUCCH resource corresponding to each non-default SR configuration information, and the maximum number of transmissions of the SR included in the default SR configuration information may be used to determine a release timing of the PUCCH resource corresponding to each SR configuration information.
Further, the method 200 further includes:
the terminal device clearing downlink allocation information and uplink authorization information delivered by the network device; and
the terminal device initiating a random access procedure and cancelling sending each SR to be sent.
After the terminal device releases the PUCCH resource corresponding to each SR configuration information, the terminal device may perform the foregoing steps 1 to 4. The specific implementation process is similar to the foregoing embodiments, and details are not given herein again.
FIG. 3 is a schematic flowchart of a method for uplink transmission according to another embodiment of the present application. As shown in FIG. 3, the method 300 includes the following steps.
In S310, a terminal device receives a plurality of Scheduling Request (SR) configuration information of a network device, where each SR configuration information includes a maximum number of transmissions of the SR, and the maximum number of transmissions of the SR is used to indicate a cumulative maximum number of transmissions of all the SRs.
In S320, the terminal device processes Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information.
In this embodiment, each SR configuration information includes the maximum transmission number information of the SR. The difference from the foregoing embodiment is that the maximum number of transmissions of the SR is used to indicate the cumulative maximum number of transmissions of all SRs. In other words, the terminal device may count the number of transmissions of each SR, and process the PUCCH resource corresponding to each SR configuration information according to the cumulative number of transmissions of all SRs. For example, when the cumulative number of transmissions of all the SRs reaches the maximum number of transmissions of the SR, the terminal device may release the PUCCH resource corresponding to each SR configuration information.
Optionally, in some possible embodiments, S320 may include:
in a case that the cumulative number of transmissions of all the SRs reaches the maximum number of transmissions of the SR, the terminal device releasing the PUCCH resource corresponding to each SR configuration information of the plurality of SRs.
For example, the maximum number of transmissions of the SR included in each SR configuration information is 5, the plurality of SR configuration information includes 3 SR configuration information, which are first SR configuration information, second SR configuration information, and third SR configuration information, and corresponding to the first SR, the second SR, and the third SR respectively, and the maximum number of transmissions of the SRs included in each SR configuration information is 5, when the number of transmissions of the first SR is 2, the number of transmissions of the second SR is 1, and when the number of transmissions of the third SR is 2, the number of transmissions of all the SRs reaches the maximum number of transmissions of the SR, i.e., 5, then the terminal device releases the PUCCH resource corresponding to each SR configuration information.
Optionally, in some possible embodiments, the method 300 further includes:
the terminal device clearing downlink allocation information and uplink authorization information delivered by the network device; and
the terminal device initiating a random access procedure and cancelling sending each SR to be sent.
After the terminal device releases the PUCCH resource corresponding to each SR configuration information, the terminal device may perform the foregoing steps 1 to 4. The specific implementation process is similar to the foregoing embodiment, and details are not given herein again.
The method embodiments of the present application have been described in detail above with reference to FIG. 2 and FIG. 3, and the apparatus embodiments of the present application will be described in detail below with reference to FIG. 4 to FIG. 7. It should be understood that the apparatus embodiments and the method embodiments correspond to each other, and similar description may be referred to the method embodiments.
FIG. 4 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application. As shown in FIG. 4, the terminal device 400 includes:
a communication module 410, configured to receive a plurality of Scheduling Request (SR) configuration information of a network device, where each SR configuration information includes a maximum number of transmissions of a corresponding SR; and
a processing module 420, configured to process Physical Uplink Control Channel (PUCCH) resource corresponding to the plurality of SR configuration information according to the plurality of SR configuration information.
Optionally, in some possible embodiments, the plurality of SR configuration information includes first SR configuration information, the first SR configuration information corresponds to the first SR, and the processing module 420 is specifically configured to:
if a number of transmissions of the first SR reaches the maximum number of transmissions of the first SR, release the PUCCH resource corresponding to the first SR configuration information.
Optionally, in some possible embodiments, the processing module 420 is further configured to:
initiate a random access procedure, and request to acquire a PUCCH resource corresponding to the first SR configuration information.
Optionally, in some possible embodiments, the plurality of SR configuration information includes second SR configuration information, the second SR configuration information corresponds to the second SR, and the processing module 420 is further configured to:
if a number of transmissions of the second SR reaches the maximum number of transmissions of the second SR, release the PUCCH resource corresponding to each SR configuration information.
Optionally, in some possible embodiments, the processing module 420 is further configured to:
clear downlink allocation information and uplink authorization information delivered by the network device, and cancel sending each SR to be sent; and
initiate a random access procedure and reconfigure each of the SR configuration information.
Optionally, in some possible embodiments, the plurality of SR configuration information includes third SR configuration information, where the third SR configuration information has a higher priority than other SR configuration information, the other SR configuration information includes the fourth SR configuration information, the fourth SR configuration information is corresponding to the fourth SR, and the processing module 420 is further configured to:
if a number of transmissions of the fourth SR reaches the maximum number of transmissions of the fourth SR, release the PUCCH resource corresponding to the fourth SR configuration information.
Optionally, in some possible embodiments, the communications module 410 is further configured to:
send the fourth SR by using a PUCCH resource corresponding to the third SR configuration information.
Optionally, in some possible embodiments, the plurality of SR configuration information includes third SR configuration information, where the third SR configuration information has a higher priority than other SR configuration information, the other SR configuration information includes the fourth SR configuration information, the third configuration information is corresponding to the third SR, and the processing module 420 is further configured to:
if a number of transmissions of the third SR reaches the maximum number of transmissions of the third SR, release the PUCCH resource corresponding to each SR configuration information.
Optionally, in some possible embodiments, the processing module 420 is further configured to:
clear downlink allocation information and uplink authorization information delivered by the network device; and
initiate a random access procedure and cancel each SR to be sent.
Optionally, in some possible embodiments, the transmission reliability of the PUCCH resource corresponding to the third SR configuration information is higher than the transmission reliability of the PUCCH resource corresponding to the fourth SR configuration information.
It should be understood that the terminal device 400 according to the embodiments of the present application may correspond to the terminal device in the method embodiments of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 400 respectively implement the corresponding process of the terminal device in the method 200 shown in FIG. 2, which is not elaborated here for brevity.
FIG. 5 shows a schematic block diagram of a terminal device 500 according to another embodiment of the present application. As shown in FIG. 5, the terminal device 500 includes:
a communication module 510, configured to receive a plurality of Scheduling Request (SR) configuration information of a network device, where each SR configuration information includes a maximum number of transmissions of the SR, and the maximum number of transmissions of the SR is used to indicate a cumulative maximum number of transmissions of all the SRs; and
a processing module 520, configured to process Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information.
Optionally, in some possible embodiments, the processing module 520 is specifically configured to:
release the PUCCH resource corresponding to each SR configuration information when the cumulative number of transmissions of all the SRs reaches the maximum number of transmissions of the SR.
Optionally, in some possible embodiments, the processing module 520 is further configured to:
clear downlink allocation information and uplink authorization information delivered by the network device; and
initiate a random access procedure and cancel each SR to be sent.
It should be understood that the terminal device 500 according to the embodiments of the present application may correspond to the network device in the method embodiments of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 500 respectively implement the corresponding process of the terminal device in the method 300 shown in FIG. 3, which is not elaborated here for brevity.
As shown in FIG. 6, the embodiment of the present application further provides a terminal device 600, which may be the terminal device 400 in FIG. 4, and may be used to execute the content of the terminal device corresponding to the method 200 in FIG. 2. The device 600 includes an input interface 610, an output interface 620, a processor 630, and a memory 640. The input interface 610, the output interface 620, the processor 630, and the memory 640 may be connected by a bus system. The memory 640 is used to store programs, instructions or code. The processor 630 is configured to execute the programs, the instructions or the code in the memory 640 to control the input interface 610 to receive a signal, control the output interface 620 to send a signal, and complete the operations in the foregoing method embodiments.
It should be understood that, in the embodiments of the present application, the processor 630 may be a Central Processing Unit (“CPU”), and the processor 630 may also be other general-purpose processor, Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like. The general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
The memory 640 may include a read only memory and a random access memory, and provides instructions and data to the processor 630. A portion of the memory 640 may also include a non-volatile random access memory. For example, the memory 640 may also store information of the device type.
In the implementation process, individual contents of the foregoing methods may be completed by an integrated logic circuit of hardware or an instruction in a form of software in the processor 630. The contents of the methods disclosed in the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor. The software module may be located in a conventional storage medium such as a random access memory, a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, and the like. The storage medium is located in the memory 640, and the processor 630 reads the information in the memory 640 and combines the hardware to complete the contents of the above methods. To avoid repetition, it will not be described in detail here.
In a specific implementation, the communication module 410 in FIG. 4 may be implemented by the input interface 610 and the output interface 620 of FIG. 6, and the processing module 420 of FIG. 4 may be implemented by the processor 630 of FIG. 6.
As shown in FIG. 7, the embodiment of the present application further provides a terminal device 700, which may be the terminal device 500 in FIG. 5, and which may be used to execute the content of the terminal device corresponding to the method 300 in FIG. 3. The terminal device 700 includes an input interface 710, an output interface 720, a processor 730, and a memory 740. The input interface 710, the output interface 720, the processor 730, and the memory 740 may be connected by a bus system. The memory 740 is configured to store programs, instructions or code. The processor 730 is configured to execute the programs, the instructions or the code in the memory 740 to control the input interface 710 to receive a signal, control the output interface 720 to send a signal, and complete the operations in the foregoing method embodiments.
It should be understood that, in the embodiments of the present application, the processor 730 may be a Central Processing Unit (“CPU”), and the processor 730 may also be other general-purpose processor, Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like. The general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
The memory 740 may include a read only memory and a random access memory, and provides instructions and data to the processor 730. A portion of the memory 740 may also include a non-volatile random access memory. For example, the memory 740 may also store information of the device type.
In the implementation process, individual contents of the foregoing methods may be completed by an integrated logic circuit of hardware or an instruction in a form of software in the processor 730. The contents of the methods disclosed in the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor. The software module may be located in a conventional storage medium such as a random access memory, a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, and the like. The storage medium is located in the memory 740, and the processor 730 reads the information in the memory 740 and combines the hardware to complete the contents of the above methods. To avoid repetition, it will not be described in detail here.
In a specific implementation, the communication module 510 in FIG. 5 may be implemented by the input interface 710 and the output interface 720 of FIG. 7, and the processing module 520 of FIG. 5 may be implemented by the processor 730 of FIG. 7.
Those of ordinary skills in the art may be aware that, the units and algorithm steps of individual examples described in combination with the embodiments disclosed herein, may be implemented by electronic hardware or a combination of computer software and the electronic hardware. Whether the functions are performed by hardware or software depends on particular applications and design constraint conditions of the technical solutions. Those of ordinary skills in the art may use different methods to implement the described functions for each particular application, but it should not be considered that the implementation goes beyond the scope of the present application.
It may be clearly understood by those of ordinary skills in the art that, for the purpose of convenient and brief description, for a detailed working process of the foregoing systems, devices, and units, reference may be made to a corresponding process in the foregoing method embodiments, and details are not described herein again.
In the several embodiments provided in the present application, it should be understood that the disclosed systems, devices and methods may be implemented in other ways. For example, the device embodiments described above are merely illustrative. For example, the division of the units is only one kind of logical function division. In practice, there may be other division manner. For example, a plurality of units or components may be combined or integrated into another system, or some features may be ignored or not performed. In addition, the illustrated or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
The units described as separated parts may or may not be physically separated, and the parts displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on a plurality of network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions in the embodiments.
In addition, each functional unit in each embodiment of the present disclosure may be integrated in one processing unit, or each unit may exist alone physically, or two or more units may be integrated in one unit.
The functions may also be stored in a computer-readable storage medium if being implemented in the form of a software functional unit and sold or used as an independent product. Based on such understanding, the essence of the technical solutions of the present disclosure, or the part contributing to the related art or a part of the technical solutions, may be embodied in the form of a software product. The computer software product is stored in a storage medium including a number of instructions such that a computer device (which may be a personal computer, a server, or a network device, etc.) performs all or a part of steps of the method described in each of the embodiments of the present disclosure. The foregoing storage medium includes: any medium that is capable of storing program codes such as a USB disk, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a magnetic disk, or an optical disk.
The foregoing descriptions are merely detailed embodiments of the present disclosure, and the protection scope of the present disclosure is not limited thereto. Any person skilled in the art can easily think of changes or substitutions within the technical scope of the present disclosure, and all the changes or substitutions should be covered by the protection scope of the present disclosure. Therefore, the protection scope of the present disclosure should be subjected to the protection scope of the claims.

Claims (16)

What is claimed is:
1. A method for uplink transmission, comprising:
receiving, by a terminal device, a plurality of Scheduling Request (SR) configuration information of a network device, wherein each SR configuration information comprises a maximum number of transmissions of a corresponding SR; and
processing, by the terminal device, Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information,
wherein the plurality of SR configuration information comprises second SR configuration information, the second SR configuration information corresponds to a second SR, and the processing, by the terminal device, the Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information comprises:
when a number of transmissions of the second SR reaches the maximum number of transmissions of the second SR, releasing, by the terminal device, the PUCCH resource corresponding to each SR configuration information, and
wherein the method further comprises:
clearing downlink allocation information and uplink authorization information delivered by the network device, and cancelling sending each SR to be sent, by the terminal device; and
initiating a random access procedure by the terminal device.
2. The method according to claim 1, wherein the plurality of SR configuration information further comprises first SR configuration information, the first SR configuration information corresponds to a first SR, and the processing, by the terminal device, the Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information comprises:
when a number of transmissions of the first SR reaches the maximum number of transmissions of the first SR, releasing, by the terminal device, a PUCCH resource corresponding to the first SR configuration information.
3. The method according to claim 2, further comprising:
initiating a random access procedure and requesting to acquire the PUCCH resource corresponding to the first SR configuration information, by the terminal device.
4. The method according to claim 1, further comprising:
reconfiguring each of the SR configuration information, by the terminal device.
5. The method according to claim 1, wherein the second SR configuration information has a higher priority than other SR configuration information, said other SR configuration information comprises third SR configuration information, the third SR configuration information corresponds to a third SR, and the processing, by the terminal device, the Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information comprises:
when a number of transmissions of the third SR reaches the maximum number of transmissions of the third SR, releasing, by the terminal device, a PUCCH resource corresponding to the third SR configuration information.
6. The method according to claim 5, further comprising:
sending, by the terminal device, the third SR by using the PUCCH resource corresponding to the second SR configuration information.
7. The method according to claim 5, wherein a transmission reliability of the PUCCH resource corresponding to the second SR configuration information is higher than a transmission reliability of the PUCCH resource corresponding to the third SR configuration information.
8. A method for uplink transmission, comprising:
receiving, by a terminal device, a plurality of Scheduling Request (SR) configuration information of a network device, wherein each SR configuration information comprises a maximum number of transmissions of the SR, and the maximum number of transmissions of the SR is used to indicate a cumulative maximum number of transmissions of all the SRs; and
processing, by the terminal device, Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information,
wherein the processing, by the terminal device, the Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information comprises:
releasing, by the terminal device, the PUCCH resource corresponding to each SR configuration information, in a case that a cumulative number of transmissions of all the SRs reaches the maximum number of transmissions of the SR,
wherein the method further comprises:
clearing, by the terminal device, downlink allocation information and uplink authorization information delivered by the network device; and
initiating a random access procedure and cancelling sending each SR to be sent, by the terminal device.
9. A terminal device, comprising:
a memory;
a processor;
an input interface; and
an output interface,
wherein the memory, the processor, the input interface, and the output interface are connected by a bus system, the memory is configured for storing instructions, and the processor is configured for executing the instructions stored in the memory to:
receive a plurality of Scheduling Request (SR) configuration information of a network device, wherein each SR configuration information comprises a maximum number of transmissions of a corresponding SR; and
process Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information,
wherein the plurality of SR configuration information comprises second SR configuration information, the second SR configuration information corresponds to the second SR, and the processor is further configured for executing the instructions stored in the memory to:
when a number of transmissions of the second SR reaches the maximum number of transmissions of the second SR, release the PUCCH resource corresponding to each SR configuration information,
wherein the processor is further configured for executing the instructions stored in the memory to:
clear downlink allocation information and uplink authorization information delivered by the network device, and cancel sending each SR to be sent; and
initiate a random access procedure.
10. The terminal device according to claim 9, wherein the plurality of SR configuration information comprises first SR configuration information, the first SR configuration information corresponds to the first SR, and the processor is further configured for executing the instructions stored in the memory to:
when a number of transmissions of the first SR reaches the maximum number of transmissions of the first SR, release a PUCCH resource corresponding to the first SR configuration information.
11. The terminal device according to claim 10, wherein the processor is further configured for executing the instructions stored in the memory to:
initiate a random access procedure, and request to acquire the PUCCH resource corresponding to the first SR configuration information.
12. The terminal device according to claim 9, wherein the processor is further configured for executing the instructions stored in the memory to:
reconfigure each of the SR configuration information.
13. The terminal device according to claim 9, wherein the second SR configuration information has a higher priority than other SR configuration information, and said other SR configuration information comprises third SR configuration information, the third SR configuration information corresponds to a third SR, and the processor is further configured for executing the instructions stored in the memory to:
when a number of transmissions of the third SR reaches the maximum number of transmissions of the third SR, release the PUCCH resource corresponding to the third SR configuration information.
14. The terminal device according to claim 13, wherein the processor is further configured for executing the instructions stored in the memory to:
send the third SR by using the PUCCH resource corresponding to the second SR configuration information.
15. The terminal device according to claim 13, wherein a transmission reliability of the PUCCH resource corresponding to the second SR configuration information is higher than a transmission reliability of the PUCCH resource corresponding to the third SR configuration information.
16. A terminal device, comprising:
a memory;
a processor;
an input interface; and
an output interface,
wherein the memory, the processor, the input interface, and the output interface are connected by a bus system, the memory is configured for storing instructions, and the processor is configured for executing the instructions stored in the memory to:
receive a plurality of Scheduling Request (SR) configuration information of a network device, wherein each SR configuration information comprises a maximum number of transmissions of the SR, and the maximum number of transmissions of the SR is used to indicate a cumulative maximum number of transmissions of all the SRs; and
process Physical Uplink Control Channel (PUCCH) resources corresponding to the plurality of SR configuration information according to the plurality of SR configuration information,
wherein the processor is further configured for executing the instructions stored in the memory to:
release the PUCCH resource corresponding to each SR configuration information in a case that a cumulative number of transmissions of all the SRs reaches the maximum number of transmissions of the SR;
clear downlink allocation information and uplink authorization information delivered by the network device; and
initiate a random access procedure and cancel sending each SR to be sent.
US16/619,163 2017-08-02 2017-08-02 Uplink transmission method, and terminal device Active 2037-08-24 US11229044B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/095701 WO2019024022A1 (en) 2017-08-02 2017-08-02 Uplink transmission method, and terminal device

Publications (2)

Publication Number Publication Date
US20200163110A1 US20200163110A1 (en) 2020-05-21
US11229044B2 true US11229044B2 (en) 2022-01-18

Family

ID=65233223

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/619,163 Active 2037-08-24 US11229044B2 (en) 2017-08-02 2017-08-02 Uplink transmission method, and terminal device

Country Status (15)

Country Link
US (1) US11229044B2 (en)
EP (1) EP3637895B1 (en)
JP (1) JP7019794B2 (en)
KR (1) KR20200032084A (en)
CN (2) CN111278150B (en)
AU (1) AU2017426168A1 (en)
BR (1) BR112019025444A2 (en)
CA (1) CA3064644C (en)
IL (1) IL270730B2 (en)
MX (1) MX2019015473A (en)
PH (1) PH12019502631A1 (en)
RU (1) RU2751093C1 (en)
TW (1) TWI762694B (en)
WO (1) WO2019024022A1 (en)
ZA (1) ZA202000121B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374921B2 (en) * 2018-12-14 2022-06-28 Deutsche Telekom Ag Authorization method for the release or blocking of resources and client

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111800866B (en) * 2019-08-15 2023-09-19 维沃移动通信有限公司 Resource request method, resource allocation method, device, equipment and medium
EP3869890B1 (en) * 2020-02-21 2023-12-13 Nokia Technologies Oy Enhanced scheduling request handling procedure
CN115918219A (en) * 2020-08-24 2023-04-04 Oppo广东移动通信有限公司 Information transmission method, device, equipment and storage medium
US20240057067A1 (en) * 2022-08-11 2024-02-15 Qualcomm Incorporated Sub-selection for overbooked multi physical downlink shared channel (pdsch)/physical uplink shared channel (pusch) transmission resources
EP4431081A1 (en) 2023-03-13 2024-09-18 Prodotti Gianni S.r.l. Cosmetic compositions with enhanced sun protection factor and preparation thereof

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100080184A1 (en) * 2008-09-30 2010-04-01 Li-Chih Tseng Method and Apparatus for Improving Interaction between Scheduling Request Procedure and Random Access Procedure
CN101877911A (en) 2009-04-30 2010-11-03 大唐移动通信设备有限公司 Special scheduling request resource allocation method and device
US20110019628A1 (en) * 2009-07-23 2011-01-27 Li-Chih Tseng Method and Apparatus for Scheduling Request
JP2011527135A (en) 2008-07-01 2011-10-20 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and arrangement in a communication system
US20120093106A1 (en) * 2010-10-14 2012-04-19 Huawei Technologies Co., Ltd. Processing method and terminal for random access
US20130028198A1 (en) * 2011-07-27 2013-01-31 Sharp Laboratories Of America, Inc. Devices for multi-cell communications
CN103039119A (en) 2011-08-04 2013-04-10 华为技术有限公司 Method, user equipment and base station for establishing wireless resource control protocol connection
CN104170493A (en) 2012-03-23 2014-11-26 联发科技股份有限公司 Methods and apparatus of allocating scheduling request resources in mobile communication networks
CN104322132A (en) 2013-03-29 2015-01-28 华为技术有限公司 Method for controlling request on uplink authorization resource, user equipment and base station
JP2015514344A (en) 2012-03-19 2015-05-18 アルカテル−ルーセント Method and apparatus for configuring multiple scheduling request triggers
US20160029387A1 (en) * 2013-03-14 2016-01-28 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication system, communication method and integrated circuit
US20160270110A1 (en) 2015-03-09 2016-09-15 Ofinno Technologies, Llc Scheduling Request in a Wireless Device and Wireless Network
WO2016157809A1 (en) 2015-03-27 2016-10-06 Sharp Kabushiki Kaisha Systems and methods for a physical uplink control channel on a secondary cell
CN106211331A (en) 2015-05-05 2016-12-07 中兴通讯股份有限公司 The method and apparatus of resource distribution
RU2605086C2 (en) 2013-10-28 2016-12-20 Индастриал Текнолоджи Рисерч Инститьют Method of handling uplink transmission and related communication device
RU2609666C1 (en) 2011-09-30 2017-02-02 Фудзицу Лимитед Wireless communication system, base station, mobile station and wireless communication method
WO2017028038A1 (en) 2015-08-14 2017-02-23 华为技术有限公司 Method for sending and receiving uplink control information, and related apparatus
US20170064732A1 (en) * 2015-09-02 2017-03-02 Htc Corporation Device and Method of Handling Scheduling Request Transmission
RU2619587C2 (en) 2012-03-19 2017-05-17 Фудзицу Лимитед Wireless communication system, wireless base station, wireless terminal and method of wireless communication
RU2625319C1 (en) 2013-08-01 2017-07-13 ЗетТиИ Корпорейшн Method of sending uplink control information, user equipment and base station

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361833B2 (en) * 2013-12-11 2019-07-23 Innovative Sonic Corporation Method and apparatus for improving device to device (D2D) communication in a wireless communication system

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9215729B2 (en) * 2008-07-01 2015-12-15 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a telecommunications system
JP2011527135A (en) 2008-07-01 2011-10-20 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and arrangement in a communication system
US20100080184A1 (en) * 2008-09-30 2010-04-01 Li-Chih Tseng Method and Apparatus for Improving Interaction between Scheduling Request Procedure and Random Access Procedure
CN101877911A (en) 2009-04-30 2010-11-03 大唐移动通信设备有限公司 Special scheduling request resource allocation method and device
EP2426860A1 (en) 2009-04-30 2012-03-07 China Academy of Telecommunications Technology Method and device for distributing specific scheduling request resources
US20110019628A1 (en) * 2009-07-23 2011-01-27 Li-Chih Tseng Method and Apparatus for Scheduling Request
US20120093106A1 (en) * 2010-10-14 2012-04-19 Huawei Technologies Co., Ltd. Processing method and terminal for random access
US20130028198A1 (en) * 2011-07-27 2013-01-31 Sharp Laboratories Of America, Inc. Devices for multi-cell communications
CN103039119A (en) 2011-08-04 2013-04-10 华为技术有限公司 Method, user equipment and base station for establishing wireless resource control protocol connection
RU2609666C1 (en) 2011-09-30 2017-02-02 Фудзицу Лимитед Wireless communication system, base station, mobile station and wireless communication method
JP2015514344A (en) 2012-03-19 2015-05-18 アルカテル−ルーセント Method and apparatus for configuring multiple scheduling request triggers
RU2619587C2 (en) 2012-03-19 2017-05-17 Фудзицу Лимитед Wireless communication system, wireless base station, wireless terminal and method of wireless communication
JP2015520533A (en) 2012-03-23 2015-07-16 聯發科技股▲ふん▼有限公司Mediatek Inc. A method for allocating scheduling request resources in a mobile communication network
CN104170493A (en) 2012-03-23 2014-11-26 联发科技股份有限公司 Methods and apparatus of allocating scheduling request resources in mobile communication networks
US20160029387A1 (en) * 2013-03-14 2016-01-28 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication system, communication method and integrated circuit
RU2619063C2 (en) 2013-03-29 2017-05-11 Хуавей Текнолоджиз Ко., Лтд. Method of uplink resource allocation request, user equipment and base station
CN104322132A (en) 2013-03-29 2015-01-28 华为技术有限公司 Method for controlling request on uplink authorization resource, user equipment and base station
RU2625319C1 (en) 2013-08-01 2017-07-13 ЗетТиИ Корпорейшн Method of sending uplink control information, user equipment and base station
RU2605086C2 (en) 2013-10-28 2016-12-20 Индастриал Текнолоджи Рисерч Инститьют Method of handling uplink transmission and related communication device
US20160270114A1 (en) * 2015-03-09 2016-09-15 Ofinno Technologies, Llc Scheduling Request Resource Selection
US20160270110A1 (en) 2015-03-09 2016-09-15 Ofinno Technologies, Llc Scheduling Request in a Wireless Device and Wireless Network
WO2016157809A1 (en) 2015-03-27 2016-10-06 Sharp Kabushiki Kaisha Systems and methods for a physical uplink control channel on a secondary cell
CN106211331A (en) 2015-05-05 2016-12-07 中兴通讯股份有限公司 The method and apparatus of resource distribution
WO2017028038A1 (en) 2015-08-14 2017-02-23 华为技术有限公司 Method for sending and receiving uplink control information, and related apparatus
US20180160423A1 (en) 2015-08-14 2018-06-07 Huawei Technologies Co., Ltd. Uplink control information sending method and receiving method, and related apparatus
US20170064732A1 (en) * 2015-09-02 2017-03-02 Htc Corporation Device and Method of Handling Scheduling Request Transmission

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
Catt, "Further Consideration on Multiple SR Configurations," 3GPP TSG-RAN WG2 Meeting #NR AH2, R2-1706367, Jun. 2017, 4 pages.
CIPO, Office Action for CA Application No. 3064644, dated Feb. 10, 2021.
CNIPA, First Office Action for CN Application No. 202010062004.8, dated Apr. 20, 2021.
CNIPA, Notification to Grant Patent Right for Invention for CN Application No. 202010062004.8, dated Jul. 23, 2021.
EPO, Communication for EP Application No. 17920237.9, dated Oct. 14, 2020.
EPO, Office Action for EP Application No. 17920237.9, dated Apr. 17, 2020.
FIPS, Office Action for RU Application No. 2019141055, dated Jan. 13, 2021.
HTC, "Discussion on details of SR procedures," 3GPP TSG-RAN WG2 AdHoc on NR, R2-1706957, May 2017, 3 pages.
Huawei et al., "SR enhancements with multiple numerologies", 3GPP TSG-RAN2 Meeting #98, May 15, 2017.
Huawei et al., "Support of multiple SR configurations," 3GPP TSG-RAN2 Meeting #NR_AHs, R2-1706900, Jun. 2017, 5 pages.
Inapi, Office Action for CL Application No. 201903829, dated Jul. 20, 2021.
IPI, Office Action for IN Application No. 201917050626, dated Mar. 4, 2021.
IPOS, Office Action for SG Application No. 11201910995R, dated Jun. 24, 2021.
JPO, Office Action for JP Application No. 2020-500682, dated May 25, 2021.
KIPO, Office Action for KR Application No. 10-2020-7000004, dated Nov. 11, 2021.
Samsung Electronics R&D Institute UK, "Behaviour in case of multiple SR triggers and collision resolution," 3GPP TSG-RAN WG2 NR ad-hoc #2, R2-1706640, Jun. 2017, 3 pages.
Samsung Electronics R&D Institute UK, "General details of SR procedure in NR including SR triggers and timers," 3GPP TSG-RAN WG2 NR ad-hoc #2, R2-1706639, Jun. 2017, 4 pages.
TIPO, First Office Action for TW Application No. 107126913, dated Sep. 24, 2021.
Vice-Chairwoman (Interdigital), Report from NR/LTE Break-Out Session (UP NR, FeD2D, sTTI, Rel-14 corrections), 3GPP TSG-RAN WG2 Meeting #98, May 15, 2017.
Vivo, "Enhanced SR in NR," 3GPP TSG-RAN WG2 NR Ad Hoc, R2-1707072 (revision of R2-1704589), Jun. 2017, 3 pages.
WIPO, ISR for PCT/CN2017/095701, dated Apr. 27, 2018.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374921B2 (en) * 2018-12-14 2022-06-28 Deutsche Telekom Ag Authorization method for the release or blocking of resources and client

Also Published As

Publication number Publication date
JP7019794B2 (en) 2022-02-15
IL270730B1 (en) 2023-05-01
IL270730A (en) 2020-01-30
RU2751093C1 (en) 2021-07-08
IL270730B2 (en) 2023-09-01
TW201911950A (en) 2019-03-16
CN110771230A (en) 2020-02-07
PH12019502631A1 (en) 2020-06-08
ZA202000121B (en) 2021-08-25
EP3637895A4 (en) 2020-05-13
US20200163110A1 (en) 2020-05-21
CN110771230B (en) 2024-03-19
EP3637895B1 (en) 2021-09-01
KR20200032084A (en) 2020-03-25
WO2019024022A1 (en) 2019-02-07
CA3064644A1 (en) 2019-02-07
EP3637895A1 (en) 2020-04-15
JP2020533823A (en) 2020-11-19
CN111278150A (en) 2020-06-12
MX2019015473A (en) 2020-02-19
CN111278150B (en) 2021-10-22
BR112019025444A2 (en) 2020-06-16
CA3064644C (en) 2022-05-10
AU2017426168A1 (en) 2019-12-12
TWI762694B (en) 2022-05-01

Similar Documents

Publication Publication Date Title
US11229044B2 (en) Uplink transmission method, and terminal device
US11229036B2 (en) Communication method, terminal device, and network device
WO2018170673A1 (en) Method for transmitting data, terminal device and network device
JP7047055B2 (en) Data transmission method and terminal equipment
KR102462432B1 (en) Wireless communication method, network device and terminal device
KR20200108290A (en) Sounding reference signal transmission method, network device and terminal device
KR102405602B1 (en) Data transmission method, terminal device and network device
US20210345307A1 (en) Terminal device scheduling method, network device, and terminal device
EP3668254B1 (en) Wireless communication method, network device, and terminal device
WO2019153266A1 (en) Method and device for transmitting data
US11438105B2 (en) Information transmission on a control channel
WO2019028808A1 (en) Data transmission method, terminal device, and network device
US20170318585A1 (en) Method for transmitting lte-u carrier information, base station, and user equipment
US11229043B2 (en) Communication method and terminal device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE