US11072351B2 - Device for monitoring operation parameters of a vehicle axle - Google Patents

Device for monitoring operation parameters of a vehicle axle Download PDF

Info

Publication number
US11072351B2
US11072351B2 US16/483,814 US201816483814A US11072351B2 US 11072351 B2 US11072351 B2 US 11072351B2 US 201816483814 A US201816483814 A US 201816483814A US 11072351 B2 US11072351 B2 US 11072351B2
Authority
US
United States
Prior art keywords
axle
communication
measuring instrument
snap
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US16/483,814
Other languages
English (en)
Other versions
US20200023868A1 (en
Inventor
Michal FALTA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEVEL SRO
Original Assignee
LEVEL SRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LEVEL SRO filed Critical LEVEL SRO
Publication of US20200023868A1 publication Critical patent/US20200023868A1/en
Assigned to LEVEL S.R.O. reassignment LEVEL S.R.O. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FALTA, Michal
Application granted granted Critical
Publication of US11072351B2 publication Critical patent/US11072351B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/04Detectors for indicating the overheating of axle bearings and the like, e.g. associated with the brake system for applying the brakes in case of a fault
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D43/00Devices for using the energy of the movements of the vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0027Radio-based, e.g. using GSM-R
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0054Train integrity supervision, e.g. end-of-train [EOT] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0081On-board diagnosis or maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/50Trackside diagnosis or maintenance, e.g. software upgrades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/50Trackside diagnosis or maintenance, e.g. software upgrades
    • B61L27/57Trackside diagnosis or maintenance, e.g. software upgrades for vehicles or trains, e.g. trackside supervision of train conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/26Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating armatures and stationary magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1846Rotary generators structurally associated with wheels or associated parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L27/0077
    • B61L27/0094
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/527Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to vibration and noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/10Railway vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the invention relates to an electronic device for monitoring of operation parameters of an axle of an (unpowered) vehicle, especially an axle of a railway wagon or a bicycle, or possibly its cargo and accessories, comprising especially position determination, measuring of quantities indicating the condition of the axle, rotational speed and communication of these data to an external collection device for further processing.
  • a specific feature of railway wagons is that each wagon in a particular train set may be intended for a different destination and wagons are added to different sets during transport; therefore, having the possibility of monitoring their current movement and technical condition is important.
  • Another specific feature is that they are not connected to the power supply, and therefore the required quantities cannot be measured conventionally.
  • some of the measured quantities can be monitored by means of battery-supplied devices that are glued or magnetically attached onto a side wall of the wagon or applied from the bottom into the wagon structure.
  • a disadvantage of these devices is the possibility of the device getting damaged or stolen, but especially the required care of a sufficient amount of power in their batteries. Regular recharging or replacement of batteries makes the operation of such devices very expensive and makes their use on a mass scale impossible. If these devices are operated in a very economical energy mode to extend the battery life, the monitored quantities cannot be measured as frequently as desired. Since the devices are removable, proper identification of the wagon or its accessories, as e.g. axles, is not guaranteed.
  • the company PERPETUUM LTD supplies to the market measuring devices attachable to wagon wheels that use the vibrating energy of the wheel.
  • the document GB2486008 discloses a monitoring system using two sources of energy: the ambient energy and radio-frequency energy. In these cases, the generated energy is not likely to be sufficient.
  • a device for monitoring operation parameters of a vehicle axle in accordance with the invention that uses power obtained from turning of the axle for its operation, the vehicle being a railway wagon or a bicycle.
  • the device for monitoring operation parameters of a vehicle axle includes measuring instruments comprising at least a GNSS geographic position sensor (i.e. position determination using a satellite system as GPS, Glonass, Galileo etc.), a device for communication of the measured quantities to an external system, a mechanism converting mechanical energy to electrical energy and a memory with a stored identification code.
  • This device has the shape of a ring consisting of at least two parts that are adapted for fixed connection around an axle of the vehicle.
  • the ring consists e.g. of two halves that are joined on being attached to the axle.
  • the connection is generally non-dismountable.
  • the encircling around the axle protects the device from the risk of being detached from the vehicle axle, which is considerably high in case of a different attachment method.
  • the mechanism used to convert the rotational energy of the axle to electrical energy consists of a circumferential cavity in the inner part of the ring where a slider is freely positioned and at the perimeter of which at least one coil, preferably four coils, are positioned.
  • the conversion of the rotational energy to electrical energy is based on movement of the slider in the ring cavity and electrical energy induction during passage of the slider past the induction coils distributed along the perimeter of the cavity.
  • the ring with the induction coils rotates simultaneously, the slider moving inside the cavity, being permanently situated at the bottom of the ring by virtue of gravity. This relative movement of the slider with respect to the coils results in induction and generation of electricity.
  • This induced electrical energy is used for the power supply of the measuring instruments and data communication devices or if there is an excess, it can be used to recharge the battery.
  • the measuring device may further comprise some of the measuring instruments: rotary speed meter, thermometer, measuring device of the axle vibration level.
  • the measuring device may also comprise a RF receiver to receive radio-frequency signals from sensors installed outside the device. If the device is mounted on a wagon axle, these may be RF sensors fitted in various places of the wagon or cargo.
  • the device for communication of measured quantities can be a wireless transmitter with a GSM interface or a radio-frequency interface for transmission of measured data (e.g. Sigfox, data transmission via satellites) configured for communication of measured quantities together with the identification code of the axle to an external processing unit (e.g. a server, PC or mobile phone), where these data are processed and assigned to axles of individual vehicles based on the identification.
  • an external processing unit e.g. a server, PC or mobile phone
  • the device is used on a wagon axis, they are assigned to particular wagons or wagon wheel sets for the purpose of determining their position and operation parameters of the axle, rotational speed, temperature, axle vibration level. If the device is used on a bicycle, the bicycle position, covered distance, achieved speed etc. can be transmitted.
  • the memory can be further adapted to store measured data.
  • the device for monitoring operation parameters of a vehicle axle further preferably comprises a control unit for the control of at least one measuring instrument and/or data communication device.
  • the control unit can consist of a microprocessor equipped with a programmable timer to start individual measuring and communication operations at preset intervals.
  • the measured values can be used e.g. to determine blocking of an axis, the exact covered distance, a stimulus to issue a warning message in case a vibration or axle temperature limit is exceeded.
  • An advantage of situating the device on a wagon axle is mainly the fact that the circular enclosing around the axis provides safe protection from theft and damage which is otherwise high if a different attachment method is used. At the same time, positioning on a wagon axle provides a sufficiently good GNSS signal for position determination and GSM interface for data transmission.
  • Another advantage of having the device on a wagon axle is flexibility of its use for different axle diameters because the axle diameters can be easily adapted to the ring diameter with the use of inserted annuli. This enables versatile use with different types of wagons or even locomotives. With respect to a relatively low price of the device it is likely and very efficient that each axis of a railway wagon will be equipped with this device and not only one.
  • the measuring device can further comprise an RF receiver to receive radio-frequency signals of a RF transmitter kept by the owner.
  • FIG. 1 shows a central (transversal) cross-section through a device in accordance with the invention on a plane perpendicular to the axle.
  • FIG. 2 a shows a front view of a device in accordance with the invention, forming a ring.
  • FIG. 2 b shows two parts of a device in accordance with the invention in the dismounted form.
  • the device for monitoring operation parameters of a wagon axle has the shape of a ring 4 consisting of two halves 4 a , 4 b that are adapted to be connected together around the wagon axle.
  • the ring is made of polyamide PA6/30 (nylon) filled with 30% of glass fiber to increase strength, hardness and thermal resistance.
  • the cable interconnecting the coils is placed in one of the halves 4 a , 4 b before the installation and before the connection it is pulled into the other half.
  • the halves 4 a , 4 b of the ring are joined by snapping and bonding. Then, the ring 4 cannot be removed from the axle without being damaged.
  • the device is equipped with a mechanism 5 for conversion of the axle rotational energy consisting of a circumferential cavity 5 a in the inner part of the ring where a permanent magnet 5 b is freely positioned, four coils 5 c being distributed along its perimeter.
  • the ring 4 with the induction coils 5 c rotates simultaneously with the rotation of the wagon axle, the magnet 5 b moving inside the cavity 5 a being permanently situated at the bottom of the ring by virtue of gravity.
  • This relative movement of the magnet 5 b with respect to the coils 5 c results in induction and generation of electricity.
  • This induced electrical energy is used for the power supply of the measuring instruments 1 and data communication device 2 or if there is an excess, to recharge the battery 5 d situated inside the ring 4 at its outer perimeter.
  • the device comprises a measuring instrument 1 equipped with a GNSS geographic position sensor, which is a GPS sensor in this case, a rotational speed sensor, a vibration sensor, a contact thermometer.
  • a GNSS geographic position sensor which is a GPS sensor in this case, a rotational speed sensor, a vibration sensor, a contact thermometer.
  • the device further comprises a device 2 for communication of measured quantities and a memory 3 with the stored identification code of the device.
  • the communication device 2 is a wireless transmitter with a GSM interface or another radio-frequency interface for transmission of measured data (e.g. Sigfox, data transmission via satellites) configured for communication of measured quantities together with the identification to an external processing unit (server, PC etc.), where these data are processed and assigned to individual wagons and their axles registered in a superior system based on the identification.
  • measured data e.g. Sigfox, data transmission via satellites
  • server PC etc.
  • the device for monitoring operation parameters of a wagon axle further comprises a control unit 6 for the control of at least one measuring instrument and/or data communication device.
  • the control unit consists of a microprocessor equipped with a programmable timer to start individual measuring and communication operations at preset intervals.
  • the measured data can be used to determine the covered distance (based on the number of revolutions of the axle) and blocking of the axis e.g. due to a brake failure (in case of a change of the position established with the use of GNSS when there is no axle rotation).
  • An elevated temperature and excessive vibrations can further indicate an incorrect function of axle bearings and lead to the issue of a warning message to prevent an accident.
  • This device can be used on any wagon axis; an annulus can be used to adapt the diameter of the axle.
  • the device for monitoring operation parameters of a wagon axle having the shape of a ring 4 consists of two halves 4 a , 4 b that are adapted to be connected together around the wagon axle.
  • the ring is made of polyethylene with an addition of glass with the weight ratio of 70:30, or of plastic, a composite material or an aluminum casting can be used.
  • the device is, similarly to Example 1, equipped with a mechanism 5 for conversion of the axle rotational energy consisting of a circumferential cavity 5 a in the inner part of the ring where a permanent magnet 5 b is freely positioned, four coils 5 c being distributed along its perimeter. Induced electrical energy is used for the power supply of the measuring instruments 1 and data communication device 2 or if there is an excess, to recharge the battery 5 d situated inside the ring.
  • the device comprises a measuring instrument 1 comprising a GNSS sensor, a rotational speed sensor, a vibration sensor, a contact thermometer.
  • the measuring instrument further comprises a RF receiver to receive radio-frequency signals from sensors installed in various locations of the wagon or cargo. These sensors comprise RF sensors of: temperature, pressure, illumination, level, cargo compartment opening, tilt, number of rotations, overloading and cargo identification. These sensors are powered by their own battery and periodically transmit values to the RF receiver.
  • the RF temperature sensor measures the ambient temperature e.g. inside the cargo space or on the wagon axle.
  • the RF pressure sensor measures the ambient pressure e.g. inside a transported cistern or pressure in the brake system of the wagon.
  • the RF illumination sensor measures the illumination level e.g. inside the cargo compartment of the wagon. The value of illumination may be important for the transported material or a change of the illumination value may be important for indication when the cargo space was opened.
  • the RF level sensor based on the capacitance principle (or possibly on the resistance or pressure principle) measures the liquid level mostly in a cistern.
  • the RF tilt sensor is a three-axis accelerometer measuring overloading on three axes in relation to the earth axis, which is used to obtain data about tilt changes and the number of rotations.
  • the RF overloading sensors continuously measure the acceleration value on all the three axes and if the set allowed value is exceeded, it sends information to the RF receiver.
  • the RF sensor for cargo identification sends its identification in regular intervals. It is used with more expensive cargoes in such a way that the sensor is placed within the entire cargo (e.g. in the transported machine or car).
  • the device for monitoring operation parameters comprises a control unit 6 for the control of the operation of the measuring instruments and/or data communication device.
  • the control unit consists of a microprocessor and is equipped with a timer.
  • the device further comprises a device 2 for communication of measured quantities and a memory 3 with stored identification.
  • the communication device 2 is a wireless transmitter with a GSM interface configured for communication of data together with identification 3 to an external processing unit (server, PC, mobile etc.), where these data are processed and based on the identification they are assigned to individual wagons and their axes.
  • server PC, mobile etc.
  • the device for monitoring operation parameters of a bicycle axle consists of two halves ( 4 a , 4 b ) of a ring that are adapted to be connected together around the bicycle wheel axle.
  • the ring is made of polyethylene with an addition of glass in the weight ratio of 70:30.
  • the device is, similarly to Examples 1 and 2, equipped with a mechanism 5 for conversion of the axle rotational energy consisting of a circumferential cavity 5 a in the inner part of the ring where a permanent magnet 5 b is freely positioned, four coils 5 c being distributed along its perimeter.
  • Induced electrical energy is used for the power supply of the measuring instruments 1 and data communication device 2 or if there is an excess, to recharge the battery 5 d situated inside the ring.
  • the measuring instrument 1 comprises a GPS sensor, a rotational speed sensor, a three-axis overloading sensor, an RG proximity sensor (receiver) and a control unit 6 .
  • the measuring instrument 1 provides a record of the covered route, speed, altitude and transmits them to an external unit (e.g. a mobile phone).
  • the GPS sensor is adapted to establish and send the position even though the wheel is not rotating, a battery serving as the source of energy for this measurement. This measurement can be used to find the bicycle after a theft or to trace bicycles for bicycle rent shops.
  • the RF proximity sensor comprises a RF receiver paired with a RF transmitter kept by the bicycle owner.
  • the RF transmitter is equipped with identification and a battery. In regular intervals (e.g. lx every second), the RF transmitter sends its identification number, which is received by the RF sensor (receiver) mounted on the bicycle. If a certain RF distance, e.g. 5 m, is exceeded, the receiver will not receive identification of the transmitter and the device will pass into the active guarding state. If during this period the overloading sensor is activated due to a motion of the bicycle, the control unit will evaluate handling of the bicycle as unauthorized and send alarm messages.
  • a certain RF distance e.g. 5 m
  • the owner's mobile phone can also be used as the RF transmitter. If the device recognizes a paired phone with Bluetooth on within its range (using the common RF principle just as e.g. a headset is paired to a mobile phone via Bluetooth), the device would not be in the active guarding state. As soon as the device loses the Bluetooth connection with the phone, it will pass into the active guarding state.
  • the device for monitoring operation parameters of a vehicle axle can especially be used for railway wagons to measure the geographic position and other operation parameters as the rotational speed of the axle, axle temperature and axle vibrations.
  • the device can be used flexibly for different types of railway wagons as well as to monitor parameters of the wagon cargo and wagon accessories.
  • the device for monitoring operation parameters of a vehicle axle can be used for bicycles to check parameters of the covered route and to protect the bicycle from theft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Transportation (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
US16/483,814 2017-02-06 2018-02-05 Device for monitoring operation parameters of a vehicle axle Expired - Fee Related US11072351B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CZ2017-68A CZ307759B6 (cs) 2017-02-06 2017-02-06 Zařízení na monitorování provozních parametrů osy vozidla
CZPV2017-68 2017-02-06
PCT/CZ2018/000007 WO2018141315A1 (en) 2017-02-06 2018-02-05 Device for monitoring operation parameters of a vehicle axle

Publications (2)

Publication Number Publication Date
US20200023868A1 US20200023868A1 (en) 2020-01-23
US11072351B2 true US11072351B2 (en) 2021-07-27

Family

ID=67911791

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/483,814 Expired - Fee Related US11072351B2 (en) 2017-02-06 2018-02-05 Device for monitoring operation parameters of a vehicle axle

Country Status (5)

Country Link
US (1) US11072351B2 (cs)
EP (1) EP3619088A4 (cs)
CN (1) CN110267858B (cs)
CZ (1) CZ307759B6 (cs)
WO (1) WO2018141315A1 (cs)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3868628A1 (en) * 2018-10-19 2021-08-25 Vallourec Tubos Do Brasil Ltda. System for monitoring a railroad axle and peripherals
AU2021236745A1 (en) * 2020-03-20 2022-09-22 Amsted Rail Company, Inc. Mobile railway asset monitoring apparatus and methods

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2507645A1 (de) 1975-02-19 1976-09-09 Licentia Gmbh Anordnung zur erfassung, uebertragung und ueberwachung von messwerten
US5072821A (en) * 1990-12-07 1991-12-17 Otis Elevator Company Escalator/people mover bearing
GB2254154A (en) 1991-03-23 1992-09-30 Powell Duffryn Standard Ltd Detecting overheated bearings in railway vehicles
US20050151375A1 (en) 2004-01-12 2005-07-14 Rockwell Scientific Licensing, Llc. Autonomous power source
US20070208841A1 (en) * 2006-03-01 2007-09-06 L-3 Communications Corporation Self-assembling wireless network, vehicle communications system, railroad wheel and bearing monitoring system and methods therefor
US20080011531A1 (en) * 2006-07-15 2008-01-17 Monty Cole Motorized axle for use with environmentally friendly vehicles
US20080018110A1 (en) 2005-12-30 2008-01-24 Kurt Roth Axle-driven generator for railway carriages and the like
WO2009109200A1 (en) 2008-03-05 2009-09-11 Ab Skf Device for attachment to a rotating part of a railway axle
US20090256443A1 (en) 2008-04-15 2009-10-15 Randal Scott Turner Hollow ring torus magnet generator
US20120049524A1 (en) * 2010-08-31 2012-03-01 Zivota Nikolic Electric Generator
US8341289B2 (en) * 2005-05-17 2012-12-25 Rajant Corporation System and method for communication in a wireless mobile ad-hoc network
US20150237659A1 (en) * 2014-02-19 2015-08-20 Rajant Corporation Continuous Load Distributed Power Generation In A Mesh Networked System
WO2017184366A1 (en) 2016-04-21 2017-10-26 Carrier Corporation Railway car fitted with an induction generator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2386422B (en) * 2002-03-13 2005-04-06 Aea Technology Plc Wheel rotation monitor
AT507382B1 (de) * 2008-09-15 2011-03-15 Pj Messtechnik Gmbh Radsatzlagergehäuse mit positionserfassungseinrichtung für ein schienenfahrzeug und damit ausgestattetes schienenfahrzeug
DE102009020428A1 (de) * 2008-11-19 2010-05-20 Eureka Navigation Solutions Ag Vorrichtung und Verfahren für ein Schienenfahrzeug
CN201338631Y (zh) * 2008-12-16 2009-11-04 中国北车股份有限公司大连电力牵引研发中心 一种新型货车轴温监测装置
DE102010052667C5 (de) * 2010-11-26 2015-05-21 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Vorrichtung und Verfahren zur Erfassung von Störungen einer Rollbewegung eines Wagonrades eines Zuges
GB2486008B (en) 2010-12-01 2014-04-16 Perpetuum Ltd Sensor system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2507645A1 (de) 1975-02-19 1976-09-09 Licentia Gmbh Anordnung zur erfassung, uebertragung und ueberwachung von messwerten
US5072821A (en) * 1990-12-07 1991-12-17 Otis Elevator Company Escalator/people mover bearing
GB2254154A (en) 1991-03-23 1992-09-30 Powell Duffryn Standard Ltd Detecting overheated bearings in railway vehicles
US20050151375A1 (en) 2004-01-12 2005-07-14 Rockwell Scientific Licensing, Llc. Autonomous power source
US8341289B2 (en) * 2005-05-17 2012-12-25 Rajant Corporation System and method for communication in a wireless mobile ad-hoc network
US20080018110A1 (en) 2005-12-30 2008-01-24 Kurt Roth Axle-driven generator for railway carriages and the like
US20070208841A1 (en) * 2006-03-01 2007-09-06 L-3 Communications Corporation Self-assembling wireless network, vehicle communications system, railroad wheel and bearing monitoring system and methods therefor
US20080011531A1 (en) * 2006-07-15 2008-01-17 Monty Cole Motorized axle for use with environmentally friendly vehicles
WO2009109200A1 (en) 2008-03-05 2009-09-11 Ab Skf Device for attachment to a rotating part of a railway axle
US20090256443A1 (en) 2008-04-15 2009-10-15 Randal Scott Turner Hollow ring torus magnet generator
US20120049524A1 (en) * 2010-08-31 2012-03-01 Zivota Nikolic Electric Generator
US20150237659A1 (en) * 2014-02-19 2015-08-20 Rajant Corporation Continuous Load Distributed Power Generation In A Mesh Networked System
WO2017184366A1 (en) 2016-04-21 2017-10-26 Carrier Corporation Railway car fitted with an induction generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PCT Search Report and Written Opinion prepared for PCT/CZ2018/000007, completed May 25, 2018.

Also Published As

Publication number Publication date
EP3619088A4 (en) 2021-03-03
CN110267858A (zh) 2019-09-20
CZ307759B6 (cs) 2019-04-17
CN110267858B (zh) 2021-08-17
US20200023868A1 (en) 2020-01-23
EP3619088A1 (en) 2020-03-11
CZ201768A3 (cs) 2018-08-29
WO2018141315A1 (en) 2018-08-09
WO2018141315A4 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
US20200353779A1 (en) Wheel hub mounted vehicle data communications device incorporating a self-generating electrical power supply
ES2435768T3 (es) Unidad de control antideslizante y sistema de recogida de datos para un sistema de frenado de vehículos
CA2744287C (en) Device and method for a rail vehicle
ES2907088T3 (es) Conjunto del sensor de estado de los neumáticos
US12208643B2 (en) Wheel hub
US8757000B2 (en) Device for attachment to a rotating part of a railway axle
US11072351B2 (en) Device for monitoring operation parameters of a vehicle axle
US11397095B2 (en) Electronic distance recorder
US20100030512A1 (en) Determination and wireless communication of sensed vehicle data for computing vehicle speed
CZ30622U1 (cs) Zařízení na monitorování provozních parametrů osy vozidl
US10181226B2 (en) Telematic monitoring system for vehicles
CN106458278A (zh) 用于自行车或类似车辆的远程信息处理设备
AU2014280919B2 (en) Device and method for a rail vehicle
JP7245353B2 (ja) 自転車の少なくとも1つの物理的パラメーターを測定する方法及びシステム
AU2019101611A4 (en) A hubodemeter assembly
US10168151B2 (en) Gearbox orientation system
AU2015268770A1 (en) Device and Method for a Rail Vehicle
ES2889674A1 (es) Sistema modular de monitorización de un velocípedo
AU2019283775A1 (en) A hubodemeter assembly
SE516736C2 (sv) Förfarande och anordning för bestämning av friktionen mellan vägbanan och ett fordonshjul
JP2008001189A (ja) タイヤ種別情報取得装置、これを用いた走行情報表示装置

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

AS Assignment

Owner name: LEVEL S.R.O., CZECH REPUBLIC

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FALTA, MICHAL;REEL/FRAME:056639/0743

Effective date: 20210623

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20250727