US11152564B2 - Substrate manufacturing method and processing system - Google Patents

Substrate manufacturing method and processing system Download PDF

Info

Publication number
US11152564B2
US11152564B2 US16/867,826 US202016867826A US11152564B2 US 11152564 B2 US11152564 B2 US 11152564B2 US 202016867826 A US202016867826 A US 202016867826A US 11152564 B2 US11152564 B2 US 11152564B2
Authority
US
United States
Prior art keywords
metal layer
region
film forming
substrate product
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/867,826
Other versions
US20200373480A1 (en
Inventor
Takuya Kubo
Song Yun Kang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Assigned to TOKYO ELECTRON LIMITED reassignment TOKYO ELECTRON LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANG, SONG YUN, KUBO, TAKUYA
Publication of US20200373480A1 publication Critical patent/US20200373480A1/en
Application granted granted Critical
Publication of US11152564B2 publication Critical patent/US11152564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • H01L43/12
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge

Definitions

  • Exemplary embodiments of the present disclosure relate to a substrate manufacturing method and a processing system.
  • Patent Literature 1 Japanese Unexamined Patent Publication No. 2011-504311 discloses a method for forming a magnetic tunnel junction structure having a conductive layer on a substrate. In this method, a sacrificial layer is deposited on the conductive layer before deposition of a patterned film layer.
  • a substrate manufacturing method includes preparing a support base in a first film forming device; and forming a first substrate product having the support base using the first film forming device.
  • the first film forming device is configured to form a film using plasma in a consistent vacuum state without exposure to an atmosphere.
  • the first substrate product is formed in a consistent vacuum state.
  • the first substrate product has the support base, a first lamination region, and a metal region.
  • the first lamination region is provided on the support base.
  • the metal region is provided on the first lamination region, and has a first metal layer and a second metal layer.
  • the first metal layer is provided on the first lamination region.
  • the second metal layer is provided on the first metal layer.
  • a material of the first metal layer has TiN or Ta.
  • a material of the second metal layer has TaN or Ru.
  • FIG. 1 is a diagram showing an example of a configuration of a substrate manufacturing method according to one exemplary embodiment.
  • FIG. 2 is a diagram showing an example of a processing system capable of executing the substrate manufacturing method shown in FIG. 1 .
  • FIG. 3 is a diagram showing exemplary changes of a substrate product obtained by executing the substrate manufacturing method shown in FIG. 1 .
  • FIG. 4 is a diagram showing an example of a lamination structure of the substrate product shown in FIG. 3 .
  • FIGS. 5A and 5B are diagrams for explaining effects of the substrate product manufactured by the substrate manufacturing method shown in FIG. 1 .
  • a semiconductor device having a magnetic tunnel junction may be provided with a TiN electrode or a Ta electrode.
  • the present disclosure provides a technology for reducing the influence of oxidation of TiN or Ta in the formation of a multilayer film including a TiN electrode or a Ta electrode.
  • a substrate manufacturing method includes preparing a support base in a first film forming device, and forming a first substrate product having the support base using the first film for forming device.
  • the first film forming device is configured to form a film using plasma in a consistent vacuum state without exposure to the atmosphere.
  • a first substrate product is formed in a consistent vacuum state.
  • the first substrate product has a support base, a first lamination region, and a metal region.
  • the first lamination region is provided on the support base.
  • the metal region is provided on the first lamination region and has a first metal layer and a second metal layer.
  • the first metal layer is provided on the first lamination region.
  • the second metal layer is provided on the first metal layer.
  • the material of the first metal layer includes TiN or Ta.
  • the material of the second metal layer includes TaN or Ru.
  • the substrate product may be removed from the first film forming device, and exposed to the atmosphere (particularly, oxygen).
  • the first lamination region and the metal region can be formed in the first film forming device in a consistent vacuum environment.
  • the first metal layer of TiN or Ta contained in the metal region is covered by the second metal layer of TaN or Ru contained in the metal region. Accordingly, the influence of oxygen on the first metal layer of TiN or Ta is reduced, and the formation of an oxide in the first metal layer can be suppressed.
  • the substrate manufacturing method further includes preparing the first substrate product in a second film forming device, and forming a second substrate product having the first substrate product using the second film forming device.
  • the second film forming device is configured to form a film using plasma.
  • the second substrate product has a first substrate product and a second lamination region.
  • the second lamination region is provided on the second metal layer of the first substrate product and has a silicon nitride layer.
  • the silicon nitride layer is provided on the second metal layer.
  • the influence of oxygen on the first metal layer of TiN or Ta can be can be avoided by a second metal layer of TaN or Ru even in a case where a film is further formed on the second metal layer.
  • the substrate manufacturing method further includes preparing the second substrate product in an etching device, and continuously etching the second lamination region and the second metal layer using the etching device.
  • the etching device is configured to perform etching using plasma. Since the second lamination region and the second metal layer can be continuously etched, etching can be relatively easily performed.
  • the first lamination region may have a magnetic tunnel junction region.
  • a processing system in one exemplary embodiment, includes a film forming device and a control device configured to control an operation of the film forming device.
  • the film forming device is configured to form a film using plasma in a consistent vacuum state without exposure to the atmosphere.
  • the control device controls the film forming device to form, in a consistent vacuum state after preparation of the support base in the film forming device, the first lamination region on the support base, form the first metal layer of TiN or Ta on the first lamination region, and form the second metal layer of TaN or Ru on the first metal layer.
  • the substrate product may be removed from the first film forming device, and exposed to the atmosphere (particularly, oxygen).
  • the first lamination region and the metal region can be formed in a consistent vacuum environment in the first film forming device.
  • the first metal layer of TiN or Ta contained in the metal region is covered by the second metal layer of TaN or Ru contained in the metal region. Accordingly, the influence of oxygen on the first metal layer of TiN or Ta is reduced, and the formation of an oxide in the first metal layer can be suppressed.
  • a method MT shown in FIG. 1 is one exemplary embodiment of the substrate manufacturing method using plasma.
  • the method MT can be executed by a processing system 1 shown in FIG. 2 .
  • the processing system 1 can be used for executing the method MT shown in FIG. 1 .
  • the processing system 1 is one exemplary embodiment of a processing system which processes the substrate product using plasma.
  • the processing system 1 includes a film forming system 11 , an etching device 12 , and a control device Cnt.
  • the film forming system 11 includes a first film forming device 11 a and a second film forming device 11 b .
  • Each of the first film forming device 11 a and the second film forming device 11 b has a configuration for forming a film using plasma.
  • the processing system 1 is configured to move a substrate product between the film forming system 11 and the etching device 12 .
  • the film forming system 11 is configured to move a substrate product between the first film forming device 11 a and the second film forming device 11 b.
  • the first film forming device 11 a is configured to form a film using plasma in a consistent vacuum state without exposure to the atmosphere (oxygen). More specifically, the first film forming device 11 a is configured to include a plurality of processing modules, a load lock module, and the like, and to form a plurality of layers (for example, a first lamination region RA and a metal region RB shown in FIG. 4 ) of different materials.
  • the second film forming device 11 b is configured to form a film using plasma. More specifically, the second film forming device 11 b is configured to include a plurality of processing modules, a load lock module, and the like, and to form a plurality of layers (for example, a second lamination region RC shown in FIG. 4 ) of different materials.
  • the etching device 12 is configured to perform etching using plasma.
  • the control device Cnt is configured to perform overall control of the processing system 1 . More specifically, the control device Cnt is configured to control operations of the first film forming device 11 a , the second film forming device 11 b , and the etching device 12 .
  • the control device Cnt includes a CPU, a ROM, a RAM, and the like, and controls the processing system 1 by causing the CPU to execute a computer program stored in the memory such as the ROM.
  • control device Cnt can execute the method MT shown in the flowchart of FIG. 1 by controlling the processing system 1 .
  • the method MT has steps ST 1 to ST 6 as shown in FIG. 1 .
  • the control device Cnt prepares a support base SW in the first film forming device 11 a (step ST 1 ). After the support base SW is prepared in the first film forming device 11 a (after the step ST 1 ), the control device Cnt controls the first film forming device 11 a to execute the step ST 2 .
  • the step ST 2 is a step of forming a substrate product W 1 having the support base SW using the first film forming device 11 a in a consistent vacuum state without exposure to the atmosphere (oxygen).
  • the substrate product W 1 has the support base SW, a first lamination region RA, and a metal region RB.
  • the first lamination region RA is provided on the support base SW.
  • the first lamination region RA is in contact with the support base SW.
  • the metal region RB is provided on the first lamination region RA, and has a first metal layer SB 1 and a second metal layer SB 2 .
  • the first metal layer SB 1 is provided on the first lamination region RA.
  • the first metal layer SB 1 is in contact with the first lamination region RA.
  • the second metal layer SB 2 is provided on the first metal layer SB 1 .
  • the second metal layer SB 2 is in contact with the first metal layer SB 1 .
  • the metal region RB can be used as an electrode.
  • the material of the first metal layer SB 1 may have TiN or Ta.
  • the material of the second metal layer SB 2 may have TaN or Ru.
  • the first lamination region RA and the metal region RB can be formed by a magnetron sputtering method.
  • the control device Cnt controls the first film fainting device 11 a to form the first lamination region RA on the support base SW, form the first metal layer SB 1 on the first lamination region RA, and form the second metal layer SB 2 on the first metal layer SB 1 .
  • the substrate product W 1 may be removed from the first film forming device 11 a , and exposed to the atmosphere (particularly, oxygen).
  • oxygen may enter the first metal layer SB 1 , a part of the first metal layer SB 1 may be oxidized, and an oxide may be formed in the first metal layer SB 1 . Due to the oxide formed in the first metal layer SB 1 , the first metal layer SB 1 may be relatively significantly changed with time. Furthermore, in the etching of the first metal layer SB 1 (for example, in the step ST 6 to be described later), a residue due to the oxide formed in the first metal layer SB 1 may be formed on the first lamination region RA.
  • the first lamination region RA and the metal region RB can be formed in a consistent vacuum environment without exposure to the atmosphere (oxygen) in the first film forming device 11 a . Furthermore, according to the step ST 2 of the method MT, the first metal layer SB 1 of TiN or Ta contained in the metal region RB is covered by the second metal layer SB 2 of TaN or Ru contained in the metal region RB. Accordingly, by providing the second metal layer SB 2 of TaN or Ru on the first metal layer SB 1 of TiN or Ta, the influence of oxygen on the first metal layer SB 1 of TiN or Ta is reduced, and the formation of an oxide can be suppressed in the first metal layer SB 1 .
  • a change of the first metal layer SB 1 with time is reduced, and a residue which may be formed on the first lamination region RA after etching can be reduced in the etching of the first metal layer SB 1 (for example, in the step ST 6 to be described later).
  • An atomic ratio of oxygen in the first metal layer SB 1 of TiN was measured by Rutherford Backscattering Spectrometry (RBS) analysis. According to this measurement, the atomic ratio was 3.5 [Atomic %] in a case where the second metal layer SB 2 of TaN or Ru was not provided in the metal region RB. Regarding this, as shown in FIGS. 3 and 4 , the second metal layer SB 2 of TaN may be provided on the first metal layer SB 1 of TiN in the metal region RB, or the second metal layer SB 2 of Ru may be provided in the metal region RB. In any of the two cases, the atomic ratio was 0.0 [Atomic %].
  • results obtained by measuring the atomic ratio of oxygen by RBS analysis are shown in graphs GF 1 and GF 2 .
  • the graph GF 1 shows results of the measurement of the atomic ratio of oxygen in the first lamination region RA and the metal region RB in a case where the second metal layer SB 2 of TaN or Ru is not provided on the first metal layer SB 1 of TiN in the metal region RB.
  • the graph GF 2 shows results of the measurement of the atomic ratio of oxygen in the first lamination region RA and the metal region RB in a case where the second metal layer SB 2 of TaN or Ru is provided on the first metal layer SB 1 of TiN in the metal region RB (in the case shown in FIGS. 3 and 4 ).
  • the horizontal axis shown in FIGS. 5A and 5B represents a depth [Depth/10 15 atoms ⁇ cm ⁇ 2 ] from the surface of the first metal layer SB 1 of TiN in both the graphs GF 1 and GF 2 .
  • the vertical axis shown in FIGS. 5A and 5B represents an atomic ratio [Atomic ratio] (1/100 times the above [Atomic %]) in both the graphs GF 1 and GF 2 .
  • the atomic ratio of oxygen in the first metal layer SB 1 of TiN is shown as a region R 1 in the graph GF 1 and as a region R 2 in the graph GF 2 .
  • the atomic ratio of oxygen in the first metal layer SB 1 of TiN is lower in the graph GF 2 than in the graph GF 1 .
  • the second metal layer SB 2 of TaN or Ru is provided in the metal region RB as shown in FIGS. 3 and 4 , the atomic ratio of oxygen in the first metal layer SB 1 of TiN is lower than in a case where the second metal layer SB 2 of TaN or Ru is not provided in the metal region RB.
  • the control device Cnt removes the substrate product W 1 from the first film forming device 11 a and moves the substrate product W 1 to the second film forming device 11 b .
  • the control device Cnt prepares the substrate product W 1 in the second film forming device 11 b .
  • the step ST 3 is a step of preparing the substrate product W 1 in the second film forming device 11 b.
  • the step ST 4 is a step of forming a substrate product W 2 having the substrate product W 1 using the second film forming device 11 b .
  • the substrate product W 2 has the substrate product W 1 and a second lamination region RC as shown in FIG. 3 .
  • the second lamination region RC is provided on the second metal layer SB 2 of the substrate product W 1 .
  • the second lamination region RC has a silicon nitride layer SC 1 .
  • the silicon nitride layer SC 1 is provided on the second metal layer SB 2 .
  • the silicon nitride layer SC 1 is in contact with the second metal layer SB 2 .
  • a photoresist PR defining an etching pattern is formed on the second lamination region RC.
  • the photoresist PR is used for etching to be executed in the step ST 6 .
  • the first metal layer SB 1 of TiN or Ta and the second metal layer SB 2 of TaN or Ru can be framed using the first film forming device 11 a .
  • the influence of oxygen on the first metal layer SB 1 of TiN or Ta can be avoided by the second metal layer SB 2 even in a case where a film is further formed on the second metal layer SB 2 .
  • the control device Cnt removes the substrate product W 2 from the second film forming device 11 b and moves the substrate product W 2 to the etching device 12 .
  • the control device Cnt prepares the substrate product W 2 in the etching device 12 in the step ST 5 .
  • the step ST 5 is a step of preparing the substrate product W 2 in the etching device 12 .
  • the step ST 6 is a step of continuously etching the second lamination region RC and the second metal layer SB 2 using the etching device 12 .
  • process conditions for continuously etching the second lamination region RC and the second metal layer SB 2 in the step ST 6 may be as follows. That is, the process conditions may be conditions for generating plasma from a first etching gas by applying a power for ionization of 200 to 1,000 [W] and a power for bias of 30 to 300 [W] under a pressure of 10 to 50 [mT].
  • the first etching gas may be, for example, a mixed gas containing a CF 4 gas (50 to 150 [sccm]), a CHF 3 gas (50 to 150 [sccm]), and an O 2 gas (5 to 30 [sccm]).
  • the first metal layer SB 1 of TiN or Ta is etched subsequent to the etching of the second lamination region RC and the second metal layer SB 2 .
  • process conditions for etching the first metal layer SB 1 of TiN or Ta in the step ST 6 may be as follows. That is, the process conditions may be conditions for generating plasma from a second etching gas by applying a power for ionization of 200 to 1,000 [W] and a power for bias of 30 to 300 [W] under a pressure of 10 to 50 [mT].
  • the second etching gas may be, for example, a mixed gas containing a BCl 3 gas (30 to 150 [sccm]), a Cl 2 gas (30 to 150 [sccm]), a C 4 F 8 gas (3 to 20 [sccm]), and an Ar gas (50 to 300 [sccm]).
  • the second lamination region RC and the second metal layer SB 2 can be continuously etched. Accordingly, the etching of the second lamination region RC and the second metal layer SB 2 can be relatively easily performed.
  • the configurations of the substrate products W 1 to W 3 shown in FIG. 3 can be used for, for example, the manufacturing of magnetoresistive random access memory (MRAM).
  • the first lamination region RA has, for example, a magnetic tunnel junction (MTJ: magnetoresistive tunnel junction) region.
  • MTJ magnetic tunnel junction
  • the control device Cnt controls the first film forming device 11 a to form the first lamination region RA having the MTJ region on the support base SW.
  • the metal region RB can be used as an electrode of the MRAM.
  • FIG. 4 illustrates a configuration of the substrate product W 2 in a case where the first lamination region RA has the MTJ region.
  • the first lamination region RA has layers LY 1 to LY 15 .
  • the metal region RB has layers LY 16 and LY 17 .
  • the second lamination region RC has layers LY 18 to LY 21 .
  • the layers LY 1 to LY 15 are laminated in order on the support base SW.
  • the layers LY 16 and LY 17 are laminated in order on the first lamination region RA (on the layer LY 15 ).
  • the layers LY 18 to LY 21 are laminated in order on the metal region RB (on the layer LY 17 ).
  • the layers LY 1 to LY 15 correspond to the MTJ region.
  • the layer LY 16 is an example of the first metal layer SB 1 shown in FIG. 3 .
  • the layer LY 17 is an example of the second metal layer SB 2 shown in FIG. 3 .
  • the layer LY 18 is an example of the silicon nitride layer SC 1 shown in FIG. 3 .
  • the support base SW may be a Si (silicon) substrate having a SiO 2 (silicon dioxide) layer on a surface thereof.
  • the layer LY 1 has Ta (tantalum).
  • the layer LY 2 has Ru (ruthenium).
  • the layer LY 3 has Ta.
  • the layer LY 4 is a base layer having Pt (platinum).
  • the layer LY 5 is a magnetic layer having Pt/Co (Co: cobalt).
  • the layer LY 6 has Co.
  • the layer LY 7 has Ru.
  • the layer LY 8 is a magnetic layer having Pt/Co.
  • the layer LY 9 has Co.
  • the layer LY 10 has Ta.
  • the layer LY 11 has CoFeB (Fe: iron, B: boron).
  • the layer LY 12 has MgO (magnesium oxide).
  • the layer LY 13 has CoFeB.
  • the layer LY 14 has Ta.
  • the layer LY 15 has Ru.
  • the layer LY 16 (first metal layer SB 1 ) has TiN (titanium nitride).
  • the layer LY 17 (second metal layer SB 2 ) has TaN (tantalum nitride).
  • the layer LY 18 (silicon nitride layer SC 1 ) has SiN (silicon nitride).
  • the layer LY 19 has SiO 2 .
  • the layer LY 20 has SiC (silicon carbide).
  • the layer LY 21 is a SOG (spin on glass) layer.

Abstract

The first film forming device is configured to form a film using plasma in a consistent vacuum state. In the forming of the first substrate product, the first substrate product is formed in a consistent vacuum state. The first substrate product has the support base, a first lamination region, and a metal region. The first lamination region is provided on the support base. The metal region is provided on the first lamination region, and has a first metal layer and a second metal layer. The first metal layer is provided on the first lamination region, and the second metal layer is provided on the first metal layer. A material of the first metal layer has TiN or Ta, and a material of the second metal layer has TaN or Ru.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is based on and claims the benefit of priority from Japanese Patent Application No. 2019-094377 filed on May 20, 2019 with the Japan Patent Office, the entire contents of which are incorporated herein by reference.
TECHNICAL FIELD
Exemplary embodiments of the present disclosure relate to a substrate manufacturing method and a processing system.
BACKGROUND
Various methods for forming a semiconductor device having a magnetic tunnel junction (MTJ: Magnetoresistive Tunnel Junction) have been developed. Patent Literature 1 (Japanese Unexamined Patent Publication No. 2011-504301) discloses a method for forming a magnetic tunnel junction structure having a conductive layer on a substrate. In this method, a sacrificial layer is deposited on the conductive layer before deposition of a patterned film layer.
SUMMARY
In one exemplary embodiment, a substrate manufacturing method is provided. The substrate manufacturing method includes preparing a support base in a first film forming device; and forming a first substrate product having the support base using the first film forming device. The first film forming device is configured to form a film using plasma in a consistent vacuum state without exposure to an atmosphere. In the forming of the first substrate product, the first substrate product is formed in a consistent vacuum state. The first substrate product has the support base, a first lamination region, and a metal region. The first lamination region is provided on the support base. The metal region is provided on the first lamination region, and has a first metal layer and a second metal layer. The first metal layer is provided on the first lamination region. The second metal layer is provided on the first metal layer. A material of the first metal layer has TiN or Ta. A material of the second metal layer has TaN or Ru.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, exemplary embodiments, and features described above, further aspects, exemplary embodiments, and features will become apparent by reference to the drawings and the following detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram showing an example of a configuration of a substrate manufacturing method according to one exemplary embodiment.
FIG. 2 is a diagram showing an example of a processing system capable of executing the substrate manufacturing method shown in FIG. 1.
FIG. 3 is a diagram showing exemplary changes of a substrate product obtained by executing the substrate manufacturing method shown in FIG. 1.
FIG. 4 is a diagram showing an example of a lamination structure of the substrate product shown in FIG. 3.
FIGS. 5A and 5B are diagrams for explaining effects of the substrate product manufactured by the substrate manufacturing method shown in FIG. 1.
DETAILED DESCRIPTION
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. The exemplary embodiments described in the detailed description, drawing, and claims are not meant to be limiting. Other exemplary embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
A semiconductor device having a magnetic tunnel junction may be provided with a TiN electrode or a Ta electrode. The present disclosure provides a technology for reducing the influence of oxidation of TiN or Ta in the formation of a multilayer film including a TiN electrode or a Ta electrode.
Hereinafter, various exemplary embodiments will be described. In one exemplary embodiment, a substrate manufacturing method is provided. The substrate manufacturing method includes preparing a support base in a first film forming device, and forming a first substrate product having the support base using the first film for forming device. The first film forming device is configured to form a film using plasma in a consistent vacuum state without exposure to the atmosphere. In the forming of a first substrate product, a first substrate product is formed in a consistent vacuum state. The first substrate product has a support base, a first lamination region, and a metal region. The first lamination region is provided on the support base. The metal region is provided on the first lamination region and has a first metal layer and a second metal layer. The first metal layer is provided on the first lamination region. The second metal layer is provided on the first metal layer. The material of the first metal layer includes TiN or Ta. The material of the second metal layer includes TaN or Ru.
After the first lamination region and the metal region are formed, the substrate product may be removed from the first film forming device, and exposed to the atmosphere (particularly, oxygen). However, according to the substrate manufacturing method according to one exemplary embodiment, the first lamination region and the metal region can be formed in the first film forming device in a consistent vacuum environment. The first metal layer of TiN or Ta contained in the metal region is covered by the second metal layer of TaN or Ru contained in the metal region. Accordingly, the influence of oxygen on the first metal layer of TiN or Ta is reduced, and the formation of an oxide in the first metal layer can be suppressed.
The substrate manufacturing method according to one exemplary embodiment further includes preparing the first substrate product in a second film forming device, and forming a second substrate product having the first substrate product using the second film forming device. The second film forming device is configured to form a film using plasma. The second substrate product has a first substrate product and a second lamination region. The second lamination region is provided on the second metal layer of the first substrate product and has a silicon nitride layer. The silicon nitride layer is provided on the second metal layer. After the first metal layer of TiN or Ta and the second metal layer of TaN or Ru are formed, the influence of oxygen on the first metal layer of TiN or Ta can be can be avoided by a second metal layer of TaN or Ru even in a case where a film is further formed on the second metal layer.
The substrate manufacturing method according to one exemplary embodiment further includes preparing the second substrate product in an etching device, and continuously etching the second lamination region and the second metal layer using the etching device. The etching device is configured to perform etching using plasma. Since the second lamination region and the second metal layer can be continuously etched, etching can be relatively easily performed.
In the substrate manufacturing method according to one exemplary embodiment, the first lamination region may have a magnetic tunnel junction region.
In one exemplary embodiment, a processing system is provided. The processing system includes a film forming device and a control device configured to control an operation of the film forming device. The film forming device is configured to form a film using plasma in a consistent vacuum state without exposure to the atmosphere. The control device controls the film forming device to form, in a consistent vacuum state after preparation of the support base in the film forming device, the first lamination region on the support base, form the first metal layer of TiN or Ta on the first lamination region, and form the second metal layer of TaN or Ru on the first metal layer.
After the first lamination region and the metal region are formed, the substrate product may be removed from the first film forming device, and exposed to the atmosphere (particularly, oxygen). However, according to the processing system according to one exemplary embodiment, the first lamination region and the metal region can be formed in a consistent vacuum environment in the first film forming device. The first metal layer of TiN or Ta contained in the metal region is covered by the second metal layer of TaN or Ru contained in the metal region. Accordingly, the influence of oxygen on the first metal layer of TiN or Ta is reduced, and the formation of an oxide in the first metal layer can be suppressed.
According to the present disclosure, it is possible to provide a technology for reducing the influence of oxidation of TiN or Ta in the formation of a multilayer film including a TiN electrode or a Ta electrode.
Hereinafter, various exemplary embodiments will be described in detail with reference to the drawings. In the drawings, the same or corresponding portions are denoted by the same references. A method MT shown in FIG. 1 is one exemplary embodiment of the substrate manufacturing method using plasma. The method MT can be executed by a processing system 1 shown in FIG. 2.
The processing system 1 can be used for executing the method MT shown in FIG. 1. The processing system 1 is one exemplary embodiment of a processing system which processes the substrate product using plasma. The processing system 1 includes a film forming system 11, an etching device 12, and a control device Cnt.
The film forming system 11 includes a first film forming device 11 a and a second film forming device 11 b. Each of the first film forming device 11 a and the second film forming device 11 b has a configuration for forming a film using plasma.
The processing system 1 is configured to move a substrate product between the film forming system 11 and the etching device 12. The film forming system 11 is configured to move a substrate product between the first film forming device 11 a and the second film forming device 11 b.
The first film forming device 11 a is configured to form a film using plasma in a consistent vacuum state without exposure to the atmosphere (oxygen). More specifically, the first film forming device 11 a is configured to include a plurality of processing modules, a load lock module, and the like, and to form a plurality of layers (for example, a first lamination region RA and a metal region RB shown in FIG. 4) of different materials.
The second film forming device 11 b is configured to form a film using plasma. More specifically, the second film forming device 11 b is configured to include a plurality of processing modules, a load lock module, and the like, and to form a plurality of layers (for example, a second lamination region RC shown in FIG. 4) of different materials.
The etching device 12 is configured to perform etching using plasma.
The control device Cnt is configured to perform overall control of the processing system 1. More specifically, the control device Cnt is configured to control operations of the first film forming device 11 a, the second film forming device 11 b, and the etching device 12. The control device Cnt includes a CPU, a ROM, a RAM, and the like, and controls the processing system 1 by causing the CPU to execute a computer program stored in the memory such as the ROM.
For example, the control device Cnt can execute the method MT shown in the flowchart of FIG. 1 by controlling the processing system 1. The method MT has steps ST1 to ST6 as shown in FIG. 1.
First, the control device Cnt prepares a support base SW in the first film forming device 11 a (step ST1). After the support base SW is prepared in the first film forming device 11 a (after the step ST1), the control device Cnt controls the first film forming device 11 a to execute the step ST2. The step ST2 is a step of forming a substrate product W1 having the support base SW using the first film forming device 11 a in a consistent vacuum state without exposure to the atmosphere (oxygen).
As shown in FIG. 3, the substrate product W1 has the support base SW, a first lamination region RA, and a metal region RB. The first lamination region RA is provided on the support base SW. The first lamination region RA is in contact with the support base SW.
The metal region RB is provided on the first lamination region RA, and has a first metal layer SB1 and a second metal layer SB2. The first metal layer SB1 is provided on the first lamination region RA. The first metal layer SB1 is in contact with the first lamination region RA. The second metal layer SB2 is provided on the first metal layer SB1. The second metal layer SB2 is in contact with the first metal layer SB1. The metal region RB can be used as an electrode.
The material of the first metal layer SB1 may have TiN or Ta. The material of the second metal layer SB2 may have TaN or Ru.
In the step ST2, the first lamination region RA and the metal region RB can be formed by a magnetron sputtering method.
In the step ST2, the control device Cnt controls the first film fainting device 11 a to form the first lamination region RA on the support base SW, form the first metal layer SB1 on the first lamination region RA, and form the second metal layer SB2 on the first metal layer SB1.
After the first lamination region RA and the metal region RB are formed, the substrate product W1 may be removed from the first film forming device 11 a, and exposed to the atmosphere (particularly, oxygen). In a case where the first metal layer SB1 of TiN or Ta is exposed to oxygen, oxygen may enter the first metal layer SB1, a part of the first metal layer SB1 may be oxidized, and an oxide may be formed in the first metal layer SB1. Due to the oxide formed in the first metal layer SB1, the first metal layer SB1 may be relatively significantly changed with time. Furthermore, in the etching of the first metal layer SB1 (for example, in the step ST6 to be described later), a residue due to the oxide formed in the first metal layer SB1 may be formed on the first lamination region RA.
According to the step ST2 of the method MT, the first lamination region RA and the metal region RB can be formed in a consistent vacuum environment without exposure to the atmosphere (oxygen) in the first film forming device 11 a. Furthermore, according to the step ST2 of the method MT, the first metal layer SB1 of TiN or Ta contained in the metal region RB is covered by the second metal layer SB2 of TaN or Ru contained in the metal region RB. Accordingly, by providing the second metal layer SB2 of TaN or Ru on the first metal layer SB1 of TiN or Ta, the influence of oxygen on the first metal layer SB1 of TiN or Ta is reduced, and the formation of an oxide can be suppressed in the first metal layer SB1. For example, a change of the first metal layer SB1 with time is reduced, and a residue which may be formed on the first lamination region RA after etching can be reduced in the etching of the first metal layer SB1 (for example, in the step ST6 to be described later).
An atomic ratio of oxygen in the first metal layer SB1 of TiN was measured by Rutherford Backscattering Spectrometry (RBS) analysis. According to this measurement, the atomic ratio was 3.5 [Atomic %] in a case where the second metal layer SB2 of TaN or Ru was not provided in the metal region RB. Regarding this, as shown in FIGS. 3 and 4, the second metal layer SB2 of TaN may be provided on the first metal layer SB1 of TiN in the metal region RB, or the second metal layer SB2 of Ru may be provided in the metal region RB. In any of the two cases, the atomic ratio was 0.0 [Atomic %].
In FIGS. 5A and 5B, results obtained by measuring the atomic ratio of oxygen by RBS analysis are shown in graphs GF1 and GF2. The graph GF1 shows results of the measurement of the atomic ratio of oxygen in the first lamination region RA and the metal region RB in a case where the second metal layer SB2 of TaN or Ru is not provided on the first metal layer SB1 of TiN in the metal region RB. The graph GF2 shows results of the measurement of the atomic ratio of oxygen in the first lamination region RA and the metal region RB in a case where the second metal layer SB2 of TaN or Ru is provided on the first metal layer SB1 of TiN in the metal region RB (in the case shown in FIGS. 3 and 4).
The horizontal axis shown in FIGS. 5A and 5B represents a depth [Depth/1015 atoms·cm−2] from the surface of the first metal layer SB1 of TiN in both the graphs GF1 and GF2. The vertical axis shown in FIGS. 5A and 5B represents an atomic ratio [Atomic ratio] (1/100 times the above [Atomic %]) in both the graphs GF1 and GF2.
In FIGS. 5A and 5B, the atomic ratio of oxygen in the first metal layer SB1 of TiN is shown as a region R1 in the graph GF1 and as a region R2 in the graph GF2. In a case where the atomic ratio of oxygen shown as the region R1 is compared to the atomic ratio of oxygen shown as the region R2, the atomic ratio of oxygen in the first metal layer SB1 of TiN is lower in the graph GF2 than in the graph GF1. In a case where the second metal layer SB2 of TaN or Ru is provided in the metal region RB as shown in FIGS. 3 and 4, the atomic ratio of oxygen in the first metal layer SB1 of TiN is lower than in a case where the second metal layer SB2 of TaN or Ru is not provided in the metal region RB.
Returning to FIG. 1, the description of the method MT will be continued. In the step ST3 subsequent to the step ST2, the control device Cnt removes the substrate product W1 from the first film forming device 11 a and moves the substrate product W1 to the second film forming device 11 b. In the step ST3, the control device Cnt prepares the substrate product W1 in the second film forming device 11 b. The step ST3 is a step of preparing the substrate product W1 in the second film forming device 11 b.
Subsequent to the step ST3, the control device Cnt controls the second film forming device 11 b to execute the step ST4. The step ST4 is a step of forming a substrate product W2 having the substrate product W1 using the second film forming device 11 b. The substrate product W2 has the substrate product W1 and a second lamination region RC as shown in FIG. 3. The second lamination region RC is provided on the second metal layer SB2 of the substrate product W1. The second lamination region RC has a silicon nitride layer SC1. The silicon nitride layer SC1 is provided on the second metal layer SB2. The silicon nitride layer SC1 is in contact with the second metal layer SB2.
In the step ST4, a photoresist PR defining an etching pattern is formed on the second lamination region RC. The photoresist PR is used for etching to be executed in the step ST6.
The first metal layer SB1 of TiN or Ta and the second metal layer SB2 of TaN or Ru can be framed using the first film forming device 11 a. In this case, after the formation, the influence of oxygen on the first metal layer SB1 of TiN or Ta can be avoided by the second metal layer SB2 even in a case where a film is further formed on the second metal layer SB2.
In the step ST5 subsequent to the step ST4, the control device Cnt removes the substrate product W2 from the second film forming device 11 b and moves the substrate product W2 to the etching device 12. The control device Cnt prepares the substrate product W2 in the etching device 12 in the step ST5. The step ST5 is a step of preparing the substrate product W2 in the etching device 12.
Subsequent to the step ST5, the control device Cnt controls the etching device 12 to execute the step ST6. The step ST6 is a step of continuously etching the second lamination region RC and the second metal layer SB2 using the etching device 12.
For example, process conditions for continuously etching the second lamination region RC and the second metal layer SB2 in the step ST6 may be as follows. That is, the process conditions may be conditions for generating plasma from a first etching gas by applying a power for ionization of 200 to 1,000 [W] and a power for bias of 30 to 300 [W] under a pressure of 10 to 50 [mT]. The first etching gas may be, for example, a mixed gas containing a CF4 gas (50 to 150 [sccm]), a CHF3 gas (50 to 150 [sccm]), and an O2 gas (5 to 30 [sccm]).
In the step ST6, the first metal layer SB1 of TiN or Ta is etched subsequent to the etching of the second lamination region RC and the second metal layer SB2. For example, process conditions for etching the first metal layer SB1 of TiN or Ta in the step ST6 may be as follows. That is, the process conditions may be conditions for generating plasma from a second etching gas by applying a power for ionization of 200 to 1,000 [W] and a power for bias of 30 to 300 [W] under a pressure of 10 to 50 [mT]. The second etching gas may be, for example, a mixed gas containing a BCl3 gas (30 to 150 [sccm]), a Cl2 gas (30 to 150 [sccm]), a C4F8 gas (3 to 20 [sccm]), and an Ar gas (50 to 300 [sccm]).
In the step ST6, the second lamination region RC and the second metal layer SB2 can be continuously etched. Accordingly, the etching of the second lamination region RC and the second metal layer SB2 can be relatively easily performed.
In one exemplary embodiment, the configurations of the substrate products W1 to W3 shown in FIG. 3 can be used for, for example, the manufacturing of magnetoresistive random access memory (MRAM). The first lamination region RA has, for example, a magnetic tunnel junction (MTJ: magnetoresistive tunnel junction) region. In this case, the control device Cnt controls the first film forming device 11 a to form the first lamination region RA having the MTJ region on the support base SW. The metal region RB can be used as an electrode of the MRAM.
FIG. 4 illustrates a configuration of the substrate product W2 in a case where the first lamination region RA has the MTJ region. The first lamination region RA has layers LY1 to LY15. The metal region RB has layers LY16 and LY17. The second lamination region RC has layers LY18 to LY21.
In the first lamination region RA, the layers LY1 to LY15 are laminated in order on the support base SW. In the metal region RB, the layers LY16 and LY17 are laminated in order on the first lamination region RA (on the layer LY15). In the second lamination region RC, the layers LY18 to LY21 are laminated in order on the metal region RB (on the layer LY17).
The layers LY1 to LY15 correspond to the MTJ region. The layer LY16 is an example of the first metal layer SB1 shown in FIG. 3. The layer LY17 is an example of the second metal layer SB2 shown in FIG. 3. The layer LY18 is an example of the silicon nitride layer SC1 shown in FIG. 3.
The support base SW may be a Si (silicon) substrate having a SiO2 (silicon dioxide) layer on a surface thereof. The layer LY1 has Ta (tantalum). The layer LY2 has Ru (ruthenium). The layer LY3 has Ta. The layer LY4 is a base layer having Pt (platinum). The layer LY5 is a magnetic layer having Pt/Co (Co: cobalt). The layer LY6 has Co. The layer LY7 has Ru. The layer LY8 is a magnetic layer having Pt/Co. The layer LY9 has Co. The layer LY10 has Ta. The layer LY11 has CoFeB (Fe: iron, B: boron). The layer LY12 has MgO (magnesium oxide). The layer LY13 has CoFeB. The layer LY14 has Ta. The layer LY15 has Ru.
The layer LY16 (first metal layer SB1) has TiN (titanium nitride). The layer LY17 (second metal layer SB2) has TaN (tantalum nitride).
The layer LY18 (silicon nitride layer SC1) has SiN (silicon nitride). The layer LY19 has SiO2. The layer LY20 has SiC (silicon carbide). The layer LY21 is a SOG (spin on glass) layer.
Although various exemplary embodiments have been described above, various modified aspect may be configured without being limited to the above-described exemplary embodiments.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosures. Indeed, the embodiments described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the disclosures. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosures.

Claims (4)

What is claimed is:
1. A substrate manufacturing method using plasma, comprising:
preparing a support base in a first film forming device; and
forming a first substrate product having the support base using the first film forming device,
wherein the first film forming device is configured to form a film using plasma in a consistent vacuum state without exposure to an atmosphere,
in the forming of the first substrate product, the first substrate product is formed in a consistent vacuum state,
the first substrate product has the support base, a first lamination region, and a metal region,
the first lamination region is provided on the support base,
the metal region is provided on the first lamination region, and has a first metal layer and a second metal layer,
the first metal layer is provided on the first lamination region,
the second metal layer is provided on the first metal layer,
a material of the first metal layer has TiN or Ta, and
a material of the second metal layer has TaN or Ru.
2. The substrate manufacturing method according to claim 1, further comprising:
preparing the first substrate product in a second film forming device; and
forming a second substrate product having the first substrate product using the second film forming device,
wherein the second film forming device is configured to form a film using plasma,
the second substrate product has the first substrate product and a second lamination region,
the second lamination region is provided on the second metal layer of the first substrate product, and has a silicon nitride layer, and
the silicon nitride layer is provided on the second metal layer.
3. The substrate manufacturing method according to claim 2, further comprising:
preparing the second substrate product in an etching device; and
continuously etching the second lamination region and the second metal layer using the etching device,
wherein the etching device is configured to perform etching using plasma.
4. The substrate manufacturing method according to claim 1,
wherein the first lamination region has a magnetic tunnel junction region.
US16/867,826 2019-05-20 2020-05-06 Substrate manufacturing method and processing system Active US11152564B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019-094377 2019-05-20
JPJP2019-094377 2019-05-20
JP2019094377A JP2020191320A (en) 2019-05-20 2019-05-20 Substrate manufacturing method and processing system

Publications (2)

Publication Number Publication Date
US20200373480A1 US20200373480A1 (en) 2020-11-26
US11152564B2 true US11152564B2 (en) 2021-10-19

Family

ID=73453867

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/867,826 Active US11152564B2 (en) 2019-05-20 2020-05-06 Substrate manufacturing method and processing system

Country Status (3)

Country Link
US (1) US11152564B2 (en)
JP (1) JP2020191320A (en)
KR (1) KR20200133664A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009067594A1 (en) 2007-11-20 2009-05-28 Qualcomm Incorporated Method of forming a magnetic tunnel junction structure
US20160308112A1 (en) * 2015-04-20 2016-10-20 Lam Research Corporation Dry plasma etch method to pattern mram stack

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009154009A1 (en) * 2008-06-20 2011-11-24 キヤノンアネルバ株式会社 Magnetoresistive element manufacturing method, sputter film forming chamber, magnetoresistive element manufacturing apparatus having sputter film forming chamber, program, and storage medium
JP6943098B2 (en) * 2017-09-11 2021-09-29 富士通株式会社 How to adjust the resistance value of semiconductor memory devices and memory cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009067594A1 (en) 2007-11-20 2009-05-28 Qualcomm Incorporated Method of forming a magnetic tunnel junction structure
JP2011504301A (en) 2007-11-20 2011-02-03 クゥアルコム・インコーポレイテッド Method for forming a magnetic tunnel junction structure
US20160308112A1 (en) * 2015-04-20 2016-10-20 Lam Research Corporation Dry plasma etch method to pattern mram stack

Also Published As

Publication number Publication date
KR20200133664A (en) 2020-11-30
US20200373480A1 (en) 2020-11-26
JP2020191320A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
US7955870B2 (en) Dry etch stop process for eliminating electrical shorting in MRAM device structures
US7645618B2 (en) Dry etch stop process for eliminating electrical shorting in MRAM device structures
US9634224B2 (en) Systems and methods for fabrication of superconducting circuits
KR102363052B1 (en) Method for processing object to be processed
US20150280114A1 (en) Method to etch non-volatile metal materials
KR102552553B1 (en) Methods for Forming Structures for MRAM Applications
KR102470367B1 (en) Method of manufacturing a magnetoresistive random access device
US10535531B2 (en) Method of cyclic plasma etching of organic film using carbon-based chemistry
US8895323B2 (en) Method of forming a magnetoresistive random-access memory device
TW201503439A (en) Magnetoresistive random access memory (MRAM) device and method for fabricating the same
US9938616B2 (en) Physical vapor deposition of low-stress nitrogen-doped tungsten films
US10541146B2 (en) Method of cyclic plasma etching of organic film using sulfur-based chemistry
TW201503257A (en) Plasma etching method
JP2022522419A (en) Ion beam etching by side wall cleaning
CN110546777A (en) Post-processing of a device for reducing shunting for physical etch processes
JP6018220B2 (en) Method for manufacturing magnetoresistive element
TWI785110B (en) Selective oxide etching method for self-aligned multiple patterning
CN104170068B (en) The PVD aluminium nitride film with oxygen doping for low etch-rate hard mold film
CN105321814A (en) Conductive element structure and method
US11152564B2 (en) Substrate manufacturing method and processing system
JP2005340260A (en) Processing method of magnetic material layer and manufacturing method of magnetic storage device
US8951909B2 (en) Integrated circuit structure and formation
US10804458B2 (en) Boron segregation in magnetic tunnel junctions
CN101449361A (en) Dry etch stop process for eliminating electrical shorting in mram device structures
TWI774311B (en) A passivation layer for a semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOKYO ELECTRON LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUBO, TAKUYA;KANG, SONG YUN;REEL/FRAME:052585/0471

Effective date: 20200409

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE