US11190020B2 - Direct current voltage coordination control method - Google Patents

Direct current voltage coordination control method Download PDF

Info

Publication number
US11190020B2
US11190020B2 US16/643,472 US201816643472A US11190020B2 US 11190020 B2 US11190020 B2 US 11190020B2 US 201816643472 A US201816643472 A US 201816643472A US 11190020 B2 US11190020 B2 US 11190020B2
Authority
US
United States
Prior art keywords
voltage
active power
converter
turning
control mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/643,472
Other languages
English (en)
Other versions
US20200366096A1 (en
Inventor
Nannan Wang
Yu Lu
Yunlong DONG
Jie Tian
Dongming CAO
Haiying Li
Chongxue JIANG
Jiacheng Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NR Electric Co Ltd
NR Engineering Co Ltd
Original Assignee
NR Electric Co Ltd
NR Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NR Electric Co Ltd, NR Engineering Co Ltd filed Critical NR Electric Co Ltd
Assigned to NR ENGINEERING CO., LTD, NR ELECTRIC CO., LTD reassignment NR ENGINEERING CO., LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAO, Dongming, DONG, Yunlong, JIANG, Chongxue, LI, HAIYING, LU, YU, TIAN, Jie, WANG, JIACHENG, WANG, NANNAN
Publication of US20200366096A1 publication Critical patent/US20200366096A1/en
Application granted granted Critical
Publication of US11190020B2 publication Critical patent/US11190020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention belongs to the technical field of VSC-HVDC transmission of power systems, and particularly relates to a DC voltage coordination control method.
  • Multi-terminal VSC-HVDC and VSC-HVDC power grids have better operational flexibility and reliability than two-terminal VSC-HVDC power transmission, and they have greater advantages in the construction of large-scale VSC-HVDC power grids, which can meet grid interconnection, urban grid power supply, interconnection of multiple wind farms (new energy), etc.
  • the complexity of coordination control between multiple converters is greatly increased. How to ensure the DC voltage stability of VSC-HVDC systems to construct multiple converter station systems becomes a difficulty of the scale expansion of the VSC-HVDC power grids.
  • the purpose of the present invention is to provide a scalable DC voltage coordination control method.
  • the method is implemented by upper-level control and lower-level control.
  • the upper-level control ensures the steady-state performance of the system and the lower-level control ensures the transient-state performance and stability of the system.
  • the lower-level control since the operating characteristics of the converter are self-adjusted according to the power setting value of the converter, the method avoids the problem that the fixed slope and margin cannot meet all operating conditions, and is suitable for large-scale multi-terminal VSC-HVDC systems and VSC-HVDC power grid systems.
  • a DC voltage coordination control method applied to a multi-terminal VSC-HVDC power transmission system or a VSC-HVDC power grid system includes a lower-level control that generates an active power reference value of the converter according to a control mode of the converter; the control mode of the converter is a DC voltage control mode or an active power control mode;
  • the converters of the multi-terminal VSC-HVDC power transmission system or the VSC-HVDC power grid system are configured with the lower-level control, and the lower-level control of any converter including the following steps:
  • step 2) turning to step 2) if the converter control mode is the DC voltage control mode, otherwise turning to step 3);
  • step 2 2) generating the active power reference value of the converter according to the difference of the DC voltage reference and the converter DC voltage, and turning to step 1);
  • step 4 3) generating a DC voltage active power curve of the converter according to an active power setting value of the converter, then turning to step 4);
  • step 4) generating the active power reference value of the converter according to the converter DC voltage and the DC voltage active power curve of the converter, then turning to step 1).
  • generating a DC voltage active power curve of the converter according to an active power setting value of the converter in step 3) of the lower-level control includes the following steps:
  • the ultimate maximum DC voltage, the maximum DC voltage, the minimum DC voltage, and the ultimate minimum DC voltage are preset values determined according to system study, and the ultimate maximum DC voltage the maximum DC voltage the minimum DC voltage the ultimate minimum DC voltage; and the maximum inversion active power is the maximum active power when the converter is operating in an inversion state, the maximum rectification active power is the maximum active power when the converter is operating in a rectification state, the maximum inversion active power and the maximum rectification active power are both determined according to system study;
  • the active power reference value of the converter obtained by retrieving the DC voltage active power curve of the converter and determining the active power corresponding to the measured converter DC voltage as the active power reference value of the converter.
  • step 2) of the lower-level control generating the active power reference value of the converter according to the difference of the DC voltage reference and the converter DC voltage is achieved by using the difference through a proportional-integral controller to obtain the active power reference value of the converter.
  • the above-mentioned DC voltage coordination control method is characterized in that the method further comprising an upper-level control, and the upper-level control adjusting the control mode of the lower-level control and the active power setting value, the upper-level control comprising the following steps:
  • step 2 (1) monitoring the state of the control mode of each converter; sending the instruction of switching to the DC voltage control mode to the converter with the highest priority according to the preset priority, when no operating converters which are interconnected at the DC side are in the DC voltage control mode; sending the instruction of switching to the active power control mode to the other converters other than the converter with the highest priority, which are operated in the DC voltage control mode, when a plurality of the operating converters which are interconnected at the DC side are in the DC voltage control mode, then turning to step 2);
  • the overload state is one of a rectification overload or an invertion overload
  • the lower-level control when the upper-level control is included, the lower-level control further comprising the following steps:
  • step c) turning to step b) once receiving the instruction of switching to the DC voltage control mode from the upper-level control, otherwise turning to step c);
  • step c) switching the control mode of the converter to the DC voltage control mode, then turning to step c);
  • step c) turning to step d) once receiving the instruction of switching to the active power control mode from the upper-level control, otherwise turning to step e);
  • step e) switching the control mode of the converter to the active power control mode, then turning to step e);
  • step f once receiving the overload state of the upper-level, when the overload state is a rectification overload and the active power setting value of the converter is an inversion power, turning to step f); or when the overload state is an inversion overload and the active power setting value is a rectification power, turning to step f), otherwise turning to step a);
  • step f reducing the active power setting value of the converter according to a preset step, then turning to step a);
  • the interconnection at the DC side refers to that the DC-side of the converter are connected directly or connected through DC lines.
  • the rectification overload is an overload that occurs when the converter is in rectification operation
  • the inversion overload is an overload that occurs when the converter is in inversion operation.
  • step f) of the lower-level control the preset step is determined according to system study, with a value ranging from 0 MW to the maximum active power of the converter; reducing the active power setting value of the converter refers to reducing the active power setting value of the converter in the direction of reducing an absolute value of the active power setting value of the converter.
  • the DC voltage coordination control method provided by the present invention avoids the problem that the fixed slope and margin cannot meet all operating conditions by self-adjusting the operating characteristics of the converter according to the power setting value of the converter.
  • the DC voltage coordination control method provided by the present invention can ensure the transient performance and stability of the system in the event of a communication failure, and has a low dependence on communication.
  • the power setting value can also be adjusted by the operator to avoid out-of-control problems when losing the upper-control.
  • the DC voltage coordination control method provided by the present invention can only use a lower-level control for some converters according to the system conditions, which is suitable for large-scale VSC-HVDC systems and has scalability.
  • the DC voltage coordination control method provided by the present invention allocates the active power adjustment amount of each converter according to the standby adjustment capacity of the converter, so that a converter with a large standby capacity can adjust more active power, beneficial to maintain the stability of the DC voltage.
  • the adjustment of the operating characteristics of the converter depends only on the power setting value of the converter, so that the method is simple and reliable.
  • FIG. 1 is an upper-level control flowchart
  • FIG. 2 is a lower-level control flowchart
  • FIG. 3 is a schematic diagram of the DC voltage active power curve of the converter.
  • FIG. 1 is a flowchart of the upper-level control.
  • the upper-level control adjusts the control mode and active power setting value of the lower-level control
  • the lower-level control adjusts the external operating characteristics of the corresponding converter, including two steps:
  • Step 101 monitoring the state of the control mode of each converter: when no operating converters which are interconnected at the DC side are in the DC voltage control mode, at this time, there is no converter using the DC voltage control mode in the interconnected system to balance the DC power, thus the instruction of switching to the DC voltage control mode is sent to the converter with the highest priority according to the preset priority; the instruction of switching to the active power control mode is sent to the other converters other than the converter with the highest priority, which are operated in the DC voltage control mode, when a plurality of the operating converters which are interconnected at the DC side are in the DC voltage control mode, to keep only one converter in the interconnected system is in DC voltage control mode;
  • Step 102 monitoring the overload state of the converters in voltage control mode: the overload state is sent to the lower-level control of other converters which are interconnected at the DC side of the overload converters, the overload state is one of a rectification overload or an inversion overload, wherein the rectification overload is an overload that occurs when the converter is in rectification operation, and the inversion overload is an overload that occurs when the converter is in inversion operation.
  • the lower-level control adjusts the active power setting value to achieve the adjustment of the external operating characteristics.
  • FIG. 2 is a flowchart of the lower-level control.
  • the lower-level control includes the following steps:
  • Step 201 turning to step 202 once receiving the instruction of switching to the DC voltage control mode from the upper-level control, otherwise turning to step 203 ;
  • Step 202 switching the control mode of the converter to the DC voltage control mode, then turning to step 203 ;
  • Step 203 turning to step 204 once receiving the instruction of switching to the active power control mode from the upper-level control, otherwise turning to step 205 ;
  • Step 204 switching the control mode of the converter to the active power control mode, then turning to step 205 ;
  • Step 205 once receiving the overload state of the upper-level, when the overload state is a rectification overload and the active power setting value of the converter is an inversion power, turning to step 206 ; or when the overload state is an inversion overload and the active power setting value is a rectification power, turning to step 206 , otherwise turning to step 207 ;
  • Step 206 reducing the active power setting value of the converter according to a preset step, then turning to step 207 ; the preset step is determined according to system study, with a value ranging from 0 MW to the maximum active power of the converter, if the step length is 1 MW, then 1 MW of the active power setting value will be reduced for each execution cycle; reducing the active power setting value of the converter refers to reducing the active power setting value of the converter in the direction of reducing an absolute value of the active power setting value of the converter; if the active power setting value in the previous execution cycle is 100 MW, which is in the rectification direction, then the setting value of the active power in the present execution cycle is 99 MW; if the setting value of the active power in the previous execution cycle is ⁇ 100 MW, which is in the inversion direction, then the setting value of the active power in present execution cycle is ⁇ 99 MW since only the value is reduced.
  • Step 207 turning to step 208 if the converter control mode is the DC voltage control mode, otherwise turning to step 209 ;
  • Step 208 generating the active power reference value of the converter according to the difference of the DC voltage instruction and the converter DC voltage, and turning to step 201 ; this step uses a DC voltage controller to control the DC voltage as a target value to generate the converter active power reference value.
  • Step 209 generating a DC voltage active power curve of the converter according to an active power setting value of the converter, then turning to step 210 ;
  • Step 210 generating the active power reference value of the converter according to the converter DC voltage and the DC voltage active power curve of the converter, then turning to step 201 .
  • the DC voltage of the converter may be the inter-electrode voltage of the converter.
  • steps 201 to 206 may be omitted.
  • the lower-level control is configured in the converter control, which is arranged at a lower control level to improve the reliability of the control system.
  • the upper-level control can be configured at any position as needed, in a distributed configuration with the lower-level control, and interacting with the lower-level control through communication. In large-scale VSC-HVDC system applications, only some converters with strong adjustment capabilities are configured with lower-level control according to the system conditions, and some converters configured with lower-level control are used for maintaining DC voltage stability.
  • FIG. 3 is a schematic diagram of a DC voltage active power curve of the converter, and the above steps 209 and 210 are further described in combination with the figure.
  • U dmax_abs is the ultimate maximum DC voltage
  • U dmax is the maximum DC voltage
  • U dmin_abs is the ultimate minimum DC voltage
  • U dmin is the minimum DC voltage
  • P inv_max is the maximum inversion active power
  • P rec_max is the maximum rectification active power, both determined according to system study.
  • the ultimate maximum DC U voltage U dmax_abs can be determined according to the DC overvoltage setting value
  • the maximum DC U voltage U dmax can be determined according to the highest voltage value during steady-state operation
  • the ultimate minimum DC U voltage U dmin_abs can be determined according to the DC low voltage setting value
  • the minimum DC voltage U dmin can be determined according to the minimum voltage value during steady-state operation.
  • the inversion inverter maximum active power P inv_max is determined based on the maximum active power when the converter is operating in an inversion state.
  • the rectified maximum active power P rec_max can be determined based on the maximum active power when the converter is operating in a rectification state. The above determination refers to taking an appropriate reliability factor.
  • the active power reference value of the converter can be generated according to the converter DC voltage and the DC voltage active power curve of the converter.
  • the active power reference value P ref can be obtained according to the DC voltage active power curve 1
  • the active power reference value P ref ′ can be obtained according to the DC voltage active power curve 2 .
  • the active power setting value is adjusted from P set to P set ′
  • the operating characteristics of the converter are automatically adjusted.
  • the adjustment amount of the power instruction value of the converter and the standby adjustment capacity of the converter is proportional, that is:
  • P set ⁇ P inv_max is the standby adjustment capacity when the active power setting value is P set
  • P set ′ ⁇ P inv_max is the standby adjustment capacity when the active power setting value is P set ′.
  • the active power adjustment amount of each converter can also be allocated according to the standby adjustment capacity, so that the converter with large standby capacity can adjust more active power to keep the DC voltage stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Rectifiers (AREA)
US16/643,472 2017-09-05 2018-05-07 Direct current voltage coordination control method Active US11190020B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710788486.3A CN109428341B (zh) 2017-09-05 2017-09-05 一种直流电压协调控制方法
CN201710788486.3 2017-09-05
PCT/CN2018/085842 WO2019047546A1 (zh) 2017-09-05 2018-05-07 一种直流电压协调控制方法

Publications (2)

Publication Number Publication Date
US20200366096A1 US20200366096A1 (en) 2020-11-19
US11190020B2 true US11190020B2 (en) 2021-11-30

Family

ID=65513914

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/643,472 Active US11190020B2 (en) 2017-09-05 2018-05-07 Direct current voltage coordination control method

Country Status (9)

Country Link
US (1) US11190020B2 (ko)
EP (1) EP3675307A4 (ko)
JP (1) JP6783970B2 (ko)
KR (1) KR102132580B1 (ko)
CN (1) CN109428341B (ko)
CA (1) CA3074159C (ko)
MX (1) MX2020002394A (ko)
RU (1) RU2736651C1 (ko)
WO (1) WO2019047546A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736892B (zh) * 2020-12-30 2022-04-08 丽水市普明电力建设工程有限公司 一种防止直流电网电压越限的协调控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526780A (en) * 1963-01-30 1970-09-01 Asea Ab Power transmission plant for high voltage direct current
US4419591A (en) * 1980-09-04 1983-12-06 Tokyo Shibaura Denki Kabushiki Kaisha Multiterminal DC power transmission system
US20060282239A1 (en) * 2005-06-08 2006-12-14 Chang Gung University Method of setting-up steady state model of VSC-based multi-terminal HVDC transmission system
CN103346582A (zh) 2013-06-21 2013-10-09 南方电网科学研究院有限责任公司 柔性直流输电系统站级控制模式的无缝切换方法
CN103606945A (zh) 2013-11-19 2014-02-26 国家电网公司 一种多端柔性直流输电系统的控制系统及其控制方法
US8760888B2 (en) * 2006-06-30 2014-06-24 Abb Technology Ag HVDC system and method to control a voltage source converter in a HVDC system
CN104505853A (zh) 2015-01-08 2015-04-08 南方电网科学研究院有限责任公司 多端柔性直流输电系统中多个定直流电压站的功率分配方法
CN105281356A (zh) 2015-11-10 2016-01-27 中国科学院电工研究所 一种多端柔性直流输电系统的协调控制方法
US20160308359A1 (en) 2012-11-08 2016-10-20 Nr Electric Co., Ltd Coordination control method of multi-terminal VSC-HVDC transmission system
CN107093893A (zh) 2017-02-16 2017-08-25 中国电力科学研究院 一种直流配电网的功率‑电压协调控制方法及装置
US20190140445A1 (en) * 2016-05-18 2019-05-09 Mitsubishi Electric Corporation Current/voltage control system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE370596B (ko) * 1973-02-14 1974-10-21 Asea Ab
US9602021B2 (en) * 2014-03-07 2017-03-21 General Electric Company Hybrid high voltage direct current converter system and method of operating the same
CN104022522B (zh) * 2014-06-09 2016-01-13 山东大学 一种多端柔性直流输电系统协调控制方法
CN104659802B (zh) * 2015-03-11 2016-10-05 云南电网有限责任公司电网规划研究中心 一种改善交流系统暂态稳定性的vsc-hvdc交流电压-频率协调控制方法
EP3070799B1 (en) * 2015-03-16 2018-11-21 General Electric Technology GmbH Start-up of hvdc networks
CN106329557B (zh) * 2015-07-07 2018-10-16 南京南瑞继保电气有限公司 多极柔性直流输电系统的控制装置、系统及方法
CN105762824B (zh) * 2016-03-10 2017-11-24 南京南瑞继保电气有限公司 一种混合直流输电系统控制方法及装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526780A (en) * 1963-01-30 1970-09-01 Asea Ab Power transmission plant for high voltage direct current
US4419591A (en) * 1980-09-04 1983-12-06 Tokyo Shibaura Denki Kabushiki Kaisha Multiterminal DC power transmission system
US20060282239A1 (en) * 2005-06-08 2006-12-14 Chang Gung University Method of setting-up steady state model of VSC-based multi-terminal HVDC transmission system
US8760888B2 (en) * 2006-06-30 2014-06-24 Abb Technology Ag HVDC system and method to control a voltage source converter in a HVDC system
US20160308359A1 (en) 2012-11-08 2016-10-20 Nr Electric Co., Ltd Coordination control method of multi-terminal VSC-HVDC transmission system
CN103346582A (zh) 2013-06-21 2013-10-09 南方电网科学研究院有限责任公司 柔性直流输电系统站级控制模式的无缝切换方法
CN103606945A (zh) 2013-11-19 2014-02-26 国家电网公司 一种多端柔性直流输电系统的控制系统及其控制方法
CN104505853A (zh) 2015-01-08 2015-04-08 南方电网科学研究院有限责任公司 多端柔性直流输电系统中多个定直流电压站的功率分配方法
CN105281356A (zh) 2015-11-10 2016-01-27 中国科学院电工研究所 一种多端柔性直流输电系统的协调控制方法
US20190140445A1 (en) * 2016-05-18 2019-05-09 Mitsubishi Electric Corporation Current/voltage control system
CN107093893A (zh) 2017-02-16 2017-08-25 中国电力科学研究院 一种直流配电网的功率‑电压协调控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WIPO, Chinese International Search Authority, International Search Report with English translation and Written Opinion dated Aug. 13, 2018 in International Patent Application No. PCT/CN2018/085842, 10 pages.

Also Published As

Publication number Publication date
EP3675307A4 (en) 2021-05-26
JP2020528260A (ja) 2020-09-17
JP6783970B2 (ja) 2020-11-11
EP3675307A1 (en) 2020-07-01
KR102132580B1 (ko) 2020-07-09
RU2736651C1 (ru) 2020-11-20
CN109428341A (zh) 2019-03-05
CN109428341B (zh) 2021-12-10
CA3074159C (en) 2020-12-29
CA3074159A1 (en) 2019-03-14
KR20200020972A (ko) 2020-02-26
MX2020002394A (es) 2020-07-22
US20200366096A1 (en) 2020-11-19
WO2019047546A1 (zh) 2019-03-14

Similar Documents

Publication Publication Date Title
JP4495001B2 (ja) 発電システム
RU2628333C1 (ru) Способ согласованного управления многотерминальной системой электропередачи постоянным током высокого напряжения с использованием преобразователей напряжения
JP3311214B2 (ja) 電力変換装置の制御装置
Barker et al. Further developments in autonomous converter control in a multi-terminal HVDC system
CN110544938A (zh) 一种含电池和超级电容的低压微电网并离网控制方法
Ismunandar Control of multi-terminal VSC-HVDC for offshore wind power integration
Issa et al. Smooth mode transfer in AC microgrids during unintentional islanding
KR101951117B1 (ko) 풍력 발전용 제어 시스템
CN115549191A (zh) 一种储能系统及孤岛检测方法
US11190020B2 (en) Direct current voltage coordination control method
Gao et al. Distributed multi‐agent control for combined AC/DC grids with wind power plant clusters
Kumar et al. An interactionless duo control strategy for bipolar voltage-source converter in renewables integrated multiterminal HVdc grids
JP7051156B2 (ja) 電力制御システム
JP2018007323A (ja) 電力変動制御装置及び方法
JP7218453B1 (ja) 無停電電源装置
Khillo et al. Performance Analysis of 6-Pulse HVDC-VSC using Deadbeat Controller in dq Reference Frame under AC Fault Conditions
CN105048480A (zh) 动态无功补偿装置
KR102668411B1 (ko) Dc 버스 전압의 자율복원 능력을 갖는 dcmg의 비중앙 드룹 제어 시스템
CN110854915B (zh) Pq模式虚拟同步发电机控制方法、装置及下垂控制器
US20240030716A1 (en) Systems and methods for overload control in renewable power systems
Shi et al. Design and Control of Modular Multilevel Converter Integrated With Energy Consumption Circuit Used in Offshore Wind Power VSC-HVDC System
CN115549133A (zh) 微电网及其控制方法
Li et al. Frequency regulation method of electrolytic hydrogen production load based on novel interfacing hybrid rectifier with self-adaptive control
Taneja et al. Influence of DC Voltage and Frequency Droop on Active Power Support Capability in Dual-Droop Controlled VSC-MTDC-based AC-DC Grid
Fan et al. Research on fast frequency response to AC grid of a battery‐free MVDC system incorporating a high proportion of distributed photovoltaic generation units with reserve capacity

Legal Events

Date Code Title Description
AS Assignment

Owner name: NR ENGINEERING CO., LTD, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, NANNAN;LU, YU;DONG, YUNLONG;AND OTHERS;REEL/FRAME:051968/0508

Effective date: 20200210

Owner name: NR ELECTRIC CO., LTD, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, NANNAN;LU, YU;DONG, YUNLONG;AND OTHERS;REEL/FRAME:051968/0508

Effective date: 20200210

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction