US11014652B1 - Active lift control device and method - Google Patents

Active lift control device and method Download PDF

Info

Publication number
US11014652B1
US11014652B1 US16/403,010 US201916403010A US11014652B1 US 11014652 B1 US11014652 B1 US 11014652B1 US 201916403010 A US201916403010 A US 201916403010A US 11014652 B1 US11014652 B1 US 11014652B1
Authority
US
United States
Prior art keywords
lifting surface
protuberance
lift
length
trailing edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/403,010
Inventor
Neal E. Fine
John A. Cooney, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ardura Inc
Arctura Inc
Original Assignee
Ardura Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ardura Inc filed Critical Ardura Inc
Priority to US16/403,010 priority Critical patent/US11014652B1/en
Assigned to Aquanis, Inc. reassignment Aquanis, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COONEY, JOHN A., JR., FINE, NEAL E.
Assigned to ARCTURA, INC reassignment ARCTURA, INC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: Aquanis, Inc.
Priority to US17/323,611 priority patent/US11628930B2/en
Application granted granted Critical
Publication of US11014652B1 publication Critical patent/US11014652B1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/10Influencing flow of fluids around bodies of solid material
    • F15D1/12Influencing flow of fluids around bodies of solid material by influencing the boundary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • B64C21/10Influencing air flow over aircraft surfaces by affecting boundary layer flow using other surface properties, e.g. roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/02Influencing air flow over aircraft surfaces, not otherwise provided for by means of rotating members of cylindrical or similar form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/08Influencing air flow over aircraft surfaces, not otherwise provided for using Magnus effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/28Leading or trailing edges attached to primary structures, e.g. forming fixed slots
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0232Adjusting aerodynamic properties of the blades with flaps or slats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0236Adjusting aerodynamic properties of the blades by changing the active surface of the wind engaging parts, e.g. reefing or furling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/002Influencing flow of fluids by influencing the boundary layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/002Influencing flow of fluids by influencing the boundary layer
    • F15D1/0065Influencing flow of fluids by influencing the boundary layer using active means, e.g. supplying external energy or injecting fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/002Influencing flow of fluids by influencing the boundary layer
    • F15D1/0065Influencing flow of fluids by influencing the boundary layer using active means, e.g. supplying external energy or injecting fluid
    • F15D1/007Influencing flow of fluids by influencing the boundary layer using active means, e.g. supplying external energy or injecting fluid comprising surfaces being moved by external supplied energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/24Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • B64C2003/148Aerofoil profile comprising protuberances, e.g. for modifying boundary layer flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/28Boundary layer controls at propeller or rotor blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/304Details of the trailing edge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/305Flaps, slats or spoilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/305Flaps, slats or spoilers
    • F05B2240/3052Flaps, slats or spoilers adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/306Surface measures
    • F05B2240/3062Vortex generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Definitions

  • the present invention relates to devices for use in active control of the lift force generated by wings, airfoils, hydrofoils, rotating turbine blades, helicopter blades, propellers, and similar lifting bodies operating in an air or water stream.
  • lifting surfaces experience unsteady forces caused by turbulence, gusts, wind shear, unsteady currents, upstream obstacles, and the like. Those unsteady forces lead to structural fatigue or catastrophic loads, and must be accounted for in system design. For example, to counter the anticipated occasional unsteady forces due to wind gusts, wind turbine components must be built strong and heavy, which makes them costly to build. Similarly, the cost and weight of materials used in the construction of airplane wings and fuselages is impacted by expected fatigue loads experienced by the wings and control surfaces.
  • lifting surfaces may include active controls designed to modify the lift force in reaction to changes in the inflow velocity, in such a way as to minimize the fatigue loads experienced by the structure.
  • active controls designed to modify the lift force in reaction to changes in the inflow velocity, in such a way as to minimize the fatigue loads experienced by the structure.
  • movable flaps located either near the leading edge or the trailing edge of the blade. The flaps are controlled by a computer algorithm that is designed to minimize the undesirable fatigue load.
  • active load control techniques including boundary layer blowing or suction, synthetic jets, microtabs, and others.
  • a Gurney flap is a passive device used to increase the lift generated by the flow over a lifting surface, such as a wing or wind turbine blade.
  • a conventional Gurney flap consists of a simple rigid fence-like protuberance near the trailing edge of an airfoil. The device typically extends at right angles to the pressure side of the airfoil, and projects a distance equal to 1-3% of the wing's chord length into the flow. By producing a separated flow region just upstream and just downstream of the protuberance, the Gurney flap increases the pressure on the pressure side while keeping the boundary layer attached to suction side. This results in a significant increase in the lift in comparison to the airfoil without the Gurney flap.
  • embodiments of the present invention bear some resemblance to the Gurney flap, unlike the Gurney flap, embodiments of the present invention provide a lift device that can be actively controlled, so that either a baseline (or minimum) lift or a maximum lift, or an intermediate lift between those values, can be obtained on demand.
  • embodiments of the present invention can be used to reduce the unsteady forces experienced by wings and wind turbine blades by modifying the lift in response to wind gusts, turbulence, and the like.
  • Such embodiments can be controlled by a computer algorithm that is designed to minimize the undesirable effects of the unsteady forces.
  • the invention provides a lift control device for actively controlling lift of a lifting surface when the lift device is mounted to the lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length.
  • the lift control device includes:
  • a protuberance having a base and a tip and a length, the base configured to be mountable to the lifting surface near the trailing edge thereof, wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
  • a rotatable member having a central axis, rotatably mounted in the tip of the protuberance and occupying a majority of the length of the protuberance, the rotatable member mounted so that at least a circumferential portion of the rotatable member is exposed along a majority of its length directly to the fluid medium, so rotation of the rotatable member entrains fluid along its boundary layer so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface;
  • a motor mountable to the lifting surface and coupled to the rotatable member, the motor configured to produce angular rotation of the rotatable member about its central axis;
  • a controller coupled to the motor, and configured to control rotation of the motor and therefore of the rotatable member, so that the controller controls lift of the lifting surface by controlling rotation of the rotatable member.
  • the rotatable member is cylindrical.
  • the rotatable member is a frustum of a cone.
  • the rotating member is roughened.
  • the rotating member is splined.
  • the device further includes a plasma actuator array mechanically coupled to a surface of the protuberance just upstream or downstream of the rotating member and coupled to the controller, so that the controller controls the plasma actuator array to control flow over the array so as to control lift of the lifting surface.
  • the lifting surface is a blade of a wind turbine; or is selected from the group consisting of a wing of an airplane and a rotating blade of a rotorcraft; or is selected from the group consisting of a foil of a hydrofoil and a blade of a marine propeller.
  • the invention provides a lift control device for statically controlling lift of a lifting surface when the lift device is mounted to the lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length.
  • the lift control device includes:
  • a protuberance having a base and a tip and a length, the base configured to be mountable to the lifting surface near the trailing edge thereof, wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
  • a rotatable member having a central axis, rotatably mounted in the tip of the protuberance and occupying a majority of the length of the protuberance, the rotatable member having mechanical stiffness slightly greater than that of the lifting surface, the rotatable member mounted so bending of the lifting surface causes at least a circumferential portion of the rotatable member to be exposed along a majority of its length directly to the fluid medium, so rotation of the rotatable member entrains fluid along its boundary layer so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface;
  • a fence mountable to the lifting surface upstream of the rotatable member, with mechanical stiffness matching that of the blade.
  • the rotatable member is cylindrical.
  • the rotatable member is a frustum of a cone.
  • the rotating member is roughened, Alternatively or in addition, the rotating member is splined.
  • the lift control device further includes a plasma actuator array mechanically coupled to a surface of the protuberance just upstream or downstream of the rotating member, or on the surface of the rotating member, and coupled to a controller, such controller configured to control the plasma actuator array to control flow over the array so as to control lift of the lifting surface.
  • the lifting surface is a blade of a wind turbine. In another related embodiment, the lifting surface is selected from the group consisting of a wing of an airplane and a rotating blade of a rotorcraft. In yet another related embodiment, the lifting surface is selected from the group consisting of a foil of a hydrofoil and a blade of a marine propeller.
  • the invention provides a lift control device for actively controlling lift of a lifting surface when the lift device is mounted to the lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length.
  • the lift control device includes:
  • a protuberance having a base and a tip and a length, the base configured to be mountable to the lifting surface near the trailing edge thereof, wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
  • translatable member mounted in the tip of the protuberance and occupying a majority of the length of the protuberance, the translatable member mounted so that at least a circumferential portion of the translatable member is exposed along a majority of its length directly to the fluid medium, so translation of the translatable member entrains fluid along its boundary layer so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface;
  • a motor mountable to the lifting surface and coupled to the translatable member, the motor configured to produce extension and retraction of the translatable member relative to the tip of the protuberance;
  • a controller coupled to the motor, and configured to control rotation of the motor and therefore of the position of the translatable member, so that the controller controls lift of the lifting surface by controlling position of the translatable member.
  • the lifting surface is a blade of a wind turbine. In another related embodiment, the lifting surface is selected from the group consisting of a wing of an airplane and a rotating blade of a rotorcraft. In yet another related embodiment, the lifting surface is selected from the group consisting of a foil of a hydrofoil and a blade of a marine propeller.
  • the invention provides a lift control device for actively controlling lift of a lifting surface when the lift control device is mounted to the lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length.
  • the lift control device includes:
  • a protuberance having a base and a tip and a length, the base configured to be mountable to the lifting surface near the trailing edge thereof, wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
  • translatable or rotatable member mounted in the interior of the protuberance and occupying a majority of the length of the protuberance, the translatable or rotatable member mounted so that translation or rotation of the member entrains fluid in a channel or array of channels through which fluid passes so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface;
  • a motor mountable to the lifting surface and coupled to the translatable or rotatable member, the motor configured to produce translation or rotation of the member
  • a controller coupled to the motor, and configured to control rotation of the motor and therefore of the position of the translatable or rotatable member, so that the controller controls lift of the lifting surface by controlling position of the translatable or rotatable member.
  • the lifting surface is a blade of a wind turbine. In another related embodiment, the lifting surface is selected from the group consisting of a wing of an airplane and a rotating blade of a rotorcraft. In yet another related embodiment, the lifting surface is selected from the group consisting of a foil of a hydrofoil and a blade of a marine propeller.
  • the invention provides a method for controlling the lift generated by a lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length.
  • the method includes:
  • a protuberance having a base and a tip and a length, in a manner wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
  • the invention provides a method for controlling the lift generated by a lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length.
  • the method incudes:
  • a protuberance having a base and a tip and a length, in a manner wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
  • the invention provides a method for controlling the lift generated by a lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length.
  • the method includes:
  • a protuberance having a base and a tip and a length, in a manner wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
  • translatable or rotatable member located inside the protuberance and occupying a majority of the length of the protuberance, the translatable or rotatable member mounted so that translation or rotation of the member entrains fluid in a channel or array of channels through which fluid passes so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface;
  • the invention provides a lift control device for actively controlling lift of a lifting surface when the lift control device is mounted to the lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length and defining a longitudinal axis.
  • the lift control device includes:
  • a longitudinally disposed vane the vane having a base and a length, the base configured to be mounted to the pressure surface, near the trailing edge of the lifting surface, via a set of hinges along the base, the set of hinges defining a pivot about which the vane is rotatable, the vane creating a region of separated flow downstream of the vane, such region having the effect of increasing lift produced by the lifting surface when the vane is at a non-zero angle with respect to the pressure surface;
  • a motor mountable to the lifting surface and coupled to vane, the motor configured to adjust angular orientation of the vane about the pivot, the angular orientation controlling the extent of lift increase produced by the vane;
  • a controller coupled to the motor, and configured to control rotation of the motor and therefore angular orientation of the vane about the pivot, so that the controller controls lift of the lifting surface by controlling angular orientation of the vane.
  • the device further includes a shaft encoder, coupled to the vane and to the controller, that provides to the controller a signal related to angular orientation of the vane about the pivot; and a control line, coupled to the motor, that provides an electrical signal related to torque being produced by the motor, the control line coupled to the controller.
  • the controller is configured to use the electrical signal on the control line to determine a quantity related to wind speed experienced by the vane over the pressure surface and to use the determined quantity to control angular orientation of the vane, as measured via the shaft encoder, so as to adjust lift of the lifting surface in relation to the wind speed.
  • the device further includes a set of fairings mountable to the lifting surface with respect to the vane so as to smooth flow over the vane.
  • the vane includes a plurality of discrete, overlapping elements.
  • the length of the vane occupies a majority of the length of the trailing edge.
  • FIG. 1 shows a two-dimensional cross-sectional view of a lifting surface with a traditional prior art (non-controllable) Gurney flap.
  • FIG. 2A is a two-dimensional cross-sectional view of a lifting surface with one embodiment of the controllable lift device of the present invention.
  • FIG. 2B provides detail in the vicinity of the protuberance 100 of FIG. 2A .
  • FIG. 3 is a plan view integrated with a cross-sectional view of the lifting surface with the controllable lift device of FIG. 2 .
  • FIG. 4A is a two-dimensional cross-sectional view of a lifting surface with a second embodiment of the controllable lift device of the present invention.
  • FIG. 4B provides detail in the vicinity of the protuberance 100 of FIG. 4A .
  • FIG. 5A is a two-dimensional cross-sectional view of a lifting surface with a third embodiment of the controllable lift device of the present invention.
  • FIG. 5B provides detail in the vicinity of the protuberance 100 of FIG. 5A .
  • FIG. 6A is a two-dimensional cross-sectional view of a lifting surface with the combination of the controllable lift device and a plasma actuator in accordance with an embodiment of the present invention.
  • FIG. 6B provides detail in the vicinity of dielectric barrier discharge plasma actuators 310 of FIG. 6A .
  • FIG. 7 is a two-dimensional cross-sectional view of a lifting surface with the combination of the controllable lift device and a backward facing step in accordance with an embodiment of the present invention.
  • FIGS. 8A and 8B are a plan and edge views respectively of a planar lifting surface with a semi-active embodiment of the controllable lift device in accordance with an embodiment of the present invention.
  • FIG. 8C provides is a further edge view when the lifting surface is deformed as a result of wind, so as to cause a change of in the normal position of the rotating cylinder 140 shown in FIG. 8D to an exposed position shown in FIG. 8E in which the rotating cylinder is exposed to flow.
  • FIGS. 9A, 9B, and 9C are two-dimensional cross-sectional views of a lifting surface with a fourth embodiment of the controllable lift device of the present invention.
  • FIGS. 10A and 10B are two-dimensional cross-sectional views of a lifting surface in a fifth embodiment of the controllable lift device of the present invention.
  • FIG. 11A is a two-dimensional cross-sectional view of a lifting surface in a sixth embodiment of the controllable lift device of the present invention
  • FIG. 11B illustrates successive positions of a sliding fence used in the embodiment of FIG. 11A .
  • FIGS. 12A through 12D are two-dimensional cross sectional views of a lifting surface showing a seventh embodiment of the controllable lift device of the present invention.
  • FIGS. 13A and 13B are side views (taken in a direction transverse to the longitudinal axis) of flexible vanes for use in the embodiments of FIGS. 12C and 12D .
  • FIG. 14 is a schematic diagram for the embodiment of the present invention represented by FIGS. 12C and 12D .
  • FIGS. 15A and 15B are isometric drawings of the embodiment of the present invention represented by FIGS. 12C and 12D .
  • FIGS. 16A and 16B are isometric mechanical drawings of components of the embodiment of FIGS. 15A and 15B of the present invention.
  • FIG. 17 is a block diagram of a system for electrically controlling unsteady loads on a lifting surface in accordance with an embodiment of the present invention.
  • FIG. 18 is a block diagram of a system for pneumatically controlling unsteady loads on a lifting surface in accordance with an embodiment of the present invention.
  • An “active lift control” device or system is one which takes an input signal from a computer processor and uses that signal to change the state of an actuator, so as to modify the lift force on a lifting surface.
  • An “actuator” is a mechanical or electrical device that can be used to modify the lift force on a lifting surface.
  • An “array” of items includes at least one of the items.
  • a “lift force” is the force experienced by a lifting surface, resulting from flow around that lifting surface, oriented at right angles to the velocity of the fluid medium just upstream of the lifting surface.
  • a “passive lift control” device is one which modifies the lift force on a lifting surface without any active control from a computer processor. Passive changes in lift occur naturally based on the mechanical design of the device or system in reaction to changes in inflow, position of lifting surface, or other relevant parameter.
  • the “chord length” of a lifting surface is the length of an imaginary straight line, normal to the longitudinal axis, from the leading edge to the trailing edge.
  • FIG. 1 shows a two-dimensional cross-sectional view of a lifting surface with a traditional prior art (non-controllable) Gurney flap.
  • a conventional prior art Gurney flap 10 is a small fence-like structure that projects from the pressure side 20 , near the trailing edge 40 , of a lifting surface 30 .
  • the size of the Gurney flap is exaggerated in relation to that of the lifting surface 30 .
  • the Gurney flap can instead project from the suction side 50 near the trailing edge 40 .
  • the Gurney flap can significantly increase the lift force on the lifting surface.
  • the Gurney flap can significantly decrease the lift force (or generate a negative lift force).
  • FIG. 2A shows one embodiment of the active lift control device of the present invention.
  • the device includes a protuberance 100 projecting from the pressure side of lifting surface 30 and oriented parallel to the longitudinal axis of the lifting surface (which, as discussed above in connection with FIG. 1 , is perpendicular to the page.
  • FIG. 2B provides detail in the vicinity of the protuberance 100 of FIG. 2A .
  • the lifting surface is operative in a fluid medium, such as air, in which case it is an airfoil, which may be deployed, for example, as a wing or a propeller blade, or water, in which case it may be deployed, for example, in a marine propeller or in a foil of a hydrofoil.
  • the lifting surface is movable relative to the fluid medium so as to define a leading edge 21 and a trailing edge 22 , the lifting surface also having a pressure surface 23 thereof and a vacuum surface 24 thereof.
  • the leading edge and the trailing edge run along the span of the lifting surface. (Again, for convenience of illustration, in this and subsequent figures, the size of the device is exaggerated in relation to the size of the lifting surface 30 .)
  • the height 110 of the protuberance is between 0.1% and 20% of the airfoil's chord length 120 , with a preferred height ranging between about 1% and about 2% of the chord length.
  • the aspect ratio defined here as the ratio of the height of the protuberance 110 to its width 130 , is between about 0.5 and 5.0, with a preferred aspect ratio of about 2.0.
  • a hollow rotatable member 140 At the outermost extent of the height 110 of the protuberance is mounted a hollow rotatable member 140 , which may be cylindrical and is mounted in a manner leaving it free to rotate about its central axis. Additionally, the rotatable member is mounted so that at least a circumferential portion of the rotatable member is exposed along a majority of its length directly to the fluid medium.
  • FIG. 3 shows a plan view integrated with a cross-sectional view of the lifting surface 30 with the controllable lift device of FIG. 2 .
  • the shaft is driven by a motor housed inside chamber 210 at one end of the shaft.
  • Shaft bearing 220 is located at the other end of the shaft.
  • chamber 210 has insufficient volume to house the motor.
  • cylinder 140 is driven by motor 230 mounted inside the airfoil 30 , as shown in FIG. 3 .
  • the rotational rate of the shaft is determined by a computer controller (not shown).
  • the upper limit of the rotational rate will be proportional to the magnitude of the air speed upstream of the airfoil.
  • the ratio of the surface speed of the cylinder (U c , defined as the rotational frequency in radians per second times the radius in meters) to the incoming flow speed (U, in meters per second) is between about 1 and about 3. Rotating the cylinder at that rate will cause the flow to remain attached to the surface, negating or partially negating the increased lift due to the device.
  • the relative speed of the flow over the lifting surface increases in proportion to the distance from the axis of rotation.
  • the surface speed of the cylinder, U c must also increase in proportion to the distance from the axis of rotation of the rotating blades.
  • the cylinder is replaced by a frustum of cone with its base (where the diameter of the rotating member is at a maximum) at the outer span towards the tip of the rotating blade, and tip of the frustum (where the diameter of the rotating member is at a minimum) at the inner span towards the hub of the rotating blade.
  • FIG. 4A shows a two-dimensional cross-sectional view of a lifting surface with a second embodiment of the lift control device of the present invention.
  • FIG. 4B provides detail in the vicinity of the protuberance 100 of FIG. 4A .
  • the top of protuberance 100 is rounded, and the center 41 of the rotating cylinder 140 is displaced downstream relative to a centerline 42 of the protuberance.
  • FIG. 5A shows a two-dimensional cross-sectional view of a lifting surface with a third embodiment of the lift control device of the present invention.
  • FIG. 5B provides detail in the vicinity of the protuberance 100 of FIG. 5A .
  • the leading edge of protuberance 100 is faired into the surface of the airfoil, with a smoothly varying leading edge region 51 followed by a more rapidly varying downstream shape 52 .
  • This embodiment is intended to reduce the parasitic form drag associated with the active flow control device.
  • the rotating cylinder 140 is placed on the downstream side of the protuberance, as shown in the Figure.
  • the cylinder may have a smooth surface, or may be roughened using standard roughness parameters (as defined, for example, in the ISO 4287: 1997 standard).
  • the cylinder may be grooved or splined, or provided with another surface shape that increases the surface-entrainment of the fluid.
  • the cylinder includes splines aligned parallel to the cylinder axis, the splines projecting radially by between about 0.1% and 1% of the cylinder radius.
  • the cylinder includes between about 10 and 100 splines on its surface.
  • a second form of active flow control either just upstream, just downstream, or both upstream and downstream, of the rotating cylinder.
  • flow control techniques include boundary layer blowing, boundary layer suction, synthetic jets, or plasma actuators.
  • FIG. 6A is a two-dimensional cross-sectional view of a lifting surface with the combination of a lift control device and a plasma actuator in accordance with an embodiment of the present invention.
  • dielectric barrier discharge plasma actuators 310 are placed on the surface of the protuberance just upstream and just downstream of the rotating cylinder.
  • FIG. 6B provides detail in the vicinity of dielectric barrier discharge plasma actuators 310 of FIG. 6A .
  • the plasma actuators consist of a thin layer of dielectric material 320 , a covered electrode 330 , an exposed electrode 340 , and substrate 350 .
  • the plasma actuators can be driven by an AC power supply or a pulsed-DC power supply (not shown).
  • the actuators can be oriented such that they impart a force 360 on the fluid largely in line with the local flow and tangential to the surface, or opposing the local flow, or with components in both tangential directions.
  • the actuator may optionally include a second exposed electrode 370 on the surface of the dielectric.
  • the third electrode may be powered by a second power supply (not shown) to provide a bias voltage intended to increase the force on the fluid.
  • the second active flow control device can be used to induce separation upstream of the cylinder. While the rotating cylinder is capable of delaying separation, it generally will not cause separated flow to reattach when the separation point is upstream of the cylinder.
  • FIG. 1 One embodiment of this approach is shown in FIG.
  • a backward-facing step 610 is located near the tip of the control device.
  • the step 610 normally causes an adverse pressure gradient to develop due to the steep geometry slope.
  • a plasma actuator of the general type illustrated in FIGS. 6A and 6B is also provided, and the plasma actuator is activated when it is desired to maintain attached flow beyond the step (e.g., when the controller calls for the low lift condition). The plasma actuator is then deactivated when high lift is called for. Since the flow reacts to the plasma actuator very quickly (generally within 10-100 milliseconds), the actuator can provide rapid variation in, and therefore rapid control of, lift.
  • the rotating cylinder may only partially reattach the flow around the device.
  • the required rotational rate may be excessively high for achieving full lift degradation.
  • the surface of the rotating cylinder may be configured with an array of plasma actuators; activation of this array causes further attachment of the flow and further degradation of the lift on the wing.
  • the fast-reacting plasma actuators of this embodiment can produce rapid changes in lift. The activation of the plasma actuators is synchronized with angular position of the rotating cylinder so that the actuators are powered in the same angular position for every cycle.
  • the device can be configured to reduce the local lift force when bending is caused by excessive lift associated with a sudden increase in wind speed.
  • the bending control can be accomplished by making the bending stiffness of the cylinder 140 slightly higher than the bending stiffness of the airfoil 130 . This approach is illustrated in FIGS. 8A, 8B, 8C, and 8D , which show a plan view and an edge view of a planar lifting surface with a semi-active embodiment of the controllable lift device in accordance with an embodiment of the present invention.
  • the rotating cylinder 140 In the natural unbent state, the rotating cylinder 140 is shielded by the upstream fence 620 , so that the control device acts like a traditional Gurney flap in increasing the lift relative to the baseline lifting surface without the device.
  • the differential stiffness causes the rotating cylinder to be exposed to the flow, causing the flow to reattach and negating or partially negating the passive lift increase associated with the control device.
  • FIGS. 9A, 9B, and 9C show a fourth embodiment in which a small flap or slat 700 is mechanically deployed from the outer surface of a lift control device in accordance with the present invention.
  • a portion of the air or water stream is forced to flow directly behind the protuberance, thereby reducing the separated flow region behind the protuberance.
  • the lift on the wing decreases as the channel's width 710 is increased and more flow is diverted behind lift modifying device.
  • the width of the channel varies between 1% and 20% of the width 130 of the controllable lift device.
  • the channel starts slightly upstream relative to the centerline 42 of the protuberance and continues approximately to the end of the rounded section.
  • FIG. 9A, 9B, and 9C show a fourth embodiment in which a small flap or slat 700 is mechanically deployed from the outer surface of a lift control device in accordance with the present invention.
  • a portion of the air or water stream is forced to flow directly behind the protuberance, thereby reducing
  • slat 700 nominally forms the leading edge of controllable lift device 100 .
  • Slat 700 is mechanically connected to rotatable axis 720 via connector 740 .
  • slat 700 forms a flow-diverting channel that reduces the separated flow region behind the protuberance, decreasing the lift on the wing as flow is diverted behind the lift modifying device.
  • Slat 700 can be curved, as shown in FIG. 9B , or flat.
  • Protuberance 730 houses a solenoidal or pneumatic rotary actuator which provides the required torque to rotate connector 740 and slat 700 .
  • Slat 700 is continuous over a particular span, with periodic connections to rotary actuators mounted inside independent protuberances 730 .
  • FIGS. 10A and 10B are two-dimensional cross-sectional views of a lifting surface in a fifth embodiment of the lift control device of the present invention.
  • the permeability of the device provides lift control.
  • the controllable lift device achieves its effect in part by creating a high-pressure region behind the flap. Allowing some of the air or water stream to pass through protuberance 100 decreases this effect and therefore decreases the lift on lifting surface 30 .
  • a rotating element 800 is used to provide a path 810 for the air or water to pass through protuberance 100 . Rotating element 800 such that channel 810 does not provide a path for air or water to flow through protuberance 100 (as depicted in FIG. 10A ) results in the maximum lift on lifting surface 30 .
  • Rotating element 800 such that channel 800 does provide a patch for air or water to flow through protuberance 100 (as depicted in FIG. 10B ), results in the minimum lift on lifting surface 30 .
  • An intermediate lift between the maximum and minimum values is achieved the rotating element 800 provides a partial path for air or water to flow through protuberance 100 .
  • the maximum fraction of the frontal area that is opened by the rotating element 800 is between 25% and 70% with a preferred value of about 45%.
  • FIG. 11A is a two-dimensional cross-sectional view of a lifting surface in a sixth embodiment of a lift control device in accordance with the present invention
  • FIG. 11B illustrates successive positions of a sliding fence used in the embodiment of FIG. 11A .
  • This embodiment is similar to that described in the previous paragraph, but here sliding fence 900 (shown FIG. 11B ) is used to open channels for the flow to pass through.
  • the maximum lift is achieved with the gates fully closed (as depicted in the top portion of FIG. 11B ) and the minimum lift when they are fully open (as depicted in the bottom portion of FIG. 11B ).
  • An intermediate effect occurs for partially open gates (as depicted in the middle portion of FIG. 11B ).
  • the maximum fraction of the frontal area that is opened by the gates is between 25% and 70% with a preferred value of 45%. ⁇
  • FIGS. 12A through 12D are two-dimensional cross sectional views of a lifting surface in a seventh embodiment of a lift control device in accordance with the present invention.
  • the lift control device includes a longitudinally disposed vane 1220 hingedly attached to segment 1210 for controllable movement about pivot 1230 .
  • the angle between segments 1210 and 1220 is fixed at about 90 degrees.
  • the two segments rotate in unison about pivot 1230 .
  • the pivot 1230 of the hinge is mounted inside of the lifting surface.
  • the vane 1220 is disposed in a downward direction, so as to increase the lift in a manner analogous to that described in connection with FIG. 2 above.
  • FIG. 12B when low lift is commanded by the controller, the vane 1220 and segment 1210 are rotated counter-clockwise about pivot 1230 , so that segment 1210 is hidden inside and vane 1220 is disposed flush to the body of lifting surface 30 .
  • FIGS. 12C and 12D show a related embodiment in which vane 1220 is externally mounted on the lifting surface, along with a set of fairings 1240 .
  • the vane is mounted via a set of hinges along its base; the set of hinges defining a pivot about which the vane is rotatable.
  • the length of the vane may occupy a majority of the length of the trailing edge, or may be implemented in discrete independent segments along the trailing edge.
  • a motor, mountable to the lifting surface and coupled to vane 1220 is used to adjust angular orientation of the vane about the pivot.
  • vane 1220 can be stored flush to lifting surface 30 , as in FIG. 12D .
  • Vane 1220 can then be deployed while simultaneously reducing the angle of attack of lifting surface 30 relative to the inflow in order to maintain the baseline lift. Vane 1220 can then be rotated by the motor at various angles between its fully deployed and stored positions, in order to vary the lift correspondingly from a maximum value to a minimum value.
  • This embodiment makes possible a rapid decrease in lift in response to turbulence and gusts. Unlike prior art which use various types of spoilers on the suction side of the blade to reduce lift, this embodiment does not suffer from lift hysteresis effects, making it particularly well-suited to application on wind turbine blades for the purpose of reducing unsteady loads due to wind shear, gusts, turbulence and the like.
  • Vane 1220 of FIGS. 12A-12D is caused to rotate about pivot 1230 by a geared DC motor, a stepper motor, a solenoid, a rotary actuator, a linear actuator, or some other prime mover (not shown), which collectively we call a “motor.”
  • a DC motor When the angular position of vane 1220 is controlled by a DC motor, the vane 1220 can serve simultaneously as both a sensor and lift control device.
  • the angular orientation of vane 1220 can be monitored with a shaft encoder or other suitable means. The angular position of vane 1220 is also required in order to detect system faults.
  • the mechanical torque required to rotate vane 1220 from the horizontal to the vertical position, and the torque required to hold the vane in the vertical position, is proportional to the square of the wind speed, along the segment 1220 , experienced by the vane. More generally, when the vane is at an angle ⁇ with respect to the adjacent body of lifting surface 30 , the force on the vane and therefore the torque required is then proportional to sin ⁇ .
  • the mechanical torque delivered by the DC motor via its shaft is proportional to the electrical current into the motor. In order to maintain a given angular orientation of the vane 1220 , an increase in wind speed will therefore require an increase in the current to the motor. That current can be measured and used by the central controller as a proxy for wind speed. In turn, the angular orientation of the vane 1220 (and consequently the lift provided by the lifting surface) can be controlled by the central controller as a function of the wind speed (which in turn may be determined based on the measured motor current).
  • the motor is housed within a fairing that provides for smooth flow over its surface.
  • the fairing extends into the flow by a distance equal to no more than about 0.5-3% of the lifting surface chord length. To accomplish this, it is necessary to provide a small cut-out or slot in the lifting surface to accommodate the part of the motor housing that extends below the motor shaft. The protuberance into the flow can be minimized by utilizing a geared DC motor with a shaft that is offset from the motor's centerline.
  • this arrangement is superior to housing the motor completely within the internal volume of the lifting surface and providing internal linkages to drive the lift control device, because the latter is mechanically complex and provides limited or no access for maintaining or replacing components.
  • the possibility of employing the present invention as a retrofit on existing lifting surfaces provides another benefit to this embodiment.
  • FIGS. 12C and 12D of the present invention may be mounted on a flexible lifting surface such as the blade of a wind turbine.
  • vane 1220 it may be necessary for vane 1220 to accommodate as much as 5-10 centimeters of vertical deflection (i.e., deflection in a direction transverse to the longitudinal axis) of the lifting surface over the span of the lift control device.
  • FIGS. 13A and 13B are side views (taken in a direction transverse to the longitudinal axis) of such flexible vanes for use in the embodiments of FIGS. 12C and 12D .
  • the vane of FIG. 13A accommodates flexing of the lifting surface using a frame, established by flexible lower segment 1310 connected to a set of stiff vertical elements 1320 , to support material 1330 , which is fabric or elastomeric or both.
  • battens 1340 Embedded within the material are battens 1340 , which provide longitudinal stiffness to the material to prevent excessive longitudinal bending in response to the aerodynamic forces.
  • vane 1220 can be constructed of overlapping elements 1340 , which, for example, may be rigid and trapezoidal, each of which is attached to lower segment 1310 but is otherwise capable of sliding relative to adjacent elements.
  • FIG. 14 is a schematic diagram for use in the embodiment of FIGS. 12C and 12D of the present invention.
  • Central plant controller 1410 receives inputs from various sensors (not shown) and outputs a shaft angle command to the motor assembly.
  • the motor assembly includes controller (or Programmable Logic Controller, PLC) 1420 , power supply 1430 , power amplifier 1440 , current sensor 1450 and motor 1460 .
  • Current sensor 1450 sends its output to a computer (which can be the controller 1420 or a separate computing unit) which outputs a wind speed estimate to the plant controller 1410 .
  • Shaft encoder 1470 provides continuous updates of the shaft angle to plant controller 1410 .
  • Motor 1460 provides rotary motion and torque to lift control vane 1220 .
  • FIGS. 15A and 15B are isometric mechanical drawings of the embodiment of FIGS. 12C and 12D of the present invention.
  • FIG. 15A depicts the embodiment in its entirety.
  • FIG. 15B is an exploded view, showing motor fairing 1520 , motor assembly 1530 , hinge-vane assembly 1540 , bearing 1550 , bearing side fairing 1560 and upstream fairing 1240 .
  • FIGS. 16A and 16B are isometric mechanical drawings of components of the embodiment of FIGS. 15A and 15B of the present invention.
  • FIG. 16A shows motor fairing assembly 1610 .
  • FIG. 16B is an exploded view, showing fairing 1520 and motor assembly 1530 .
  • Motor assembly 1530 includes shaft encoder 1620 , DC motor 1630 , and gear assembly 1640 .
  • FIG. 17 is a block diagram describing a system for controlling lift on a lifting surface in accordance with an embodiment of the present invention.
  • Computer controller 1710 collects data from some number, N, of sensors 1720 .
  • sensors 1720 could measure bending stress at various locations on the lifting surface, or the incoming flow velocity, or other data that can be used by the control algorithms to determine suitable changes to the lift needed to meet the control objectives.
  • Algorithms implemented in code housed on controller 1710 are used to derive command signals that are fed to the K actuator switches 1730 .
  • the data provided to the switches determines the state for the K actuators 1740 .
  • the actuator state is a numerical value, nominally between 0 and 1, representing the degree of lift between the minimum and maximum values to be provided by actuators 1740 .
  • Power supply 1750 provides a low-voltage DC signal, which is amplified by boost converter 1760 .
  • the high voltage signal from the boost converter is then sent to each of the K switches 1730 .
  • the switches then activate the K controllable lift devices A 1 , . . . , A K .
  • FIG. 18 is a block diagram of a system for pneumatically controlling unsteady loads on a lifting surface in accordance with an embodiment of the present invention.
  • computer controller 1810 collects data from some number, N, of sensors (e.g., SN 1 , . . . , SN N ).
  • power supply 1850 powers pump/compressor 1860 , which pressurizes air in K plenums (PL 1 , . . . , PL K ).
  • Valves V 1 , . . . , V K are commanded to open and close by the controller in order to activate controllable lift devices A 1 , . . . , A K .
  • pump/compressor 1860 connects directly to pneumatic actuators 1840 without intervening plena.
  • Embodiments of the invention as described can be applied on the suction side of an airfoil or the pressure side, or both the pressure and suction sides.
  • the device When applied on the pressure side, the device can be used to vary the lift from its nominal value (the baseline lift without the device), to the higher maximum lift achieved with the device.
  • the device When applied on the suction side, the device can be used to vary the lift from its baseline value to a lower minimum lift achieved with the device.

Abstract

A lift control device actively controls the lift force on a lifting surface. The device has a protuberance near a trailing edge of its lifting surface, which causes flow to separate from the lifting surface, generating regions of low pressure and high pressure which combine to increase the lift force on the lifting surface. The device further includes an arrangement to keep the flow attached around the protuberance or to modify the position of the protuberance in response to a command from a central controller, so as to provide an active control of the lift between a maximum value and a minimum value.

Description

RELATED APPLICATION
The present application claims the benefit of U.S. provisional application Ser. No. 62/666,472, filed May 3, 2018, which is hereby incorporated herein by reference in its entirety.
TECHNICAL FIELD
The present invention relates to devices for use in active control of the lift force generated by wings, airfoils, hydrofoils, rotating turbine blades, helicopter blades, propellers, and similar lifting bodies operating in an air or water stream.
BACKGROUND ART
Often, lifting surfaces experience unsteady forces caused by turbulence, gusts, wind shear, unsteady currents, upstream obstacles, and the like. Those unsteady forces lead to structural fatigue or catastrophic loads, and must be accounted for in system design. For example, to counter the anticipated occasional unsteady forces due to wind gusts, wind turbine components must be built strong and heavy, which makes them costly to build. Similarly, the cost and weight of materials used in the construction of airplane wings and fuselages is impacted by expected fatigue loads experienced by the wings and control surfaces.
In order to reduce the impact of unsteady forces, lifting surfaces may include active controls designed to modify the lift force in reaction to changes in the inflow velocity, in such a way as to minimize the fatigue loads experienced by the structure. One example is movable flaps, located either near the leading edge or the trailing edge of the blade. The flaps are controlled by a computer algorithm that is designed to minimize the undesirable fatigue load. In addition to movable flaps, there are other alternative active load control techniques, including boundary layer blowing or suction, synthetic jets, microtabs, and others.
Unfortunately, all of the active control techniques listed above are complex, and complexity leads to reliability problems, high capital cost, high energy cost, and safety issues. What is needed in the art is a simple and robust method of actively controlling the lift on lifting surfaces in response to changes in the inflow.
SUMMARY OF THE EMBODIMENTS
A Gurney flap is a passive device used to increase the lift generated by the flow over a lifting surface, such as a wing or wind turbine blade. A conventional Gurney flap consists of a simple rigid fence-like protuberance near the trailing edge of an airfoil. The device typically extends at right angles to the pressure side of the airfoil, and projects a distance equal to 1-3% of the wing's chord length into the flow. By producing a separated flow region just upstream and just downstream of the protuberance, the Gurney flap increases the pressure on the pressure side while keeping the boundary layer attached to suction side. This results in a significant increase in the lift in comparison to the airfoil without the Gurney flap.
Although embodiments of the present invention bear some resemblance to the Gurney flap, unlike the Gurney flap, embodiments of the present invention provide a lift device that can be actively controlled, so that either a baseline (or minimum) lift or a maximum lift, or an intermediate lift between those values, can be obtained on demand. For example, embodiments of the present invention can be used to reduce the unsteady forces experienced by wings and wind turbine blades by modifying the lift in response to wind gusts, turbulence, and the like. Such embodiments can be controlled by a computer algorithm that is designed to minimize the undesirable effects of the unsteady forces.
In one embodiment, the invention provides a lift control device for actively controlling lift of a lifting surface when the lift device is mounted to the lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length. In this embodiment, the lift control device includes:
a protuberance having a base and a tip and a length, the base configured to be mountable to the lifting surface near the trailing edge thereof, wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
a rotatable member having a central axis, rotatably mounted in the tip of the protuberance and occupying a majority of the length of the protuberance, the rotatable member mounted so that at least a circumferential portion of the rotatable member is exposed along a majority of its length directly to the fluid medium, so rotation of the rotatable member entrains fluid along its boundary layer so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface;
a motor, mountable to the lifting surface and coupled to the rotatable member, the motor configured to produce angular rotation of the rotatable member about its central axis; and
a controller, coupled to the motor, and configured to control rotation of the motor and therefore of the rotatable member, so that the controller controls lift of the lifting surface by controlling rotation of the rotatable member.
In a related embodiment, the rotatable member is cylindrical. Alternatively, the rotatable member is a frustum of a cone. Optionally, the rotating member is roughened. Also optionally, the rotating member is splined.
In another related embodiment, the device further includes a plasma actuator array mechanically coupled to a surface of the protuberance just upstream or downstream of the rotating member and coupled to the controller, so that the controller controls the plasma actuator array to control flow over the array so as to control lift of the lifting surface.
In various embodiments, the lifting surface is a blade of a wind turbine; or is selected from the group consisting of a wing of an airplane and a rotating blade of a rotorcraft; or is selected from the group consisting of a foil of a hydrofoil and a blade of a marine propeller.
In another embodiment, the invention provides a lift control device for statically controlling lift of a lifting surface when the lift device is mounted to the lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length. In this embodiment, the lift control device includes:
a protuberance having a base and a tip and a length, the base configured to be mountable to the lifting surface near the trailing edge thereof, wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
a rotatable member having a central axis, rotatably mounted in the tip of the protuberance and occupying a majority of the length of the protuberance, the rotatable member having mechanical stiffness slightly greater than that of the lifting surface, the rotatable member mounted so bending of the lifting surface causes at least a circumferential portion of the rotatable member to be exposed along a majority of its length directly to the fluid medium, so rotation of the rotatable member entrains fluid along its boundary layer so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface; and
a fence, mountable to the lifting surface upstream of the rotatable member, with mechanical stiffness matching that of the blade.
Optionally, the rotatable member is cylindrical. Alternatively, the rotatable member is a frustum of a cone. In a related embodiment, the rotating member is roughened, Alternatively or in addition, the rotating member is splined. In another related embodiment, the lift control device further includes a plasma actuator array mechanically coupled to a surface of the protuberance just upstream or downstream of the rotating member, or on the surface of the rotating member, and coupled to a controller, such controller configured to control the plasma actuator array to control flow over the array so as to control lift of the lifting surface.
In a related embodiment, the lifting surface is a blade of a wind turbine. In another related embodiment, the lifting surface is selected from the group consisting of a wing of an airplane and a rotating blade of a rotorcraft. In yet another related embodiment, the lifting surface is selected from the group consisting of a foil of a hydrofoil and a blade of a marine propeller.
In another embodiment, the invention provides a lift control device for actively controlling lift of a lifting surface when the lift device is mounted to the lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length. In this embodiment, the lift control device includes:
a protuberance having a base and a tip and a length, the base configured to be mountable to the lifting surface near the trailing edge thereof, wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
a translatable member, mounted in the tip of the protuberance and occupying a majority of the length of the protuberance, the translatable member mounted so that at least a circumferential portion of the translatable member is exposed along a majority of its length directly to the fluid medium, so translation of the translatable member entrains fluid along its boundary layer so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface;
a motor, mountable to the lifting surface and coupled to the translatable member, the motor configured to produce extension and retraction of the translatable member relative to the tip of the protuberance; and
a controller, coupled to the motor, and configured to control rotation of the motor and therefore of the position of the translatable member, so that the controller controls lift of the lifting surface by controlling position of the translatable member.
In a related embodiment, the lifting surface is a blade of a wind turbine. In another related embodiment, the lifting surface is selected from the group consisting of a wing of an airplane and a rotating blade of a rotorcraft. In yet another related embodiment, the lifting surface is selected from the group consisting of a foil of a hydrofoil and a blade of a marine propeller.
In another embodiment, the invention provides a lift control device for actively controlling lift of a lifting surface when the lift control device is mounted to the lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length. In this embodiment, the lift control device includes:
a protuberance having a base and a tip and a length, the base configured to be mountable to the lifting surface near the trailing edge thereof, wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
a translatable or rotatable member, mounted in the interior of the protuberance and occupying a majority of the length of the protuberance, the translatable or rotatable member mounted so that translation or rotation of the member entrains fluid in a channel or array of channels through which fluid passes so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface;
a motor, mountable to the lifting surface and coupled to the translatable or rotatable member, the motor configured to produce translation or rotation of the member; and
a controller, coupled to the motor, and configured to control rotation of the motor and therefore of the position of the translatable or rotatable member, so that the controller controls lift of the lifting surface by controlling position of the translatable or rotatable member.
In a related embodiment, the lifting surface is a blade of a wind turbine. In another related embodiment, the lifting surface is selected from the group consisting of a wing of an airplane and a rotating blade of a rotorcraft. In yet another related embodiment, the lifting surface is selected from the group consisting of a foil of a hydrofoil and a blade of a marine propeller.
In another embodiment, the invention provides a method for controlling the lift generated by a lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length. In this embodiment, the method includes:
mounting, to the lifting surface, near the trailing edge thereof, a protuberance having a base and a tip and a length, in a manner wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
rotatably mounting a rotatable member having a central axis in the tip of the protuberance and occupying a majority of the length of the protuberance, the rotatable member mounted so that at least a circumferential portion of the rotatable member is exposed along a majority of its length directly to the fluid medium, so rotation of the rotatable member entrains fluid along its boundary layer so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface; and
controlling rotation of the rotatable member so as to control lift of the lifting surface.
In another embodiment, the invention provides a method for controlling the lift generated by a lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length. In this embodiment, the method incudes:
mounting, to the lifting surface, near the trailing edge thereof, a protuberance having a base and a tip and a length, in a manner wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
translatably mounting a translatable member located in the tip of the protuberance and occupying a majority of the length of the protuberance, the translatable member mounted so that at least a circumferential portion of the translatable member is exposed along a majority of its length directly to the fluid medium, so translation of the translatable member entrains fluid along its boundary layer so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface; and
controlling rotation of the translatable member so as to control lift of the lifting surface.
In yet another embodiment, the invention provides a method for controlling the lift generated by a lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length. In this embodiment, the method includes:
mounting, to the lifting surface, near the trailing edge thereof, a protuberance having a base and a tip and a length, in a manner wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
translatably or rotatably mounting a translatable or rotatable member, as the case may be, located inside the protuberance and occupying a majority of the length of the protuberance, the translatable or rotatable member mounted so that translation or rotation of the member entrains fluid in a channel or array of channels through which fluid passes so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface; and
controlling rotation of the translatable member so as to control lift of the lifting surface.
In another embodiment, the invention provides a lift control device for actively controlling lift of a lifting surface when the lift control device is mounted to the lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length and defining a longitudinal axis. In this embodiment, the lift control device includes:
a longitudinally disposed vane, the vane having a base and a length, the base configured to be mounted to the pressure surface, near the trailing edge of the lifting surface, via a set of hinges along the base, the set of hinges defining a pivot about which the vane is rotatable, the vane creating a region of separated flow downstream of the vane, such region having the effect of increasing lift produced by the lifting surface when the vane is at a non-zero angle with respect to the pressure surface;
a motor, mountable to the lifting surface and coupled to vane, the motor configured to adjust angular orientation of the vane about the pivot, the angular orientation controlling the extent of lift increase produced by the vane; and
a controller, coupled to the motor, and configured to control rotation of the motor and therefore angular orientation of the vane about the pivot, so that the controller controls lift of the lifting surface by controlling angular orientation of the vane.
In a related embodiment, the device further includes a shaft encoder, coupled to the vane and to the controller, that provides to the controller a signal related to angular orientation of the vane about the pivot; and a control line, coupled to the motor, that provides an electrical signal related to torque being produced by the motor, the control line coupled to the controller. The controller is configured to use the electrical signal on the control line to determine a quantity related to wind speed experienced by the vane over the pressure surface and to use the determined quantity to control angular orientation of the vane, as measured via the shaft encoder, so as to adjust lift of the lifting surface in relation to the wind speed.
In another related embodiment, the device further includes a set of fairings mountable to the lifting surface with respect to the vane so as to smooth flow over the vane.
In a further related embodiment, the vane includes a plurality of discrete, overlapping elements. Alternatively or in addition, the length of the vane occupies a majority of the length of the trailing edge.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing features of embodiments will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
FIG. 1 shows a two-dimensional cross-sectional view of a lifting surface with a traditional prior art (non-controllable) Gurney flap.
FIG. 2A is a two-dimensional cross-sectional view of a lifting surface with one embodiment of the controllable lift device of the present invention.
FIG. 2B provides detail in the vicinity of the protuberance 100 of FIG. 2A.
FIG. 3 is a plan view integrated with a cross-sectional view of the lifting surface with the controllable lift device of FIG. 2.
FIG. 4A is a two-dimensional cross-sectional view of a lifting surface with a second embodiment of the controllable lift device of the present invention.
FIG. 4B provides detail in the vicinity of the protuberance 100 of FIG. 4A.
FIG. 5A is a two-dimensional cross-sectional view of a lifting surface with a third embodiment of the controllable lift device of the present invention.
FIG. 5B provides detail in the vicinity of the protuberance 100 of FIG. 5A.
FIG. 6A is a two-dimensional cross-sectional view of a lifting surface with the combination of the controllable lift device and a plasma actuator in accordance with an embodiment of the present invention.
FIG. 6B provides detail in the vicinity of dielectric barrier discharge plasma actuators 310 of FIG. 6A.
FIG. 7 is a two-dimensional cross-sectional view of a lifting surface with the combination of the controllable lift device and a backward facing step in accordance with an embodiment of the present invention.
FIGS. 8A and 8B are a plan and edge views respectively of a planar lifting surface with a semi-active embodiment of the controllable lift device in accordance with an embodiment of the present invention.
FIG. 8C provides is a further edge view when the lifting surface is deformed as a result of wind, so as to cause a change of in the normal position of the rotating cylinder 140 shown in FIG. 8D to an exposed position shown in FIG. 8E in which the rotating cylinder is exposed to flow.
FIGS. 9A, 9B, and 9C are two-dimensional cross-sectional views of a lifting surface with a fourth embodiment of the controllable lift device of the present invention.
FIGS. 10A and 10B are two-dimensional cross-sectional views of a lifting surface in a fifth embodiment of the controllable lift device of the present invention.
FIG. 11A is a two-dimensional cross-sectional view of a lifting surface in a sixth embodiment of the controllable lift device of the present invention, and FIG. 11B illustrates successive positions of a sliding fence used in the embodiment of FIG. 11A.
FIGS. 12A through 12D are two-dimensional cross sectional views of a lifting surface showing a seventh embodiment of the controllable lift device of the present invention.
FIGS. 13A and 13B are side views (taken in a direction transverse to the longitudinal axis) of flexible vanes for use in the embodiments of FIGS. 12C and 12D.
FIG. 14 is a schematic diagram for the embodiment of the present invention represented by FIGS. 12C and 12D.
FIGS. 15A and 15B are isometric drawings of the embodiment of the present invention represented by FIGS. 12C and 12D.
FIGS. 16A and 16B are isometric mechanical drawings of components of the embodiment of FIGS. 15A and 15B of the present invention.
FIG. 17 is a block diagram of a system for electrically controlling unsteady loads on a lifting surface in accordance with an embodiment of the present invention.
FIG. 18 is a block diagram of a system for pneumatically controlling unsteady loads on a lifting surface in accordance with an embodiment of the present invention.
DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
Definitions. As used in this description and the accompanying claims, the following terms shall have the meanings indicated, unless the context otherwise requires:
An “active lift control” device or system is one which takes an input signal from a computer processor and uses that signal to change the state of an actuator, so as to modify the lift force on a lifting surface.
An “actuator” is a mechanical or electrical device that can be used to modify the lift force on a lifting surface.
An “array” of items includes at least one of the items.
A “lift force” is the force experienced by a lifting surface, resulting from flow around that lifting surface, oriented at right angles to the velocity of the fluid medium just upstream of the lifting surface.
A “passive lift control” device is one which modifies the lift force on a lifting surface without any active control from a computer processor. Passive changes in lift occur naturally based on the mechanical design of the device or system in reaction to changes in inflow, position of lifting surface, or other relevant parameter.
The “chord length” of a lifting surface, having a leading edge and a trailing edge along a span defining a longitudinal axis of the lifting surface, is the length of an imaginary straight line, normal to the longitudinal axis, from the leading edge to the trailing edge.
FIG. 1 shows a two-dimensional cross-sectional view of a lifting surface with a traditional prior art (non-controllable) Gurney flap. In this figure and all figures of a lifting surface below, the flow over the lifting surface starts at the left and proceeds to the right. Similarly, in all figures of the lifting surface herein, span of the lifting surface, which defines its longitudinal axis, is perpendicular to the page. Referring to FIG. 1, a conventional prior art Gurney flap 10 is a small fence-like structure that projects from the pressure side 20, near the trailing edge 40, of a lifting surface 30. For convenience of illustration, the size of the Gurney flap is exaggerated in relation to that of the lifting surface 30. In some circumstances, the Gurney flap can instead project from the suction side 50 near the trailing edge 40. When used on the pressure side, the Gurney flap can significantly increase the lift force on the lifting surface. When used on the suction side, the Gurney flap can significantly decrease the lift force (or generate a negative lift force).
FIG. 2A shows one embodiment of the active lift control device of the present invention. In this embodiment, the device includes a protuberance 100 projecting from the pressure side of lifting surface 30 and oriented parallel to the longitudinal axis of the lifting surface (which, as discussed above in connection with FIG. 1, is perpendicular to the page. FIG. 2B provides detail in the vicinity of the protuberance 100 of FIG. 2A. The lifting surface is operative in a fluid medium, such as air, in which case it is an airfoil, which may be deployed, for example, as a wing or a propeller blade, or water, in which case it may be deployed, for example, in a marine propeller or in a foil of a hydrofoil. The lifting surface is movable relative to the fluid medium so as to define a leading edge 21 and a trailing edge 22, the lifting surface also having a pressure surface 23 thereof and a vacuum surface 24 thereof. The leading edge and the trailing edge run along the span of the lifting surface. (Again, for convenience of illustration, in this and subsequent figures, the size of the device is exaggerated in relation to the size of the lifting surface 30.) The height 110 of the protuberance is between 0.1% and 20% of the airfoil's chord length 120, with a preferred height ranging between about 1% and about 2% of the chord length. In this embodiment, the aspect ratio, defined here as the ratio of the height of the protuberance 110 to its width 130, is between about 0.5 and 5.0, with a preferred aspect ratio of about 2.0. At the outermost extent of the height 110 of the protuberance is mounted a hollow rotatable member 140, which may be cylindrical and is mounted in a manner leaving it free to rotate about its central axis. Additionally, the rotatable member is mounted so that at least a circumferential portion of the rotatable member is exposed along a majority of its length directly to the fluid medium. By rotating the cylinder in the direction shown in FIG. 2A, the boundary layer is caused to remain attached to the surface of the cylinder. This rotation reduces the separated flow region downstream of the control device, closely approximating the baseline flow conditions which would occur without the presence of the control device.
FIG. 3 shows a plan view integrated with a cross-sectional view of the lifting surface 30 with the controllable lift device of FIG. 2. In some low speed flows (which require only a small motor to turn the cylinder), or in cases where a large control device is used, the shaft is driven by a motor housed inside chamber 210 at one end of the shaft. Shaft bearing 220 is located at the other end of the shaft. However, in some cases of interest, chamber 210 has insufficient volume to house the motor. In those cases, cylinder 140 is driven by motor 230 mounted inside the airfoil 30, as shown in FIG. 3. The rotational rate of the shaft is determined by a computer controller (not shown). The upper limit of the rotational rate will be proportional to the magnitude of the air speed upstream of the airfoil. The ratio of the surface speed of the cylinder (Uc, defined as the rotational frequency in radians per second times the radius in meters) to the incoming flow speed (U, in meters per second) is between about 1 and about 3. Rotating the cylinder at that rate will cause the flow to remain attached to the surface, negating or partially negating the increased lift due to the device.
For use on rotating blades, such as the blades of helicopters or wind turbines, for example, the relative speed of the flow over the lifting surface increases in proportion to the distance from the axis of rotation. As a result, the surface speed of the cylinder, Uc, must also increase in proportion to the distance from the axis of rotation of the rotating blades. To accomplish that using a stiff cylinder, it may be desirable to increase the diameter of the cylinder in proportion to the same distance. In this case, the cylinder is replaced by a frustum of cone with its base (where the diameter of the rotating member is at a maximum) at the outer span towards the tip of the rotating blade, and tip of the frustum (where the diameter of the rotating member is at a minimum) at the inner span towards the hub of the rotating blade.
FIG. 4A shows a two-dimensional cross-sectional view of a lifting surface with a second embodiment of the lift control device of the present invention. FIG. 4B provides detail in the vicinity of the protuberance 100 of FIG. 4A. In this embodiment, the top of protuberance 100 is rounded, and the center 41 of the rotating cylinder 140 is displaced downstream relative to a centerline 42 of the protuberance.
FIG. 5A shows a two-dimensional cross-sectional view of a lifting surface with a third embodiment of the lift control device of the present invention. FIG. 5B provides detail in the vicinity of the protuberance 100 of FIG. 5A. In this embodiment, the leading edge of protuberance 100 is faired into the surface of the airfoil, with a smoothly varying leading edge region 51 followed by a more rapidly varying downstream shape 52. This embodiment is intended to reduce the parasitic form drag associated with the active flow control device. The rotating cylinder 140 is placed on the downstream side of the protuberance, as shown in the Figure.
In all embodiments, the cylinder may have a smooth surface, or may be roughened using standard roughness parameters (as defined, for example, in the ISO 4287: 1997 standard). Alternatively, the cylinder may be grooved or splined, or provided with another surface shape that increases the surface-entrainment of the fluid. In one embodiment, the cylinder includes splines aligned parallel to the cylinder axis, the splines projecting radially by between about 0.1% and 1% of the cylinder radius. The cylinder includes between about 10 and 100 splines on its surface.
In some circumstances, it may be beneficial to add to the device a second form of active flow control either just upstream, just downstream, or both upstream and downstream, of the rotating cylinder. Examples of other flow control techniques include boundary layer blowing, boundary layer suction, synthetic jets, or plasma actuators.
FIG. 6A is a two-dimensional cross-sectional view of a lifting surface with the combination of a lift control device and a plasma actuator in accordance with an embodiment of the present invention. In this embodiment, when the working fluid is air, dielectric barrier discharge plasma actuators 310 are placed on the surface of the protuberance just upstream and just downstream of the rotating cylinder. FIG. 6B provides detail in the vicinity of dielectric barrier discharge plasma actuators 310 of FIG. 6A. The plasma actuators consist of a thin layer of dielectric material 320, a covered electrode 330, an exposed electrode 340, and substrate 350. The plasma actuators can be driven by an AC power supply or a pulsed-DC power supply (not shown). The actuators can be oriented such that they impart a force 360 on the fluid largely in line with the local flow and tangential to the surface, or opposing the local flow, or with components in both tangential directions. The actuator may optionally include a second exposed electrode 370 on the surface of the dielectric. The third electrode may be powered by a second power supply (not shown) to provide a bias voltage intended to increase the force on the fluid.
In some situations, it may be desirable to drive the cylinder at a fixed rate continuously, even in circumstances when the computer controller might, from time to time, call for separated flow (e.g., high lift). For example, in situations where it is important to react quickly to changes in the inflow (as is often the case when mitigating fatigue loads on wind turbine blades, for example), the time it takes to start and stop the cylinder rotation may be prohibitively long or require excessively large torque. In those situations, the second active flow control device can be used to induce separation upstream of the cylinder. While the rotating cylinder is capable of delaying separation, it generally will not cause separated flow to reattach when the separation point is upstream of the cylinder. One embodiment of this approach is shown in FIG. 7, which shows a two-dimensional cross-sectional view of a lifting surface with the combination of the controllable lift device and a backward facing step in accordance with an embodiment of the present invention. In this embodiment, a backward-facing step 610 is located near the tip of the control device. The step 610 normally causes an adverse pressure gradient to develop due to the steep geometry slope. In the embodiment of FIG. 7, a plasma actuator of the general type illustrated in FIGS. 6A and 6B is also provided, and the plasma actuator is activated when it is desired to maintain attached flow beyond the step (e.g., when the controller calls for the low lift condition). The plasma actuator is then deactivated when high lift is called for. Since the flow reacts to the plasma actuator very quickly (generally within 10-100 milliseconds), the actuator can provide rapid variation in, and therefore rapid control of, lift.
In other situations, the rotating cylinder may only partially reattach the flow around the device. For example, the required rotational rate may be excessively high for achieving full lift degradation. To address such a situation, the surface of the rotating cylinder may be configured with an array of plasma actuators; activation of this array causes further attachment of the flow and further degradation of the lift on the wing. As in the embodiments described above in connection with FIGS. 6A, 6B, 7, 8A, 8B, 8C, and 8D, the fast-reacting plasma actuators of this embodiment can produce rapid changes in lift. The activation of the plasma actuators is synchronized with angular position of the rotating cylinder so that the actuators are powered in the same angular position for every cycle.
In other situations, it may be desirable to operate the lift control device in a semi-active mode. For example, to control bending of wings and wind turbine blades in response to increasing wind speed, the device can be configured to reduce the local lift force when bending is caused by excessive lift associated with a sudden increase in wind speed. The bending control can be accomplished by making the bending stiffness of the cylinder 140 slightly higher than the bending stiffness of the airfoil 130. This approach is illustrated in FIGS. 8A, 8B, 8C, and 8D, which show a plan view and an edge view of a planar lifting surface with a semi-active embodiment of the controllable lift device in accordance with an embodiment of the present invention. In the natural unbent state, the rotating cylinder 140 is shielded by the upstream fence 620, so that the control device acts like a traditional Gurney flap in increasing the lift relative to the baseline lifting surface without the device. When the lifting surface bends away from the wind, the differential stiffness causes the rotating cylinder to be exposed to the flow, causing the flow to reattach and negating or partially negating the passive lift increase associated with the control device.
FIGS. 9A, 9B, and 9C show a fourth embodiment in which a small flap or slat 700 is mechanically deployed from the outer surface of a lift control device in accordance with the present invention. In this embodiment, a portion of the air or water stream is forced to flow directly behind the protuberance, thereby reducing the separated flow region behind the protuberance. The lift on the wing decreases as the channel's width 710 is increased and more flow is diverted behind lift modifying device. The width of the channel varies between 1% and 20% of the width 130 of the controllable lift device. The channel starts slightly upstream relative to the centerline 42 of the protuberance and continues approximately to the end of the rounded section. Alternatively, referring to the embodiment depicted in FIG. 9B, slat 700 nominally forms the leading edge of controllable lift device 100. Slat 700 is mechanically connected to rotatable axis 720 via connector 740. When rotated, as shown in FIG. 9C, slat 700 forms a flow-diverting channel that reduces the separated flow region behind the protuberance, decreasing the lift on the wing as flow is diverted behind the lift modifying device. Slat 700 can be curved, as shown in FIG. 9B, or flat. Protuberance 730 houses a solenoidal or pneumatic rotary actuator which provides the required torque to rotate connector 740 and slat 700. Slat 700 is continuous over a particular span, with periodic connections to rotary actuators mounted inside independent protuberances 730.
FIGS. 10A and 10B are two-dimensional cross-sectional views of a lifting surface in a fifth embodiment of the lift control device of the present invention. In this embodiment, the permeability of the device provides lift control. The controllable lift device achieves its effect in part by creating a high-pressure region behind the flap. Allowing some of the air or water stream to pass through protuberance 100 decreases this effect and therefore decreases the lift on lifting surface 30. In this embodiment, a rotating element 800 is used to provide a path 810 for the air or water to pass through protuberance 100. Rotating element 800 such that channel 810 does not provide a path for air or water to flow through protuberance 100 (as depicted in FIG. 10A) results in the maximum lift on lifting surface 30. Rotating element 800 such that channel 800 does provide a patch for air or water to flow through protuberance 100 (as depicted in FIG. 10B), results in the minimum lift on lifting surface 30. An intermediate lift between the maximum and minimum values is achieved the rotating element 800 provides a partial path for air or water to flow through protuberance 100. The maximum fraction of the frontal area that is opened by the rotating element 800 is between 25% and 70% with a preferred value of about 45%.
FIG. 11A is a two-dimensional cross-sectional view of a lifting surface in a sixth embodiment of a lift control device in accordance with the present invention, and FIG. 11B illustrates successive positions of a sliding fence used in the embodiment of FIG. 11A. This embodiment is similar to that described in the previous paragraph, but here sliding fence 900 (shown FIG. 11B) is used to open channels for the flow to pass through. As with the rotating element 800 of FIG. 10A, the maximum lift is achieved with the gates fully closed (as depicted in the top portion of FIG. 11B) and the minimum lift when they are fully open (as depicted in the bottom portion of FIG. 11B). An intermediate effect occurs for partially open gates (as depicted in the middle portion of FIG. 11B). The maximum fraction of the frontal area that is opened by the gates is between 25% and 70% with a preferred value of 45%.\
FIGS. 12A through 12D are two-dimensional cross sectional views of a lifting surface in a seventh embodiment of a lift control device in accordance with the present invention. In FIGS. 12A and 12B, the lift control device includes a longitudinally disposed vane 1220 hingedly attached to segment 1210 for controllable movement about pivot 1230. The angle between segments 1210 and 1220 is fixed at about 90 degrees. The two segments rotate in unison about pivot 1230. In FIGS. 12A and 12B, the pivot 1230 of the hinge is mounted inside of the lifting surface. In FIG. 12A, the vane 1220 is disposed in a downward direction, so as to increase the lift in a manner analogous to that described in connection with FIG. 2 above. As shown in FIG. 12B, when low lift is commanded by the controller, the vane 1220 and segment 1210 are rotated counter-clockwise about pivot 1230, so that segment 1210 is hidden inside and vane 1220 is disposed flush to the body of lifting surface 30.
FIGS. 12C and 12D show a related embodiment in which vane 1220 is externally mounted on the lifting surface, along with a set of fairings 1240. The vane is mounted via a set of hinges along its base; the set of hinges defining a pivot about which the vane is rotatable. The length of the vane may occupy a majority of the length of the trailing edge, or may be implemented in discrete independent segments along the trailing edge. A motor, mountable to the lifting surface and coupled to vane 1220, is used to adjust angular orientation of the vane about the pivot. In this embodiment, vane 1220 can be stored flush to lifting surface 30, as in FIG. 12D. Vane 1220 can then be deployed while simultaneously reducing the angle of attack of lifting surface 30 relative to the inflow in order to maintain the baseline lift. Vane 1220 can then be rotated by the motor at various angles between its fully deployed and stored positions, in order to vary the lift correspondingly from a maximum value to a minimum value. This embodiment makes possible a rapid decrease in lift in response to turbulence and gusts. Unlike prior art which use various types of spoilers on the suction side of the blade to reduce lift, this embodiment does not suffer from lift hysteresis effects, making it particularly well-suited to application on wind turbine blades for the purpose of reducing unsteady loads due to wind shear, gusts, turbulence and the like.
Vane 1220 of FIGS. 12A-12D is caused to rotate about pivot 1230 by a geared DC motor, a stepper motor, a solenoid, a rotary actuator, a linear actuator, or some other prime mover (not shown), which collectively we call a “motor.” When the angular position of vane 1220 is controlled by a DC motor, the vane 1220 can serve simultaneously as both a sensor and lift control device. In this context, the angular orientation of vane 1220 can be monitored with a shaft encoder or other suitable means. The angular position of vane 1220 is also required in order to detect system faults. The mechanical torque required to rotate vane 1220 from the horizontal to the vertical position, and the torque required to hold the vane in the vertical position, is proportional to the square of the wind speed, along the segment 1220, experienced by the vane. More generally, when the vane is at an angle θ with respect to the adjacent body of lifting surface 30, the force on the vane and therefore the torque required is then proportional to sin θ. The mechanical torque delivered by the DC motor via its shaft is proportional to the electrical current into the motor. In order to maintain a given angular orientation of the vane 1220, an increase in wind speed will therefore require an increase in the current to the motor. That current can be measured and used by the central controller as a proxy for wind speed. In turn, the angular orientation of the vane 1220 (and consequently the lift provided by the lifting surface) can be controlled by the central controller as a function of the wind speed (which in turn may be determined based on the measured motor current).
Providing maximum accessibility of all components is one objective of the embodiment of FIGS. 12C and 12D of the present invention. To that end, the motor is housed within a fairing that provides for smooth flow over its surface. To minimize parasitic drag losses, the fairing extends into the flow by a distance equal to no more than about 0.5-3% of the lifting surface chord length. To accomplish this, it is necessary to provide a small cut-out or slot in the lifting surface to accommodate the part of the motor housing that extends below the motor shaft. The protuberance into the flow can be minimized by utilizing a geared DC motor with a shaft that is offset from the motor's centerline. In many applications, such as on wind turbine blades, this arrangement is superior to housing the motor completely within the internal volume of the lifting surface and providing internal linkages to drive the lift control device, because the latter is mechanically complex and provides limited or no access for maintaining or replacing components. The possibility of employing the present invention as a retrofit on existing lifting surfaces provides another benefit to this embodiment.
In some circumstances, the embodiment of FIGS. 12C and 12D of the present invention may be mounted on a flexible lifting surface such as the blade of a wind turbine. In those circumstances, it may be necessary for vane 1220 to accommodate as much as 5-10 centimeters of vertical deflection (i.e., deflection in a direction transverse to the longitudinal axis) of the lifting surface over the span of the lift control device.
To accommodate flexing of the lifting surface in this context, we have developed flexible vanes in accordance with various embodiments of the present invention. FIGS. 13A and 13B are side views (taken in a direction transverse to the longitudinal axis) of such flexible vanes for use in the embodiments of FIGS. 12C and 12D. The vane of FIG. 13A accommodates flexing of the lifting surface using a frame, established by flexible lower segment 1310 connected to a set of stiff vertical elements 1320, to support material 1330, which is fabric or elastomeric or both. Embedded within the material are battens 1340, which provide longitudinal stiffness to the material to prevent excessive longitudinal bending in response to the aerodynamic forces.
Alternatively, as shown in FIG. 13B, vane 1220 can be constructed of overlapping elements 1340, which, for example, may be rigid and trapezoidal, each of which is attached to lower segment 1310 but is otherwise capable of sliding relative to adjacent elements.
FIG. 14 is a schematic diagram for use in the embodiment of FIGS. 12C and 12D of the present invention. Central plant controller 1410 receives inputs from various sensors (not shown) and outputs a shaft angle command to the motor assembly. The motor assembly, in turn, includes controller (or Programmable Logic Controller, PLC) 1420, power supply 1430, power amplifier 1440, current sensor 1450 and motor 1460. Current sensor 1450 sends its output to a computer (which can be the controller 1420 or a separate computing unit) which outputs a wind speed estimate to the plant controller 1410. Shaft encoder 1470 provides continuous updates of the shaft angle to plant controller 1410. Motor 1460 provides rotary motion and torque to lift control vane 1220.
FIGS. 15A and 15B are isometric mechanical drawings of the embodiment of FIGS. 12C and 12D of the present invention. FIG. 15A depicts the embodiment in its entirety. FIG. 15B is an exploded view, showing motor fairing 1520, motor assembly 1530, hinge-vane assembly 1540, bearing 1550, bearing side fairing 1560 and upstream fairing 1240.
FIGS. 16A and 16B are isometric mechanical drawings of components of the embodiment of FIGS. 15A and 15B of the present invention. FIG. 16A shows motor fairing assembly 1610. FIG. 16B is an exploded view, showing fairing 1520 and motor assembly 1530. Motor assembly 1530 includes shaft encoder 1620, DC motor 1630, and gear assembly 1640.
FIG. 17 is a block diagram describing a system for controlling lift on a lifting surface in accordance with an embodiment of the present invention. Computer controller 1710 collects data from some number, N, of sensors 1720. For example, sensors 1720 could measure bending stress at various locations on the lifting surface, or the incoming flow velocity, or other data that can be used by the control algorithms to determine suitable changes to the lift needed to meet the control objectives. Algorithms implemented in code housed on controller 1710 are used to derive command signals that are fed to the K actuator switches 1730. The data provided to the switches determines the state for the K actuators 1740. The actuator state is a numerical value, nominally between 0 and 1, representing the degree of lift between the minimum and maximum values to be provided by actuators 1740. Power supply 1750 provides a low-voltage DC signal, which is amplified by boost converter 1760. The high voltage signal from the boost converter is then sent to each of the K switches 1730. The switches then activate the K controllable lift devices A1, . . . , AK.
FIG. 18 is a block diagram of a system for pneumatically controlling unsteady loads on a lifting surface in accordance with an embodiment of the present invention. As in FIG. 17, computer controller 1810 collects data from some number, N, of sensors (e.g., SN1, . . . , SNN). In this case, power supply 1850 powers pump/compressor 1860, which pressurizes air in K plenums (PL1, . . . , PLK). Valves V1, . . . , VK are commanded to open and close by the controller in order to activate controllable lift devices A1, . . . , AK. Alternatively, pump/compressor 1860 connects directly to pneumatic actuators 1840 without intervening plena.
Embodiments of the invention as described can be applied on the suction side of an airfoil or the pressure side, or both the pressure and suction sides. When applied on the pressure side, the device can be used to vary the lift from its nominal value (the baseline lift without the device), to the higher maximum lift achieved with the device. When applied on the suction side, the device can be used to vary the lift from its baseline value to a lower minimum lift achieved with the device.
The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims.

Claims (29)

We claim:
1. A lift control device for actively controlling lift of a lifting surface when the lift device is mounted to the lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length, the lift control device comprising:
a protuberance having a base and a tip and a length, the base configured to be mountable to the lifting surface near the trailing edge thereof, wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
a rotatable member having a central axis, rotatably mounted in the tip of the protuberance and occupying a majority of the length of the protuberance, the rotatable member mounted so that at least a circumferential portion of the rotatable member is exposed along a majority of its length directly to the fluid medium, so rotation of the rotatable member entrains fluid along its boundary layer so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface;
a motor, mountable to the lifting surface and coupled to the rotatable member, the motor configured to produce angular rotation of the rotatable member about its central axis; and
a controller, coupled to the motor, and configured to control rotation of the motor and therefore of the rotatable member, so that the controller controls lift of the lifting surface by controlling rotation of the rotatable member.
2. The lift control device of claim 1, wherein the rotatable member is cylindrical.
3. The lift control device of claim 1, wherein the rotatable member is a frustum of a cone.
4. The lift control device of claim 1, wherein the rotatable member is roughened.
5. The lift control device of claim 1, wherein the rotatable member is splined.
6. The lift control device of claim 1, further comprising a plasma actuator array mechanically coupled to a surface of the protuberance just upstream or downstream of the rotatable member, or on the surface of the rotating member, and coupled to the controller, so that the controller controls the plasma actuator array to control flow over the array so as to control lift of the lifting surface.
7. The lift control device of claim 1, wherein the lifting surface is a blade of a wind turbine.
8. The lift control device of claim 1, wherein the lifting surface is selected from the group consisting of a wing of an airplane and a rotating blade of a rotorcraft.
9. The lift control of claim 1, wherein the lifting surface is selected from the group consisting of a foil of a hydrofoil and a blade of a marine propeller.
10. A lift control device for statically controlling lift of a lifting surface when the lift device is mounted to the lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length, the lift control device comprising:
a protuberance having a base and a tip and a length, the base configured to be mountable to the lifting surface near the trailing edge thereof, wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
a rotatable member having a central axis, rotatably mounted in the tip of the protuberance and occupying a majority of the length of the protuberance, the rotatable member having mechanical stiffness greater than that of the lifting surface, the rotatable member mounted so bending of the lifting surface causes at least a circumferential portion of the rotatable member to be exposed along a majority of its length directly to the fluid medium, so rotation of the rotatable member entrains fluid along its boundary layer so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface; and
a fence, mountable to the lifting surface upstream of the rotatable member, with mechanical stiffness matching that of the blade.
11. The lift control device of claim 10, wherein the rotatable member is cylindrical.
12. The lift control device of claim 10, wherein the rotatable member is a frustum of a cone.
13. The lift control device of claim 10, wherein the rotatable member is roughened.
14. The lift control device of claim 10, wherein the rotatable member is splined.
15. The lift control device of claim 10, further comprising a plasma actuator array mechanically coupled to a surface of the protuberance just upstream or downstream of the rotating member, or on the surface of the rotatable member, and coupled to a controller, such controller configured to control the plasma actuator array to control flow over the array so as to control lift of the lifting surface.
16. The lift control device of claim 10, wherein the lifting surface is a blade of a wind turbine.
17. The lift control device of claim 10, wherein the lifting surface is selected from the group consisting of a wing of an airplane and a rotating blade of a rotorcraft.
18. The lift control of claim 10, wherein the lifting surface is selected from the group consisting of a foil of a hydrofoil and a blade of a marine propeller.
19. A lift control device for actively controlling lift of a lifting surface when the lift control device is mounted to the lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length, the lift control device comprising:
a protuberance having a base and a tip and a length, the base configured to be mountable to the lifting surface near the trailing edge thereof, wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
a translatable member, mounted in the tip of the protuberance and occupying a majority of the length of the protuberance, the translatable member mounted so that at least a circumferential portion of the translatable member is exposed along a majority of its length directly to the fluid medium, so translation of the translatable member entrains fluid along its boundary layer so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface;
a motor, mountable to the lifting surface and coupled to the translatable member, the motor configured to produce extension and retraction of the translatable member relative to the tip of the protuberance; and
a controller, coupled to the motor, and configured to control rotation of the motor and therefore of the position of the translatable member, so that the controller controls lift of the lifting surface by controlling position of the translatable member.
20. The lift control device of claim 19, wherein the lifting surface is a blade of a wind turbine.
21. The lift control device of claim 19, wherein the lifting surface is selected from the group consisting of a wing of an airplane and a rotating blade of a rotorcraft.
22. The lift control of claim 19, wherein the lifting surface is selected from the group consisting of a foil of a hydrofoil and a blade of a marine propeller.
23. A lift control device for actively controlling lift of a lifting surface when the lift device is mounted to the lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length, the lift control device comprising:
a protuberance having a base and a tip and a length, the base configured to be mountable to the lifting surface near the trailing edge thereof, wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
a translatable or rotatable member, mounted in the interior of the protuberance and occupying a majority of the length of the protuberance, the translatable or rotatable member mounted so that translation or rotation of the member entrains fluid in a channel or array of channels through which fluid passes so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface;
a motor, mountable to the lifting surface and coupled to the translatable or rotatable member, the motor configured to produce translation or rotation of the member; and
a controller, coupled to the motor, and configured to control rotation of the motor and therefore of the position of the translatable or rotatable member, so that the controller controls lift of the lifting surface by controlling position of the translatable or rotatable member.
24. The lift control device of claim 23, wherein the lifting surface is a blade of a wind turbine.
25. The lift control device of claim 23, wherein the lifting surface is selected from the group consisting of a wing of an airplane and a rotating blade of a rotorcraft.
26. The lift control of claim 23, wherein the lifting surface is selected from the group consisting of a foil of a hydrofoil and a blade of a marine propeller.
27. A method for controlling lift generated by a lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length, the method comprising:
mounting, to the lifting surface, near the trailing edge thereof, a protuberance having a base and a tip and a length, in a manner wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
rotatably mounting a rotatable member having a central axis in the tip of the protuberance and occupying a majority of the length of the protuberance, the rotatable member mounted so that at least a circumferential portion of the rotatable member is exposed along a majority of its length directly to the fluid medium, so rotation of the rotatable member entrains fluid along its boundary layer so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface; and
controlling rotation of the rotatable member so as to control lift of the lifting surface.
28. A method for controlling lift generated by a lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length, the method comprising:
mounting, to the lifting surface, near the trailing edge thereof, a protuberance having a base and a tip and a length, in a manner wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
translatably mounting a translatable member located in the tip of the protuberance and occupying a majority of the length of the protuberance, the translatable member mounted so that at least a circumferential portion of the translatable member is exposed along a majority of its length directly to the fluid medium, so translation of the translatable member entrains fluid along its boundary layer so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface; and
controlling translation of the translatable member so as to control lift of the lifting surface.
29. A method for controlling lift generated by a lifting surface, the lifting surface being movable relative to a fluid medium so as to define a leading edge and a trailing edge, the lifting surface also having a pressure surface thereof and a vacuum surface thereof, the leading edge and the trailing edge running along a span of the lifting surface, the trailing edge having a length, the method comprising:
mounting, to the lifting surface, near the trailing edge thereof, a protuberance having a base and a tip and a length, in a manner wherein the length of the protuberance occupies a majority of the length of the trailing edge; the protuberance creating a region of separated flow downstream of the protuberance, such region having the effect of increasing lift produced by the lifting surface when the protuberance is mounted to the pressure surface of the lifting surface;
translatably or rotatably mounting a translatable or rotatable member, as the case may be, located inside the protuberance and occupying a majority of the length of the protuberance, the translatable or rotatable member mounted so that translation or rotation of the member entrains fluid in a channel or array of channels through which fluid passes so as to reduce the region of separated flow downstream of the protuberance and therefore to reduce lift produced by the lifting surface; and
controlling motion of the translatable or rotatable member so as to control lift of the lifting surface.
US16/403,010 2018-05-03 2019-05-03 Active lift control device and method Active 2039-11-01 US11014652B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/403,010 US11014652B1 (en) 2018-05-03 2019-05-03 Active lift control device and method
US17/323,611 US11628930B2 (en) 2018-05-03 2021-05-18 Active lift control device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862666472P 2018-05-03 2018-05-03
US16/403,010 US11014652B1 (en) 2018-05-03 2019-05-03 Active lift control device and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/323,611 Division US11628930B2 (en) 2018-05-03 2021-05-18 Active lift control device and method

Publications (1)

Publication Number Publication Date
US11014652B1 true US11014652B1 (en) 2021-05-25

Family

ID=75981798

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/403,010 Active 2039-11-01 US11014652B1 (en) 2018-05-03 2019-05-03 Active lift control device and method
US17/323,611 Active US11628930B2 (en) 2018-05-03 2021-05-18 Active lift control device and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/323,611 Active US11628930B2 (en) 2018-05-03 2021-05-18 Active lift control device and method

Country Status (1)

Country Link
US (2) US11014652B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220025856A1 (en) * 2018-12-13 2022-01-27 Siemens Gamesa Renewable Energy A/S Estimating wind speed

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11414182B1 (en) * 2021-01-11 2022-08-16 Cameron Carnegie Circuit based unmanned aerial vehicle

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR719644A (en) * 1931-05-22 1932-02-08 Airplane
US1846562A (en) * 1927-08-22 1932-02-23 Longo Antonio Rotating wing device for increasing the carrying capacity of aeroplane wings
US1866869A (en) * 1929-04-06 1932-07-12 Thurston Albert Peter Aircraft
FR880130A (en) * 1941-09-29 1943-03-15 Aircraft upgrades
US2852211A (en) * 1956-09-21 1958-09-16 Xenakis George Airplane wing with aerodynamically actuated spoiler
US2928626A (en) * 1956-01-17 1960-03-15 Tino Ovid Sustaining airfoil with retractable cylindrical rotor
US2973167A (en) * 1957-01-24 1961-02-28 Harry F Lake Airfoil and boundary-layer control rotor
US3162402A (en) * 1962-01-12 1964-12-22 Alvarez-Calderon Alberto Stability and control system and apparatus for aircraft
US3179354A (en) * 1962-04-24 1965-04-20 Alvarez-Calderon Alberto Convertiplane and apparatus thereof
US5094412A (en) * 1989-10-13 1992-03-10 Bell Helicopter Textron Inc. Flaperon system for tilt rotor wings
US5195702A (en) * 1991-04-09 1993-03-23 Malvestuto Jr Frank S Rotor flap apparatus and method
US5236149A (en) * 1991-04-29 1993-08-17 Rockwell International Corporation Boundary layer control device for tilt rotor configuration
US5294080A (en) * 1993-02-08 1994-03-15 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Lift enhancing tabs for airfoils
US6073881A (en) * 1998-08-18 2000-06-13 Chen; Chung-Ching Aerodynamic lift apparatus
US20060202083A1 (en) * 2005-03-14 2006-09-14 Milde Karl F Jr VTOL personal aircraft
WO2010034749A2 (en) * 2008-09-26 2010-04-01 Vestas Wind Systems A/S Flow control device and method of controlling a fluid boundary layer on a rotating wind turbine blade
US20110163205A1 (en) * 2008-09-17 2011-07-07 Israel Aerospace Industries Ltd. Aerofoil accessories and method for modifying the geometry of a wing element
US8052388B2 (en) * 2007-11-29 2011-11-08 United Technologies Corporation Gas turbine engine systems involving mechanically alterable vane throat areas
US20120068020A1 (en) * 2010-09-17 2012-03-22 Jeffrey A. Matos Stol and/or vtol aircraft
US20120070283A1 (en) * 2009-03-17 2012-03-22 Vestas Wind Systems A/S Hinged connection apparatus for securing a first wind turbine component to a second
US20120195764A1 (en) * 2009-10-08 2012-08-02 Lm Glasfiber A/S Wind turbine blade with plurality of longitudinally extending flow guiding device parts
US20130121826A1 (en) * 2011-11-16 2013-05-16 Theodore M. Garver Fluid interface device as well as apparati and methods including same
US20130142663A1 (en) * 2010-08-06 2013-06-06 Theodore M. Garver Fluid interface device and method
US20130259689A1 (en) * 2012-04-03 2013-10-03 Drew Eisenberg Slat with tip vortex modification appendage for wind turbine
US20140083216A1 (en) * 2012-06-13 2014-03-27 Hamilton Sundstrand Corporation Dry lubricated rotary actuator for in blade rotor control
US8777580B2 (en) * 2011-11-02 2014-07-15 Siemens Aktiengesellschaft Secondary airfoil mounted on stall fence on wind turbine blade
US20140255184A1 (en) * 2013-03-05 2014-09-11 Bell Helicopter Textron Inc. System and Method for Reducing Rotor Blade Noise
US20140271212A1 (en) * 2013-03-15 2014-09-18 Frontier Wind, Llc Failsafe system for load compensating device
US20150204306A1 (en) * 2014-01-17 2015-07-23 General Electric Company Rotatable aerodynamic surface features for wind turbine rotor blades
US20150211487A1 (en) * 2014-01-27 2015-07-30 Siemens Aktiengesellschaft Dual purpose slat-spoiler for wind turbine blade
US20170175705A1 (en) * 2015-12-22 2017-06-22 Theodore M. Garver Fluid interface devices with stabilization features as well as airfoil assemblies including same
US20200018333A1 (en) * 2018-07-12 2020-01-16 Rolls-Royce Plc Low drag surface

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253828A (en) * 1992-07-17 1993-10-19 The Board Of Regents Of The University Of Oklahoma Concealable flap-actuated vortex generator
US5570859A (en) * 1995-01-09 1996-11-05 Quandt; Gene A. Aerodynamic braking device
FR2792285B1 (en) * 1999-04-16 2001-06-08 Onera (Off Nat Aerospatiale) AERODYNAMIC SURFACE OF AIRCRAFT WITH LEAK EDGE DEFLECTOR
WO2001015971A2 (en) * 1999-08-30 2001-03-08 Smith Michael J C Wing-drive mechanism and vehicle employing same
US6992315B2 (en) * 2004-03-10 2006-01-31 Siemens Westinghouse Power Corporation In situ combustion turbine engine airfoil inspection
EP2746151B1 (en) * 2012-12-19 2017-04-12 Airbus Operations GmbH Flap system for an aircraft, method for adjusting the lift of an aircraft and aircraft comprising a main wing and at least one flap system

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1846562A (en) * 1927-08-22 1932-02-23 Longo Antonio Rotating wing device for increasing the carrying capacity of aeroplane wings
US1866869A (en) * 1929-04-06 1932-07-12 Thurston Albert Peter Aircraft
FR719644A (en) * 1931-05-22 1932-02-08 Airplane
FR880130A (en) * 1941-09-29 1943-03-15 Aircraft upgrades
US2928626A (en) * 1956-01-17 1960-03-15 Tino Ovid Sustaining airfoil with retractable cylindrical rotor
US2852211A (en) * 1956-09-21 1958-09-16 Xenakis George Airplane wing with aerodynamically actuated spoiler
US2973167A (en) * 1957-01-24 1961-02-28 Harry F Lake Airfoil and boundary-layer control rotor
US3162402A (en) * 1962-01-12 1964-12-22 Alvarez-Calderon Alberto Stability and control system and apparatus for aircraft
US3179354A (en) * 1962-04-24 1965-04-20 Alvarez-Calderon Alberto Convertiplane and apparatus thereof
US5094412A (en) * 1989-10-13 1992-03-10 Bell Helicopter Textron Inc. Flaperon system for tilt rotor wings
US5195702A (en) * 1991-04-09 1993-03-23 Malvestuto Jr Frank S Rotor flap apparatus and method
US5236149A (en) * 1991-04-29 1993-08-17 Rockwell International Corporation Boundary layer control device for tilt rotor configuration
US5294080A (en) * 1993-02-08 1994-03-15 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Lift enhancing tabs for airfoils
US6073881A (en) * 1998-08-18 2000-06-13 Chen; Chung-Ching Aerodynamic lift apparatus
US20060202083A1 (en) * 2005-03-14 2006-09-14 Milde Karl F Jr VTOL personal aircraft
US8052388B2 (en) * 2007-11-29 2011-11-08 United Technologies Corporation Gas turbine engine systems involving mechanically alterable vane throat areas
US20110163205A1 (en) * 2008-09-17 2011-07-07 Israel Aerospace Industries Ltd. Aerofoil accessories and method for modifying the geometry of a wing element
WO2010034749A2 (en) * 2008-09-26 2010-04-01 Vestas Wind Systems A/S Flow control device and method of controlling a fluid boundary layer on a rotating wind turbine blade
US20120070283A1 (en) * 2009-03-17 2012-03-22 Vestas Wind Systems A/S Hinged connection apparatus for securing a first wind turbine component to a second
US20120195764A1 (en) * 2009-10-08 2012-08-02 Lm Glasfiber A/S Wind turbine blade with plurality of longitudinally extending flow guiding device parts
US20130142663A1 (en) * 2010-08-06 2013-06-06 Theodore M. Garver Fluid interface device and method
US20120068020A1 (en) * 2010-09-17 2012-03-22 Jeffrey A. Matos Stol and/or vtol aircraft
US8777580B2 (en) * 2011-11-02 2014-07-15 Siemens Aktiengesellschaft Secondary airfoil mounted on stall fence on wind turbine blade
US20130121826A1 (en) * 2011-11-16 2013-05-16 Theodore M. Garver Fluid interface device as well as apparati and methods including same
US20130259689A1 (en) * 2012-04-03 2013-10-03 Drew Eisenberg Slat with tip vortex modification appendage for wind turbine
US20140083216A1 (en) * 2012-06-13 2014-03-27 Hamilton Sundstrand Corporation Dry lubricated rotary actuator for in blade rotor control
US20140255184A1 (en) * 2013-03-05 2014-09-11 Bell Helicopter Textron Inc. System and Method for Reducing Rotor Blade Noise
US20140271212A1 (en) * 2013-03-15 2014-09-18 Frontier Wind, Llc Failsafe system for load compensating device
US20150204306A1 (en) * 2014-01-17 2015-07-23 General Electric Company Rotatable aerodynamic surface features for wind turbine rotor blades
US20150211487A1 (en) * 2014-01-27 2015-07-30 Siemens Aktiengesellschaft Dual purpose slat-spoiler for wind turbine blade
US20170175705A1 (en) * 2015-12-22 2017-06-22 Theodore M. Garver Fluid interface devices with stabilization features as well as airfoil assemblies including same
US20200018333A1 (en) * 2018-07-12 2020-01-16 Rolls-Royce Plc Low drag surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220025856A1 (en) * 2018-12-13 2022-01-27 Siemens Gamesa Renewable Energy A/S Estimating wind speed
US11767820B2 (en) * 2018-12-13 2023-09-26 Siemens Gamesa Renewable Energy A/S Estimating wind speed

Also Published As

Publication number Publication date
US20220009618A1 (en) 2022-01-13
US11628930B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
EP2321528B1 (en) Control system in wind turbine blades
US7424988B2 (en) Use of aerodynamic forces to assist in the control and positioning of aircraft control surfaces and variable geometry systems
EP2425129B1 (en) Wind turbine rotor blade
US7632068B2 (en) Control of power, loads and/or stability of a horizontal axis wind turbine by use of variable blade geometry control
US9896201B2 (en) Kite configuration and flight strategy for flight in high wind speeds
US5320491A (en) Wind turbine rotor aileron
Patel et al. Autonomous sensing and control of wing stall using a smart plasma slat
EP2034178B1 (en) Wind turbine blade with deflectable flaps
EP2350452B1 (en) Wind turbine blade with device for changing the aerodynamic surface or shape
EP1488998B1 (en) Wing trailing edge geometry control mechanism
CN101354008B (en) Wind turbine blade with cambering flaps
US11628930B2 (en) Active lift control device and method
US5527151A (en) Advanced wind turbine with lift-destroying aileron for shutdown
US8647059B1 (en) Pneumatic actuator system for a rotating blade
US11613344B2 (en) Rapid flap deflection for high lift transients
EP4093966B1 (en) Method and device for controlling a wind turbine to reduce noise
US20230392578A1 (en) Vertical axis wind turbine and blade therefor

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: MICROENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO MICRO (ORIGINAL EVENT CODE: MICR); ENTITY STATUS OF PATENT OWNER: MICROENTITY

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: MICROENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction