US11214939B2 - Method for controlling a loading tool - Google Patents

Method for controlling a loading tool Download PDF

Info

Publication number
US11214939B2
US11214939B2 US16/575,065 US201916575065A US11214939B2 US 11214939 B2 US11214939 B2 US 11214939B2 US 201916575065 A US201916575065 A US 201916575065A US 11214939 B2 US11214939 B2 US 11214939B2
Authority
US
United States
Prior art keywords
payload
loading tool
mass
control unit
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/575,065
Other versions
US20200109538A1 (en
Inventor
Andreas Remmelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deere and Co
Original Assignee
Deere and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deere and Co filed Critical Deere and Co
Assigned to DEERE & COMPANY reassignment DEERE & COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REMMELMANN, ANDREAS
Publication of US20200109538A1 publication Critical patent/US20200109538A1/en
Application granted granted Critical
Publication of US11214939B2 publication Critical patent/US11214939B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/40Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets
    • E02F3/402Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets with means for facilitating the loading thereof, e.g. conveyors
    • E02F3/404Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets with means for facilitating the loading thereof, e.g. conveyors comprising two parts movable relative to each other, e.g. for gripping
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F25/00Storing agricultural or horticultural produce; Hanging-up harvested fruit
    • A01F25/16Arrangements in forage silos
    • A01F25/20Unloading arrangements
    • A01F25/2027Unloading arrangements for trench silos
    • A01F25/2036Cutting or handling arrangements for silage blocks
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/422Drive systems for bucket-arms, front-end loaders, dumpers or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • E02F3/434Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like providing automatic sequences of movements, e.g. automatic dumping or loading, automatic return-to-dig
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller

Definitions

  • the present disclosure relates to a method for controlling a loading tool.
  • a conventional method for controlling a loading tool is described in U.S. Pat. No. 9,938,692.
  • movements of a lifting cylinder and a lifting arm of a lifting device are controlled in order to lift and transport a loading tool arranged thereon and filled with a payload in the form of a loading shovel.
  • the weight of the transported payload is determined as a function of pressure values of the lifting cylinders, a lifting arm angle and other kinematic properties.
  • a loading tool in particular its movements during its operating mode, is controlled.
  • the loading tool is arranged on a movable lifting device for lifting and lowering the loading tool, while the lifting device itself is mounted on a machine.
  • the loading tool receives a payload.
  • the payload is transported to a different location and unloaded there.
  • a mass of the payload is determined. This determination of the mass of the payload can be carried out prior to or after it being received by the loading tool.
  • Calibration data which represent a ratio of a volume of the payload to a mass of the payload are provided for the determination of the mass of the payload.
  • a volume of a payload in particular before and after it being received by the loading tool, is detected.
  • the mass of this payload can then be determined by means of simple methods on the basis of the calibration data and the volume which has already been detected.
  • the determined mass can be combined as information with further functionalities of known weighing systems for loading tools.
  • the determined mass can be processed as information for control of the operating mode by an electronic control unit so that the operator of the machine has at his or her disposal an assistance function which relieves the strain on him or her.
  • the user or operator of the machine can then dispense with an estimation, which is among other things prone to errors, of the mass of the relevant payload.
  • This relates in particular to the case of the intended receiving of a payload by the loading tool and also the case of intended unloading or tipping out of a payload transported by the loading tool at an unloading point.
  • the calibration data can be provided, e.g., as a diagram or characteristic curve.
  • the calibration data can be generated in a calibration process prior to the operating mode of the loading tool and stored, for example, in a storage unit or a control unit for control of the method.
  • the calibration data which are specific to the respective payload can thus be accessed at any time during the operating mode.
  • the calibration data contains in particular a specific density of the respective payload.
  • the corresponding masses can be derived by means of a simple method from this in the case of determined volumes.
  • Different density values as a function of height for a payload stock are provided as calibration data if the material of the payload stock has a density gradient starting from its ground level along the height direction. This density gradient or also other features of the payload stock can be derived, for example, by means of a perpendicular cutting surface of the payload stock.
  • the machine is formed in particular as a utility vehicle, e.g., an agricultural vehicle. Tow trucks, tractors, construction machines, wheel loaders, diggers, excavators are possible as utility vehicles.
  • the lifting device can have, between the machine and the loading tool, a single, inherently rigid cantilever part or alternatively have several cantilever parts which are movably connected to one another.
  • the loading tool can be any desired container for receiving a payload.
  • the loading tool is fixedly or movably connected in a suitable manner on the lifting device.
  • the loading tool is arranged in an articulated manner as a shovel on the lifting device.
  • the payload can be any desired bulk material and have various aggregate states.
  • the payload is a liquid, seeds, crop, animal food, soil, sand, or aggregate such as crushed rock, gravel and the like.
  • the detection of the volume of the payload is performed by means of suitable, optical sensor means.
  • suitable, optical sensor means For example, at least one camera or at least one distance sensor is arranged on the loading tool.
  • the sensor means or mechanism can also alternatively or additionally be arranged on the lifting device or a support structure of the machine.
  • the volume of a payload is already detected before it is received by the loading tool. As a result of this, it can already be precisely estimated before the payload is received on a payload stock (e.g., a silage stock) or another storage site of this payload which mass the loading tool would receive in the case of the current loading process.
  • a payload stock e.g., a silage stock
  • This information supports an efficient and economical operating mode since it can influence control of the loading tool in such a manner that neither too small nor too large a mass is received by the loading tool during a single loading process.
  • the method thus offers an advantageous assistance function during loading work of the machine. The strain on the operator of the machine can be significantly relieved during the operating mode.
  • the operation of the loading tool is controlled as an operating function of the machine.
  • the loading tool is advantageously controlled so that, as a function of the above-mentioned comparative result, it automatically receives a payload or is released for a receiving of the payload to be triggered by the user (e.g., by means of suitable signaling to the user or driver).
  • the loading tool possibly taking into account a defined tolerance mass—always only receives the desired target mass in the case of an individual loading process.
  • a loading process is started automatically in the event of detection of a desired mass of the payload, or the loading process can be started by the user only in the event of detection of a desired mass of the payload.
  • the strain on the user or driver of the machine is additionally reduced as a result of this.
  • This control of the loading tool prevents, by means of a simple method, the loading tool undesirably receiving too small or too large a quantity of a payload in the case of an individual loading process.
  • This control can advantageously be used, for example, in the case of a food or silage stock in order, or an individual loading process with the loading tool to remove the required quantity of animal food as the payload and supply it to another location (e.g., mixing vehicle or mixing container for animal food) as precisely as possible there.
  • another location e.g., mixing vehicle or mixing container for animal food
  • the loading tool is formed as what is known as a grapple bucket with a bucket shutter which automatically drops down during the loading process (automatically or triggered by the user) and separates the desired mass of the payload from the food or silage stock.
  • a propulsion e.g., an internal combustion engine with drivetrain or an electric motor
  • the operator of the machine is provided with a further assistance function in that he or she is automatically prevented, for example, from driving yet further into a payload stock (e.g., animal food) and as a result receiving an excessive mass of the payload during the current loading process.
  • This automatic control can furthermore be combined with a function, according to which a loading process of the loading tool can only be started after the stopped or interrupted propulsion (automatically or individually by the user).
  • the loading tool can perform the respective loading process at different height positions.
  • the height position is dependent in particular on the current structure of the payload stock or the residual quantity of the payload stock which is still present.
  • the height position can be, for example, relative to a level of the ground or to a base level of the payload stock. Due to an often present density gradient of the payload stock, it is advantageous to generate and provide in each case calibration data for several, i.e., different height positions. As a function of a detected height position of the loading tool, the calibration data assigned to this height position can then be provided automatically. The determination of the mass of the respective payload becomes even more precise as a result of this.
  • Calibration data for different height positions of the loading tool are generated during a calibration process, for example, for a base region of the payload stock and for a peak region of the payload stock which is opposite in terms of height. From this, calibration data for a plurality of height positions lying therebetween can be generated in a technically simple manner by interpolation so that an entire characteristic diagram can be generated and provided as calibration data for this payload stock with a low degree of calibration outlay.
  • the respective height position of the loading tool is detected by a sensor means or mechanism.
  • a suitable position sensor is arranged on the lifting device or the loading tool or the machine itself.
  • the loading tool is guided during its operating mode consecutively to different payload stocks for receiving various payloads.
  • the payload stocks can be different in terms of their specific density or materials or other features.
  • at least one loading process can be carried out by means of the loading tool at each payload stock.
  • This sequence-like operating mode can advantageously be used to economically realize a predefined mixture of different payloads. In particular, precise metering of a food mixture as animal food can be achieved.
  • the loading tool is guided in a predetermined sequence to various payload stocks.
  • the quality of the mixture can be improved since the result of the mixing process (e.g., in a mixing vehicle or mixing container) is influenced by the relative arrangement of the different payloads to one another. For example, it is advantageous in the case of a food mixture to unload components with a lower density to the operating location for the production of the mixture before components with a higher density are unloaded.
  • this can support the production of a predefined payload mixture.
  • a control unit can process the predefined mixture data and as a function of this maneuver the machine autonomously consecutively into the correct payload stock.
  • the control unit can generate warning signals to the driver if he or she does not drive the machine to the correct payload stock or does not drive to the payload stocks in the correct sequence.
  • a system is provided with a suitable control means or mechanism to carry out the method.
  • control means or mechanism comprises a control unit which processes different signals and controls operating functions of the machine as a function of the signal processing.
  • This control can relate, for example, to the movement control of the loading tool or the lifting device during or outside a loading process.
  • the machine itself in particular its propulsion, can be controlled by this control unit in order to support the carrying out of the method.
  • the control mechanism or the control unit process in particular signals from at least one of the following signal sources: the aforementioned sensor mechanism, position sensors, control signals or data inputs by the user or driver, calibration data, vehicle position detection system, data or control bus of the machine.
  • FIG. 1 shows a schematic side view of a machine with a loading tool for the operating mode at at least one payload stock
  • FIG. 2 shows a block diagram with a control mechanism for carrying out the control method.
  • FIG. 1 schematically shows a machine 10 with a lifting device 12 arranged thereon in the form of a front loader.
  • Lifting device 12 is mounted in an articulated manner on machine 10 . It has a cantilever 14 which is mounted pivotally about a first pivot axis A 1 relative to machine 10 .
  • a loading tool 16 is mounted pivotally about a second pivot axis A 2 relative to cantilever 14 .
  • lifting device 12 By means of an electronic control unit 18 integrated in machine 10 , corresponding control signals as a result of an automatic algorithm or individual signal inputs by a user or operator of the machine, lifting device 12 , in particular its cantilevers 14 and loading tool 16 , can be actuated in terms of movement.
  • the lifting device 12 is coupled to suitable actuators (e.g., hydraulic lifting cylinders).
  • Loading tool 16 is formed as what is known as a grapple bucket 20 which has a bucket receiver 22 and a pivotable bucket shutter 24 which interacts with it.
  • bucket receiver 22 In order to receive a payload L with mass m_L by loading tool 16 , bucket receiver 22 is guided towards a payload stock St_ 1 (e.g., filled with silage or animal food).
  • St_ 1 e.g., filled with silage or animal food.
  • a pivoting or folding down of bucket shutter 24 in a closing direction 26 is triggered and mass m_L is actually received. This can be carried out e.g., automatically by a control unit 18 or individually by the user or operator of machine 10 .
  • bucket shutter 24 separates payload L to be received from the rest of payload stock St_ 1 in an accurate manner so that the latter is not unnecessarily impaired.
  • mass m_L of received payload L has been determined with sufficient precision so that, after this loading process, no part residual mass of payload L has to be poured back onto payload stock St_ 1 .
  • any reductions in quality of payload stock St_ 1 are avoided.
  • payload stock St_ 1 often has a density gradient as a result of the material properties of payload L (e.g., in the case of silage, animal food).
  • a specific material density D_u is greater than density D_o in a higher peak region in terms of height.
  • at least one material density D is determined, for example, both densities D_u and D_o.
  • Characteristic curves K i.e., K_u and K_o, can be generated from this and provided for the subsequent operating mode.
  • any desired number of further densities D or calibration data or characteristic curves K can be generated directly or by interpolation along the height direction, for example, density D_m or characteristic curve K_m.
  • the above-mentioned material density D is particularly suitable as calibration data for a determination of considered mass m_L of payload L since, as a result of this, only a volume V_L of the payload L may be detected. Mass m_L can then easily be determined as a function of detected volume V_L and the associated calibration data.
  • respective height position Pos_h of loading tool 16 is detected in order to determine relevant material density D or relevant characteristic curve K.
  • mass m_L within a payload stock with density gradients can be determined particularly precisely.
  • control unit 18 forms a control means or mechanism, or is a component of the control means or mechanism, which, jointly with the sensor means or mechanism and, where applicable, further structural units, form a system 28 for carrying out the control method.
  • system 28 is represented by way of example and schematically in FIG. 2 .
  • system 28 can be supplemented by further components, not represented here.
  • a position sensor 30 arranged on machine 10 or lifting device 12 detects height position Pos_h of loading tool 16 .
  • Sensor means or mechanism 32 e.g., two cameras or two distance sensors
  • Mass m_L of the considered payload is determined by relevant characteristic curve K depending on height position Pos_h.
  • Mass m_L determined in each case is compared with target mass m_target. This comparison is repeated in the framework of an algorithm until the comparative result produces a sufficiently precise match by mathematical definition, in particular taking into account a defined tolerance mass, between determined mass m_L and predetermined target mass m_target.
  • the mass m_L is then received by loading tool 16 in the course of this loading process.
  • control unit 18 interrupts a drivetrain 34 of machine 10 as soon as the above-mentioned comparative result indicates that target mass m_target is achieved with sufficient precision. As a result of this, a signal is given to the user or driver that payload L can be received in this reached position of loading tool 16 .
  • loading tool 16 can be guided consecutively onto different payload stocks (e.g., payload stocks St_ 1 , St_ 2 and St_ 3 ) in order to receive different payloads L.
  • payload stocks e.g., payload stocks St_ 1 , St_ 2 and St_ 3
  • the adherence to a specific sequence can also be important, for example, in order to assemble a mixture as animal food from different silage payloads in as optimum a manner as possible.
  • Guiding machine 10 onto different payload stocks in a specific sequence can be supported by a position detection system 36 (e.g., GPS) of machine 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

A method for controlling a loading tool includes positioning the loading tool on a lifting device of a machine, receiving a payload by the loading tool from a payload stock during an operating mode, and determining a mass of the payload during the operating mode. The method also includes providing calibration data representative of a ratio between a volume of the payload and a mass of the payload, detecting a volume of the payload during the operating mode, and determining the mass of the payload as a function of the detecting step and the calibration data.

Description

RELATED APPLICATIONS
This application claims priority to German Patent Application Ser. No. 102018217029.0, filed Oct. 4, 2018, the disclosure of which is hereby incorporated by reference in its entirety.
FIELD OF THE DISCLOSURE
The present disclosure relates to a method for controlling a loading tool.
BACKGROUND
A conventional method for controlling a loading tool is described in U.S. Pat. No. 9,938,692. There, movements of a lifting cylinder and a lifting arm of a lifting device are controlled in order to lift and transport a loading tool arranged thereon and filled with a payload in the form of a loading shovel. Here, the weight of the transported payload is determined as a function of pressure values of the lifting cylinders, a lifting arm angle and other kinematic properties.
There is a need to determine the mass of the payload by means of a simple method during the operating mode of the loading tool.
SUMMARY
In the present disclosure, a loading tool, in particular its movements during its operating mode, is controlled. The loading tool is arranged on a movable lifting device for lifting and lowering the loading tool, while the lifting device itself is mounted on a machine. During its operating mode, the loading tool receives a payload. In particular, the payload is transported to a different location and unloaded there. In order to support the operating mode of the loading tool and the machine, a mass of the payload is determined. This determination of the mass of the payload can be carried out prior to or after it being received by the loading tool.
Calibration data which represent a ratio of a volume of the payload to a mass of the payload are provided for the determination of the mass of the payload. During the operating mode of the loading tool, a volume of a payload, in particular before and after it being received by the loading tool, is detected. The mass of this payload can then be determined by means of simple methods on the basis of the calibration data and the volume which has already been detected.
The determined mass can be combined as information with further functionalities of known weighing systems for loading tools. The determined mass can be processed as information for control of the operating mode by an electronic control unit so that the operator of the machine has at his or her disposal an assistance function which relieves the strain on him or her. For example, the user or operator of the machine can then dispense with an estimation, which is among other things prone to errors, of the mass of the relevant payload. This relates in particular to the case of the intended receiving of a payload by the loading tool and also the case of intended unloading or tipping out of a payload transported by the loading tool at an unloading point.
The calibration data can be provided, e.g., as a diagram or characteristic curve. The calibration data can be generated in a calibration process prior to the operating mode of the loading tool and stored, for example, in a storage unit or a control unit for control of the method. The calibration data which are specific to the respective payload can thus be accessed at any time during the operating mode.
The calibration data contains in particular a specific density of the respective payload. The corresponding masses can be derived by means of a simple method from this in the case of determined volumes. Different density values as a function of height for a payload stock are provided as calibration data if the material of the payload stock has a density gradient starting from its ground level along the height direction. This density gradient or also other features of the payload stock can be derived, for example, by means of a perpendicular cutting surface of the payload stock.
The machine is formed in particular as a utility vehicle, e.g., an agricultural vehicle. Tow trucks, tractors, construction machines, wheel loaders, diggers, excavators are possible as utility vehicles. Depending on the type or the functionality of the respective machine, the lifting device can have, between the machine and the loading tool, a single, inherently rigid cantilever part or alternatively have several cantilever parts which are movably connected to one another.
The loading tool can be any desired container for receiving a payload. The loading tool is fixedly or movably connected in a suitable manner on the lifting device. For example, the loading tool is arranged in an articulated manner as a shovel on the lifting device.
The payload can be any desired bulk material and have various aggregate states. For example, the payload is a liquid, seeds, crop, animal food, soil, sand, or aggregate such as crushed rock, gravel and the like.
The detection of the volume of the payload is performed by means of suitable, optical sensor means. For example, at least one camera or at least one distance sensor is arranged on the loading tool. The sensor means or mechanism can also alternatively or additionally be arranged on the lifting device or a support structure of the machine.
The volume of a payload is already detected before it is received by the loading tool. As a result of this, it can already be precisely estimated before the payload is received on a payload stock (e.g., a silage stock) or another storage site of this payload which mass the loading tool would receive in the case of the current loading process. This information supports an efficient and economical operating mode since it can influence control of the loading tool in such a manner that neither too small nor too large a mass is received by the loading tool during a single loading process. The method thus offers an advantageous assistance function during loading work of the machine. The strain on the operator of the machine can be significantly relieved during the operating mode.
Automatic control of the operating mode of the loading tool and the machine and consequently also an efficient working procedure of the loading work are advantageously supported if the determined mass is compared with a predetermined target mass (e.g., from 20 kg to 700 kg). As a function of the comparative result, corresponding control signals can then be generated in order to automatically control an operating function of the machine. The target mass for the currently considered payload can be stored in a control unit of the machine.
In the case of one embodiment, the operation of the loading tool is controlled as an operating function of the machine. The loading tool is advantageously controlled so that, as a function of the above-mentioned comparative result, it automatically receives a payload or is released for a receiving of the payload to be triggered by the user (e.g., by means of suitable signaling to the user or driver). As a result of this, it is achieved by means of a simple method that the loading tool—possibly taking into account a defined tolerance mass—always only receives the desired target mass in the case of an individual loading process. In other words, a loading process is started automatically in the event of detection of a desired mass of the payload, or the loading process can be started by the user only in the event of detection of a desired mass of the payload. The strain on the user or driver of the machine is additionally reduced as a result of this.
This control of the loading tool prevents, by means of a simple method, the loading tool undesirably receiving too small or too large a quantity of a payload in the case of an individual loading process. This control can advantageously be used, for example, in the case of a food or silage stock in order, or an individual loading process with the loading tool to remove the required quantity of animal food as the payload and supply it to another location (e.g., mixing vehicle or mixing container for animal food) as precisely as possible there. As a result of this, excess animal food being tipped back into the food or silage stock and being exposed to an oxidation process which is disadvantageous for food quality is avoided.
In the case of the application of the control method to a food or silage stock, the loading tool is formed as what is known as a grapple bucket with a bucket shutter which automatically drops down during the loading process (automatically or triggered by the user) and separates the desired mass of the payload from the food or silage stock.
A propulsion (e.g., an internal combustion engine with drivetrain or an electric motor) is stopped or interrupted as a function of the above-mentioned comparative result. As a result of this, the operator of the machine is provided with a further assistance function in that he or she is automatically prevented, for example, from driving yet further into a payload stock (e.g., animal food) and as a result receiving an excessive mass of the payload during the current loading process. This automatic control can furthermore be combined with a function, according to which a loading process of the loading tool can only be started after the stopped or interrupted propulsion (automatically or individually by the user).
During the operating mode, the loading tool can perform the respective loading process at different height positions. The height position is dependent in particular on the current structure of the payload stock or the residual quantity of the payload stock which is still present. The height position can be, for example, relative to a level of the ground or to a base level of the payload stock. Due to an often present density gradient of the payload stock, it is advantageous to generate and provide in each case calibration data for several, i.e., different height positions. As a function of a detected height position of the loading tool, the calibration data assigned to this height position can then be provided automatically. The determination of the mass of the respective payload becomes even more precise as a result of this.
Calibration data for different height positions of the loading tool are generated during a calibration process, for example, for a base region of the payload stock and for a peak region of the payload stock which is opposite in terms of height. From this, calibration data for a plurality of height positions lying therebetween can be generated in a technically simple manner by interpolation so that an entire characteristic diagram can be generated and provided as calibration data for this payload stock with a low degree of calibration outlay.
The respective height position of the loading tool is detected by a sensor means or mechanism. A suitable position sensor is arranged on the lifting device or the loading tool or the machine itself.
The loading tool is guided during its operating mode consecutively to different payload stocks for receiving various payloads. The payload stocks can be different in terms of their specific density or materials or other features. Here, at least one loading process can be carried out by means of the loading tool at each payload stock. This sequence-like operating mode can advantageously be used to economically realize a predefined mixture of different payloads. In particular, precise metering of a food mixture as animal food can be achieved.
In a further embodiment, the loading tool is guided in a predetermined sequence to various payload stocks. As a result of the predetermined sequence, the quality of the mixture can be improved since the result of the mixing process (e.g., in a mixing vehicle or mixing container) is influenced by the relative arrangement of the different payloads to one another. For example, it is advantageous in the case of a food mixture to unload components with a lower density to the operating location for the production of the mixture before components with a higher density are unloaded.
Insofar as the machine has a vehicle position detection system (e.g., GPS), this can support the production of a predefined payload mixture. For example, a control unit can process the predefined mixture data and as a function of this maneuver the machine autonomously consecutively into the correct payload stock. Alternatively, the control unit can generate warning signals to the driver if he or she does not drive the machine to the correct payload stock or does not drive to the payload stocks in the correct sequence.
A system is provided with a suitable control means or mechanism to carry out the method. These control means or mechanism comprises a control unit which processes different signals and controls operating functions of the machine as a function of the signal processing. This control can relate, for example, to the movement control of the loading tool or the lifting device during or outside a loading process. The machine itself, in particular its propulsion, can be controlled by this control unit in order to support the carrying out of the method. The control mechanism or the control unit process in particular signals from at least one of the following signal sources: the aforementioned sensor mechanism, position sensors, control signals or data inputs by the user or driver, calibration data, vehicle position detection system, data or control bus of the machine.
BRIEF DESCRIPTION OF THE DRAWINGS
The above-mentioned aspects of the present disclosure and the manner of obtaining them will become more apparent and the disclosure itself will be better understood by reference to the following description of the embodiments of the disclosure, taken in conjunction with the accompanying drawings, wherein:
FIG. 1 shows a schematic side view of a machine with a loading tool for the operating mode at at least one payload stock, and
FIG. 2 shows a block diagram with a control mechanism for carrying out the control method.
Corresponding reference numerals are used to indicate corresponding parts throughout the several views.
DETAILED DESCRIPTION
The embodiments of the present disclosure described below are not intended to be exhaustive or to limit the disclosure to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may appreciate and understand the principles and practices of the present disclosure.
FIG. 1 schematically shows a machine 10 with a lifting device 12 arranged thereon in the form of a front loader. Lifting device 12 is mounted in an articulated manner on machine 10. It has a cantilever 14 which is mounted pivotally about a first pivot axis A1 relative to machine 10. A loading tool 16 is mounted pivotally about a second pivot axis A2 relative to cantilever 14.
By means of an electronic control unit 18 integrated in machine 10, corresponding control signals as a result of an automatic algorithm or individual signal inputs by a user or operator of the machine, lifting device 12, in particular its cantilevers 14 and loading tool 16, can be actuated in terms of movement. For this purpose, the lifting device 12 is coupled to suitable actuators (e.g., hydraulic lifting cylinders).
Loading tool 16 is formed as what is known as a grapple bucket 20 which has a bucket receiver 22 and a pivotable bucket shutter 24 which interacts with it. In order to receive a payload L with mass m_L by loading tool 16, bucket receiver 22 is guided towards a payload stock St_1 (e.g., filled with silage or animal food). As soon as a receivable mass m_L has been detected as corresponding with sufficient precision to a predefined target mass m_target, a pivoting or folding down of bucket shutter 24 in a closing direction 26 is triggered and mass m_L is actually received. This can be carried out e.g., automatically by a control unit 18 or individually by the user or operator of machine 10. In the case of this loading process, bucket shutter 24 separates payload L to be received from the rest of payload stock St_1 in an accurate manner so that the latter is not unnecessarily impaired. At the same time, mass m_L of received payload L has been determined with sufficient precision so that, after this loading process, no part residual mass of payload L has to be poured back onto payload stock St_1. As a result of this, in particular in the case of animal food, any reductions in quality of payload stock St_1 are avoided.
Along a height direction h, payload stock St_1 often has a density gradient as a result of the material properties of payload L (e.g., in the case of silage, animal food). For example, in a lower base region in terms of height, a specific material density D_u is greater than density D_o in a higher peak region in terms of height. In terms of height, there can exist therebetween further different density values, e.g., a density D_m, wherein D_u>D_m>D_o. In a calibration process prior to the actual operating mode of loading tool 16, at least one material density D is determined, for example, both densities D_u and D_o. Characteristic curves K, i.e., K_u and K_o, can be generated from this and provided for the subsequent operating mode. With the calibration process, any desired number of further densities D or calibration data or characteristic curves K can be generated directly or by interpolation along the height direction, for example, density D_m or characteristic curve K_m.
The above-mentioned material density D is particularly suitable as calibration data for a determination of considered mass m_L of payload L since, as a result of this, only a volume V_L of the payload L may be detected. Mass m_L can then easily be determined as a function of detected volume V_L and the associated calibration data.
During the operating mode, respective height position Pos_h of loading tool 16 is detected in order to determine relevant material density D or relevant characteristic curve K. As a result of this, respectively considered mass m_L within a payload stock with density gradients can be determined particularly precisely.
Control of loading tool 16 during the operating mode is carried out by control unit 18 cited above. The latter forms a control means or mechanism, or is a component of the control means or mechanism, which, jointly with the sensor means or mechanism and, where applicable, further structural units, form a system 28 for carrying out the control method.
Such a system 28 is represented by way of example and schematically in FIG. 2. In further embodiments, system 28 can be supplemented by further components, not represented here.
A position sensor 30 arranged on machine 10 or lifting device 12 detects height position Pos_h of loading tool 16. Sensor means or mechanism 32 (e.g., two cameras or two distance sensors) detect volume V_L of payload L considered for the intended receiving. Mass m_L of the considered payload is determined by relevant characteristic curve K depending on height position Pos_h. Mass m_L determined in each case is compared with target mass m_target. This comparison is repeated in the framework of an algorithm until the comparative result produces a sufficiently precise match by mathematical definition, in particular taking into account a defined tolerance mass, between determined mass m_L and predetermined target mass m_target. The mass m_L is then received by loading tool 16 in the course of this loading process. The working operation can also be further supported by virtue of the fact that control unit 18 interrupts a drivetrain 34 of machine 10 as soon as the above-mentioned comparative result indicates that target mass m_target is achieved with sufficient precision. As a result of this, a signal is given to the user or driver that payload L can be received in this reached position of loading tool 16.
During its operating mode, loading tool 16 can be guided consecutively onto different payload stocks (e.g., payload stocks St_1, St_2 and St_3) in order to receive different payloads L. The adherence to a specific sequence can also be important, for example, in order to assemble a mixture as animal food from different silage payloads in as optimum a manner as possible. Guiding machine 10 onto different payload stocks in a specific sequence can be supported by a position detection system 36 (e.g., GPS) of machine 10.
While exemplary embodiments incorporating the principles of the present disclosure have been disclosed hereinabove, the present disclosure is not limited to the disclosed embodiments. Instead, this application is intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this disclosure pertains and which fall within the limits of the appended claims.

Claims (20)

The invention claimed is:
1. A method for controlling a loading tool, comprising:
operating the loading tool on a lifting device of a machine, the loading tool including a bucket receiver and a bucket shutter;
detecting via a first sensor a height position of the loading tool relative to a base level of a payload stock;
detecting via a second sensor a volume of a payload from the payload stock during an operating mode;
receiving the payload by the loading tool from the payload stock during the operating mode;
accessing via a control unit calibration data representative of a ratio between a volume of the payload and a mass of the payload;
determining via the control unit the mass of the payload as a function of the detected volume and the calibration data;
comparing via the control unit the mass of the payload to a predetermined target mass; and
automatically closing via the control unit the bucket shutter when the mass of the payload matches the predetermined target mass.
2. The method of claim 1, further comprising controlling an operating function of the loading tool as a function of the comparing step.
3. The method of claim 1, further comprising interrupting via the control unit a propulsion of the machine as a function of the comparing step to prevent the machine from driving further into the payload stock.
4. The method of claim 3, wherein the receiving step is initiated after the control unit interrupts the propulsion of the machine.
5. The method of claim 1, further comprising providing calibration data for various height positions of the loading tool.
6. The method of claim 1, further comprising guiding the loading tool during the operating mode consecutively to different payload stocks for receiving various payloads.
7. The method of claim 6, wherein the various payloads are formed as a component of a feed mixture.
8. The method of claim 6, further comprising guiding the loading tool during the operating mode in a predetermined sequence to various payload stocks.
9. A control system of an agricultural machine, comprising:
an electronic control unit for controlling a function of the machine;
a loading tool for receiving a payload from a payload stock, the loading tool movably coupled to the machine, the loading tool including a bucket receiver and a bucket shutter;
a first sensor disposed in communication with the electronic control unit, the first sensor configured to detect a height of the loading tool;
a second sensor disposed in communication with the electronic control unit, the second sensor configured to detect a volume of a payload to be received by the loading tool; and
predetermined calibration data stored in the electronic control unit, the calibration data defined as a ratio between a volume of the payload and a mass of the payload;
wherein, during an operating mode, the first sensor detects the height of the loading tool, the second sensor detects the volume of the payload, and the electronic control unit determines the mass of the payload as a function of the detected volume and the calibration data; and
wherein, during the operating mode, the electronic control compares the mass of the payload to a predetermined target mass, and the electronic control automatically closes the bucket shutter when the mass of the payload matches the predetermined target mass.
10. The control system of claim 9, wherein:
the first sensor comprises a position sensor; and
the second sensor comprises at least one camera or one distance sensor.
11. The control system of claim 9, wherein the electronic control unit operably interrupts an operation of a powertrain of the machine as a function of comparing the mass of the payload to the predetermined target mass to prevent the machine from driving further into the payload stock.
12. The control system of claim 9, wherein the electronic control unit operably guides the loading tool consecutively onto two or more payload stocks for receiving different payloads.
13. The control system of claim 12, wherein the electronic control unit operably guides the loading tool in accordance with a specific sequence based on a communication from a position detection system.
14. A method for controlling a loading tool, comprising:
operating the loading tool on a lifting device of a machine, the loading tool including a bucket receiver and a bucket shutter;
detecting via a first sensor a height position of the loading tool relative to a base level of a payload stock;
detecting via a second sensor a volume of a payload from the payload stock during an operating mode;
receiving the payload by the loading tool from the payload stock during the operating mode;
accessing via a control unit calibration data representative of a ratio between a volume of the payload and a mass of the payload;
determining via the control unit the mass of the payload as a function of the detected volume and the calibration data;
comparing via the control unit the mass of the payload to a predetermined target mass; and
interrupting via the control unit a propulsion of the machine as a function of the comparing step to prevent the machine from driving further into the payload stock.
15. The method of claim 14, wherein the receiving step is initiated after the control unit interrupts the propulsion of the machine.
16. The method of claim 14, further comprising controlling an operating function of the loading tool as a function of the comparing step.
17. The method of claim 14, further comprising providing calibration data for various height positions of the loading tool.
18. The method of claim 14, further comprising guiding the loading tool during the operating mode consecutively to different payload stocks for receiving various payloads.
19. The method of claim 18, wherein the various payloads are formed as a component of a feed mixture.
20. The method of claim 18, further comprising guiding the loading tool during the operating mode in a predetermined sequence to various payload stocks.
US16/575,065 2018-10-04 2019-09-18 Method for controlling a loading tool Active 2040-04-22 US11214939B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018217029.0 2018-10-04
DE102018217029.0A DE102018217029A1 (en) 2018-10-04 2018-10-04 Method for controlling a loading tool

Publications (2)

Publication Number Publication Date
US20200109538A1 US20200109538A1 (en) 2020-04-09
US11214939B2 true US11214939B2 (en) 2022-01-04

Family

ID=68069629

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/575,065 Active 2040-04-22 US11214939B2 (en) 2018-10-04 2019-09-18 Method for controlling a loading tool

Country Status (3)

Country Link
US (1) US11214939B2 (en)
EP (1) EP3633110B1 (en)
DE (1) DE102018217029A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200157775A1 (en) * 2018-10-26 2020-05-21 Liebherr-France Sas System and method for determining the mass of a payload moved by a working device
US20210059094A1 (en) * 2019-08-27 2021-03-04 Cnh Industrial America Llc System and method for detecting levelness of tools of a tillage implement based on material flow
US11447929B2 (en) * 2017-12-20 2022-09-20 Kobelco Construction Machinery Co., Ltd. Construction machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3113998B1 (en) * 2020-09-14 2022-09-09 Kuhn Audureau S A S Method allowing reliable detection of the upper edge of the leading edge of a heap of product(s) for animal feed, from a sampling vehicle and such a vehicle allowing the implementation of said method

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809794A (en) * 1985-06-07 1989-03-07 Blair James R Determining of the amount of material delivered each operational cycle of a shovel loader
US4995468A (en) * 1986-12-04 1991-02-26 Kabushiki Kaisha Komatsu Seisakusho Load weight measuring system mounted on a construction machine
US5105896A (en) * 1991-03-05 1992-04-21 Caterpillar Inc. Dynamic payload monitor
US5220968A (en) * 1992-03-09 1993-06-22 Weber Steven J Productivity monitoring system for loading machinery
US6518519B1 (en) * 2000-08-30 2003-02-11 Caterpillar Inc Method and apparatus for determining a weight of a payload
EP1452087A2 (en) 2003-02-14 2004-09-01 Trioliet Mullos B.V. Method and apparatus for removing a quantity of fodder from a stock thereof
US20080169131A1 (en) * 2005-03-15 2008-07-17 Shu Takeda Device And Method For Measuring Load Weight On Working Machine
US20090177337A1 (en) * 2008-01-07 2009-07-09 Caterpillar Inc. Tool simulation system for remotely located machine
NL2001458C2 (en) 2008-04-09 2009-10-12 Beheermij Schuitemaker B V Silage cutting method, involves locating cutting path, placing silage cutter frame in cutting position, and cutting silage along cutting path by moving knife in silage cutter frame
US7912612B2 (en) * 2007-11-30 2011-03-22 Caterpillar Inc. Payload system that compensates for rotational forces
US8428832B2 (en) * 2008-12-23 2013-04-23 Caterpillar Inc. Method and apparatus for calculating payload weight
US8515627B2 (en) * 2008-12-23 2013-08-20 Caterpillar Inc. Method and apparatus for calculating payload weight
WO2013157931A1 (en) 2012-04-20 2013-10-24 Lely Patent N.V. Vehicle for displacing feed
US20130346127A1 (en) * 2012-06-22 2013-12-26 Jeffrey E. Jensen Site mapping system having tool load monitoring
US20140060939A1 (en) 2011-05-13 2014-03-06 David Aaron Eppert Load-measuring, fleet asset tracking and data management system for load-lifting vehicles
US20140088822A1 (en) * 2012-09-21 2014-03-27 Caterpillar Inc. Payload material density calculation and machine using same
US20140167971A1 (en) * 2012-12-17 2014-06-19 Caterpillar Inc. Vehicle Payload Weight Display Method and System
US20150104273A1 (en) 2012-04-20 2015-04-16 Lely Patent N.V. Device for displacing livestock feed
US9091586B2 (en) * 2013-03-29 2015-07-28 Caterpillar Inc. Payload determination system and method
US9200432B1 (en) * 2014-06-09 2015-12-01 Caterpillar Inc. Method and system for estimating payload weight with hydraulic fluid temperature compensation
US20150354177A1 (en) * 2014-06-09 2015-12-10 Caterpillar Inc. Method and System for Estimating Payload Weight with Tilt Position Compensation
US20160198677A1 (en) 2013-09-10 2016-07-14 Lely Patent N.V. Livestock feed wagon
US20160223387A1 (en) * 2015-02-02 2016-08-04 Caterpillar Inc. Payload monitoring system
WO2016159839A1 (en) 2015-03-30 2016-10-06 Volvo Construction Equipment Ab System and method for determining the material loading condition of a bucket of a material moving machine
US9938692B2 (en) 2016-01-04 2018-04-10 Caterpillar Inc. Wheel loader payload measurement system linkage acceleration compensation
US20180174291A1 (en) * 2016-12-21 2018-06-21 Massachusetts Institute Of Technology Determining soil state and controlling equipment based on captured images
US10234368B2 (en) * 2016-10-13 2019-03-19 Deere & Company System and method for load evaluation
US20200087893A1 (en) * 2018-09-14 2020-03-19 Deere & Company Controlling a work machine based on sensed variables

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809794A (en) * 1985-06-07 1989-03-07 Blair James R Determining of the amount of material delivered each operational cycle of a shovel loader
US4995468A (en) * 1986-12-04 1991-02-26 Kabushiki Kaisha Komatsu Seisakusho Load weight measuring system mounted on a construction machine
US5105896A (en) * 1991-03-05 1992-04-21 Caterpillar Inc. Dynamic payload monitor
US5220968A (en) * 1992-03-09 1993-06-22 Weber Steven J Productivity monitoring system for loading machinery
US6518519B1 (en) * 2000-08-30 2003-02-11 Caterpillar Inc Method and apparatus for determining a weight of a payload
EP1452087A2 (en) 2003-02-14 2004-09-01 Trioliet Mullos B.V. Method and apparatus for removing a quantity of fodder from a stock thereof
US20080169131A1 (en) * 2005-03-15 2008-07-17 Shu Takeda Device And Method For Measuring Load Weight On Working Machine
US7912612B2 (en) * 2007-11-30 2011-03-22 Caterpillar Inc. Payload system that compensates for rotational forces
US20090177337A1 (en) * 2008-01-07 2009-07-09 Caterpillar Inc. Tool simulation system for remotely located machine
NL2001458C2 (en) 2008-04-09 2009-10-12 Beheermij Schuitemaker B V Silage cutting method, involves locating cutting path, placing silage cutter frame in cutting position, and cutting silage along cutting path by moving knife in silage cutter frame
US8428832B2 (en) * 2008-12-23 2013-04-23 Caterpillar Inc. Method and apparatus for calculating payload weight
US8515627B2 (en) * 2008-12-23 2013-08-20 Caterpillar Inc. Method and apparatus for calculating payload weight
US20140060939A1 (en) 2011-05-13 2014-03-06 David Aaron Eppert Load-measuring, fleet asset tracking and data management system for load-lifting vehicles
WO2013157931A1 (en) 2012-04-20 2013-10-24 Lely Patent N.V. Vehicle for displacing feed
EP2838355A1 (en) 2012-04-20 2015-02-25 Lely Patent N.V. Vehicle for displacing feed
US20150104273A1 (en) 2012-04-20 2015-04-16 Lely Patent N.V. Device for displacing livestock feed
US20130346127A1 (en) * 2012-06-22 2013-12-26 Jeffrey E. Jensen Site mapping system having tool load monitoring
US20140088822A1 (en) * 2012-09-21 2014-03-27 Caterpillar Inc. Payload material density calculation and machine using same
US8838331B2 (en) * 2012-09-21 2014-09-16 Caterpillar Inc. Payload material density calculation and machine using same
US20140167971A1 (en) * 2012-12-17 2014-06-19 Caterpillar Inc. Vehicle Payload Weight Display Method and System
US9091586B2 (en) * 2013-03-29 2015-07-28 Caterpillar Inc. Payload determination system and method
US20160198677A1 (en) 2013-09-10 2016-07-14 Lely Patent N.V. Livestock feed wagon
US9200432B1 (en) * 2014-06-09 2015-12-01 Caterpillar Inc. Method and system for estimating payload weight with hydraulic fluid temperature compensation
US20150354177A1 (en) * 2014-06-09 2015-12-10 Caterpillar Inc. Method and System for Estimating Payload Weight with Tilt Position Compensation
US20160223387A1 (en) * 2015-02-02 2016-08-04 Caterpillar Inc. Payload monitoring system
WO2016159839A1 (en) 2015-03-30 2016-10-06 Volvo Construction Equipment Ab System and method for determining the material loading condition of a bucket of a material moving machine
US9938692B2 (en) 2016-01-04 2018-04-10 Caterpillar Inc. Wheel loader payload measurement system linkage acceleration compensation
US10234368B2 (en) * 2016-10-13 2019-03-19 Deere & Company System and method for load evaluation
US20180174291A1 (en) * 2016-12-21 2018-06-21 Massachusetts Institute Of Technology Determining soil state and controlling equipment based on captured images
US20200087893A1 (en) * 2018-09-14 2020-03-19 Deere & Company Controlling a work machine based on sensed variables

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
European Search Repod issued in counterpart European Patent Application No. 19199715.4 dated Mar. 4, 2020 (7 pages).

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11447929B2 (en) * 2017-12-20 2022-09-20 Kobelco Construction Machinery Co., Ltd. Construction machine
US20200157775A1 (en) * 2018-10-26 2020-05-21 Liebherr-France Sas System and method for determining the mass of a payload moved by a working device
US11668077B2 (en) * 2018-10-26 2023-06-06 Liebherr-France Sas System and method for determining the mass of a payload moved by a working device
US20210059094A1 (en) * 2019-08-27 2021-03-04 Cnh Industrial America Llc System and method for detecting levelness of tools of a tillage implement based on material flow
US11793098B2 (en) * 2019-08-27 2023-10-24 Cnh Industrial America Llc System and method for detecting levelness of tools of a tillage implement based on material flow
US20230345852A1 (en) * 2019-08-27 2023-11-02 Cnh Industrial America Llc System and method for detecting levelness of tools of a tillage implement based on material flow

Also Published As

Publication number Publication date
DE102018217029A1 (en) 2020-04-09
US20200109538A1 (en) 2020-04-09
EP3633110A1 (en) 2020-04-08
EP3633110B1 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US11214939B2 (en) Method for controlling a loading tool
US10617054B2 (en) Method and agricultural utility machine for spreading crop
AU2017232200B2 (en) Method for assisting an excavator operator with the loading of a transportation implement and assistance system
US8340872B2 (en) Control system and method for capturing partial bucket loads in automated loading cycle
US11359349B2 (en) Work vehicle, work management system, and work vehicle control method
CN112639210B (en) Control device and control method for loading machine
AU2018345153B2 (en) Loading machine control device and control method
US8589035B2 (en) Method for operating a transport vehicle, a transport vehicle, a method for controllling operation of a work site and a work site system
AU2019227672B2 (en) Loading machine control device and control method
US20230279634A1 (en) Work machine and control device for work machine
US11965764B2 (en) Method for unloading a payload
CN112609756B (en) Control system of loader and loader
CN112513377B (en) Control device and control method for loading machine
EP3715534B1 (en) System and method for automatic weight monitoring and control during a material moving operation
US11913192B2 (en) Method for tipping out a cargo load
US20220314860A1 (en) System and method for moving material
EP4030001A1 (en) Work machine, weighing method, and system including work machine
US11619921B2 (en) Work machine overload prevention
WO2019110094A1 (en) A steering system for an articulated vehicle
CN111595426B (en) System and method for automatic payload targeting hints
JP7311681B2 (en) LOADING MACHINE CONTROL DEVICE, CONTROL METHOD, AND REMOTE CONTROL SYSTEM
US20240117597A1 (en) Customized work planning for automated loading, unloading, and transport operations by scraper systems
WO2022210990A1 (en) Work machine and support system for work machine
EP2600124A2 (en) Method for determining the mass of a load on a pivotable linkage
CN111595426A (en) System and method for automatic payload targeting

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: DEERE & COMPANY, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REMMELMANN, ANDREAS;REEL/FRAME:050427/0592

Effective date: 20190910

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE