US10995493B2 - Profiled metal fiber - Google Patents

Profiled metal fiber Download PDF

Info

Publication number
US10995493B2
US10995493B2 US16/347,687 US201716347687A US10995493B2 US 10995493 B2 US10995493 B2 US 10995493B2 US 201716347687 A US201716347687 A US 201716347687A US 10995493 B2 US10995493 B2 US 10995493B2
Authority
US
United States
Prior art keywords
metal fiber
shaped grooves
side faces
wide
faces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/347,687
Other versions
US20190257085A1 (en
Inventor
Karl-Hermann Stahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HACANOKA GmbH
Original Assignee
HACANOKA GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HACANOKA GmbH filed Critical HACANOKA GmbH
Assigned to HACANOKA GMBH reassignment HACANOKA GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STAHL, KARL-HERMANN
Publication of US20190257085A1 publication Critical patent/US20190257085A1/en
Application granted granted Critical
Publication of US10995493B2 publication Critical patent/US10995493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/012Discrete reinforcing elements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F13/00Splitting wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H8/00Rolling metal of indefinite length in repetitive shapes specially designed for the manufacture of particular objects, e.g. checkered sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D31/00Shearing machines or shearing devices covered by none or more than one of the groups B23D15/00 - B23D29/00; Combinations of shearing machines
    • B23D31/002Breaking machines, i.e. pre-cutting and subsequent breaking
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/02Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance
    • E04C5/03Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance with indentations, projections, ribs, or the like, for augmenting the adherence to the concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • E04C5/073Discrete reinforcing elements, e.g. fibres

Definitions

  • the invention relates to a profiled metal fiber having a substantially rectangular cross section, also with bent ends to form a clip for stabilizing, bonding, attaching, or joining materials and construction materials such as concrete, wood, paper and the like, particularly made of steel, in which narrow side faces of the fiber side faces extending in the fiber longitudinal direction are flanked by corner chamfers extending obliquely to the fiber side faces.
  • Such a metal fiber has become known, for example, from DE 10 2009 048 751 [U.S. Pat. No. 8,771,837].
  • DE 10 2009 048 751 U.S. Pat. No. 8,771,837.
  • They are ideal for a wide range of applications.
  • great demands are placed particularly on the tools used in manufacturing.
  • the two wide side faces of the rectangular fiber are provided with longitudinally extending V-shaped grooves, with the chamfers being provided with projections and the V-shaped grooves with end zones at their longitudinal ends, and with the projections forming anchor heads and the end zones forming anchor surfaces with respect to the materials to be stabilized, bonded, or attached.
  • the advantage achieved by the invention is essentially that, initially due to the rectangular shape of the metal fibers, the conditions for notching, rolling, and subsequent longitudinal separation of the metal fiber cores are substantially improved, enabling lesser demands to be placed on the tools.
  • the notches in the fibers facilitate guidance from top roller to the bottom roller because the occurrence of the axial forces acting on the guidance of the tools is reduced.
  • the V-shaped grooves create an additional possibility for anchoring in that each of the end zones thereof forms anchor surfaces.
  • the rolling process is rendered much more uniform and reliable, and there are additional advantages in terms of tool design for the longitudinal separating unit and production stability.
  • One consequence of this is short conversion times, longer tool life, and more uniform fiber quality.
  • one of the wide side faces has at least one V-shaped groove and the oppositely situated wide side face has at least two V-shaped grooves of the same size. This combination and arrangement of the grooves has proven to be especially advantageous in the context of the invention.
  • each V-shaped groove is oriented centrally on the respective wide fiber side face.
  • the two wide side faces have respective V-shaped grooves that oppose one another and have the same size and are centrally disposed in the surface.
  • the two V-shaped grooves on the oppositely situated wide fiber side faces are positioned symmetrically or centrally with respect to the wide fiber side face and are immediately adjacent one another in the middle or lie close to one another.
  • the depth of the V-shaped grooves is in the range from 25% to 40% of the metal fiber thickness.
  • the anchor surfaces at the ends of the V-shaped grooves have a fixed size that is determined by the cross-sectional shape and depth of the V-shaped groove.
  • the width-to-height ratio of the metal fibers can vary within a relatively wide range; however, it has proven advantageous if the width dimension to the thickness dimension of the metal fiber is in the range from 4:1 and 1.5:1. In particular, a preferred aspect ratio has been found to be such that the width dimension to the thickness dimension of the metal fiber is about 2:1.
  • anchoring heads formed by the projections and the anchor surfaces formed by the end zones lie on a common anchor line that extends perpendicular to the longitudinal extent of the fiber.
  • each fiber can have one or more anchor lines that are preferably arranged at the ends.
  • the invention includes a method of manufacturing profiled metal fibers according to the features that are described in the foregoing and in detail in DE 10 2008 034 250 in which a sheet-metal strip for shaping the metal fibers is initially notched in a mutually opposing manner on both sides such that metal fiber cores are formed that are initially still interconnected by webs, the metal fiber strip undergoing a rolling process in order to subsequently convert the webs into thin, easily separable and, during separation, burr-free and split-faced interfaces, in which process each web is subjected to multiple flexural deformation about its longitudinal axis such that incipient cracks form in the vicinity of the webs as a result of fatigue fracturing, thus resulting in the separating web.
  • the invention is implemented such that, in order to form rectangular metal fibers, the distances between notches are greater than the thickness of the sheet-metal strip, and V-shaped grooves, each of which are bounded terminally, are rolled in with the notch onto the two wider outer faces formed in this way and support the axial guidance of upper and lower roller during the groove-rolling process, with the end boundaries of the grooves forming respective anchor surfaces of the metal fiber.
  • FIG. 1 is a perspective view of a single metal fiber
  • FIG. 2 is a cross section along the line A-A of FIG. 1 ,
  • FIG. 3 is a cross section along an anchor line, namely the line B-B according to FIG. 1 ,
  • FIG. 4 is a detail Z according to FIG. 1 .
  • FIGS. 5 to 8 show an alternative embodiment in views corresponding to FIGS. 1 to 4 .
  • the profiled metal fiber 1 shown in the drawing has a substantially rectangular cross section and is used for stabilizing, bonding, attaching, or joining materials and building materials such as concrete, wood, paper and the like. It is made particularly of steel and, depending on the application, can also be shaped in a manner not shown in further detail with bent ends to form a clip.
  • the narrow side faces of the fiber side faces are flanked by corner chamfers 2 that are aligned obliquely to the fiber side faces, as can be seen particularly in FIG. 2 .
  • the two wide side faces 3 . 1 , 3 . 2 are provided with longitudinally extending V-shaped grooves 4 having their longitudinal opposite end zones 5 .
  • the chamfers 2 are provided with projections 6 forming anchoring heads and the end zones 5 of the V-shaped grooves 4 forming anchor surfaces that act on the materials to be stabilized, bonded, and/or attached.
  • the projections 6 also denoted by x in FIG. 2 , occur initially as a result of the notching process but can be altered with respect to their rolling surface by a scribing process (y). This can be regarded as a “fine adjustment” for the anchoring effect of the entire fiber.
  • the anchor surfaces formed by the end zones 5 (denoted by z in FIG.
  • one of the wide side faces 3 . 1 has at least one V-shaped groove 4
  • the fiber side face 3 . 2 situated opposite thereto has at least two V-shaped grooves 4 of the same size.
  • each V-shaped groove 4 is oriented centrally on the respective wide fiber side face 3 .
  • the two V-shaped grooves 4 on the oppositely situated wide fiber side face 3 . 2 are positioned symmetrically and/or centrally with respect to the wide fiber side face 3 . 2 and are immediately adjacent one another in the middle or can also be close to one another.
  • the depth of the V-shaped grooves 4 is usually selected so as to be in the range from 25% to 40% of the metal fiber thickness.
  • the two wide side faces 3 . 1 , 3 . 2 have respective V-shaped grooves 4 that oppose one another and have the same size and are centrally positioned in the surface.
  • the anchor surfaces formed by the end zones 5 terminally bounding the V-shaped grooves 4 have a fixed size that is determined by the cross-sectional shape and depth of the V-shaped groove 4 , as can be seen particularly in FIG. 4 .
  • the ratio of the width dimension to the thickness dimension of the metal fiber 1 is advantageously in the range between 4:1 and 1.5:1; in particular, a ratio in which the width dimension and thickness dimension of the metal fiber 1 is about 2:1 has proven advantageous.
  • the anchoring heads formed by the projections 6 and the anchor surfaces formed by the end zones 5 lie on a common anchor line 8 that extends perpendicular to the longitudinal direction of the fiber.
  • Each metal fiber can have one or more anchor lines 8 , preferably arranged at the ends.
  • a method is recommended in particular in which a metal strip for forming the metal fibers 1 is first notched on both sides in opposing fashion, thus forming metal fiber cores. At first, these are additionally interconnected by webs. In order to subsequently reshape the webs into thin, easily separable separating webs that form burr-free and split-faced interfaces 7 when separated, the metal fiber web undergoes a rolling process in which each web is subjected to multiple flexural deformation about its longitudinal axis. As a result, incipient cracks form in the webs due to fatigue fracturing, thereby creating a separating web.
  • the notches are then selected so as to be larger than the thickness of the sheet-metal strip.
  • V-shaped grooves 4 are rolled in with the notch onto the two wider outer faces formed in this way and are each terminally bounded. These grooves 4 assist in the rolling process, the axial guidance of upper and lower roller, the end boundaries of the grooves 4 forming the later anchor surfaces of the metal fiber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Ropes Or Cables (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

The profiled metal fibre with a substantially rectangular cross-section, also with bent fibre ends in the form of a clip, is used to stabilise, bond, attach or join materials and construction materials such as concrete, wood, paper and the like. The fibre edges of the fibre outer surfaces extending in the longitudinal direction of the fibre are designed as edge surfaces (2) oriented at an angle to the fibre outer surfaces in the manner of a bevel. The two wider fibre outer surfaces (3.1, 3.2) of the rectangular fibre are provided with V-shaped channels (4) extending in the longitudinal direction, wherein the edge surfaces (2) are provided with projections (6) and the V-shaped channels (4) are provided with end zones (5) that bound their longitudinal extent. The projections form anchoring heads and the end zones form anchor surfaces with respect to the material to be stabilised, bonded or attached.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is the US-national stage of PCT application PCT/DE2017/000364 filed 2 Nov. 2017 and claiming the priority of German patent application 102016013615.4 itself filed 15 Nov. 2015 and German patent application 102017006298.6 itself filed 4 Jul. 2017. Replacement Drawing (1 sheets)
The invention relates to a profiled metal fiber having a substantially rectangular cross section, also with bent ends to form a clip for stabilizing, bonding, attaching, or joining materials and construction materials such as concrete, wood, paper and the like, particularly made of steel, in which narrow side faces of the fiber side faces extending in the fiber longitudinal direction are flanked by corner chamfers extending obliquely to the fiber side faces.
Such a metal fiber has become known, for example, from DE 10 2009 048 751 [U.S. Pat. No. 8,771,837]. By virtue of their substantially better characteristics in comparison to the prior art, they are ideal for a wide range of applications. However, due to the geometric dimensions that are usually employed, great demands are placed particularly on the tools used in manufacturing.
It is therefore the object of the present invention to further develop a metal fiber of the above-described type such that it continues to provide equally good or even improved practical characteristics while placing lesser demands on the mechanical equipment required during manufacturing.
This object is attained according to the invention in that the two wide side faces of the rectangular fiber are provided with longitudinally extending V-shaped grooves, with the chamfers being provided with projections and the V-shaped grooves with end zones at their longitudinal ends, and with the projections forming anchor heads and the end zones forming anchor surfaces with respect to the materials to be stabilized, bonded, or attached.
The advantage achieved by the invention is essentially that, initially due to the rectangular shape of the metal fibers, the conditions for notching, rolling, and subsequent longitudinal separation of the metal fiber cores are substantially improved, enabling lesser demands to be placed on the tools. When properly designed and positioned, the notches in the fibers facilitate guidance from top roller to the bottom roller because the occurrence of the axial forces acting on the guidance of the tools is reduced. Finally, the V-shaped grooves create an additional possibility for anchoring in that each of the end zones thereof forms anchor surfaces.
In particular, the rolling process is rendered much more uniform and reliable, and there are additional advantages in terms of tool design for the longitudinal separating unit and production stability. One consequence of this is short conversion times, longer tool life, and more uniform fiber quality.
In a preferred embodiment of the invention, one of the wide side faces has at least one V-shaped groove and the oppositely situated wide side face has at least two V-shaped grooves of the same size. This combination and arrangement of the grooves has proven to be especially advantageous in the context of the invention.
It is also favorable in this regard if each V-shaped groove is oriented centrally on the respective wide fiber side face.
In an alternative embodiment of the invention, however, there is also the equally advantageous possibility that the two wide side faces have respective V-shaped grooves that oppose one another and have the same size and are centrally disposed in the surface.
Accordingly, it is advantageous if the two V-shaped grooves on the oppositely situated wide fiber side faces are positioned symmetrically or centrally with respect to the wide fiber side face and are immediately adjacent one another in the middle or lie close to one another.
In another preferred embodiment of the invention, the depth of the V-shaped grooves is in the range from 25% to 40% of the metal fiber thickness.
Furthermore, it is advantageous if the anchor surfaces at the ends of the V-shaped grooves have a fixed size that is determined by the cross-sectional shape and depth of the V-shaped groove.
The width-to-height ratio of the metal fibers can vary within a relatively wide range; however, it has proven advantageous if the width dimension to the thickness dimension of the metal fiber is in the range from 4:1 and 1.5:1. In particular, a preferred aspect ratio has been found to be such that the width dimension to the thickness dimension of the metal fiber is about 2:1.
Moreover, within the scope of the invention the anchoring heads formed by the projections and the anchor surfaces formed by the end zones lie on a common anchor line that extends perpendicular to the longitudinal extent of the fiber.
Depending on the requirements being placed in terms of the desired characteristics, each fiber can have one or more anchor lines that are preferably arranged at the ends.
Moreover, the invention includes a method of manufacturing profiled metal fibers according to the features that are described in the foregoing and in detail in DE 10 2008 034 250 in which a sheet-metal strip for shaping the metal fibers is initially notched in a mutually opposing manner on both sides such that metal fiber cores are formed that are initially still interconnected by webs, the metal fiber strip undergoing a rolling process in order to subsequently convert the webs into thin, easily separable and, during separation, burr-free and split-faced interfaces, in which process each web is subjected to multiple flexural deformation about its longitudinal axis such that incipient cracks form in the vicinity of the webs as a result of fatigue fracturing, thus resulting in the separating web.
In these method steps, the invention is implemented such that, in order to form rectangular metal fibers, the distances between notches are greater than the thickness of the sheet-metal strip, and V-shaped grooves, each of which are bounded terminally, are rolled in with the notch onto the two wider outer faces formed in this way and support the axial guidance of upper and lower roller during the groove-rolling process, with the end boundaries of the grooves forming respective anchor surfaces of the metal fiber.
In the following, the invention will be explained in greater detail on the basis of an embodiment that is illustrated in the drawing, in which:
FIG. 1 is a perspective view of a single metal fiber,
FIG. 2 is a cross section along the line A-A of FIG. 1,
FIG. 3 is a cross section along an anchor line, namely the line B-B according to FIG. 1,
FIG. 4 is a detail Z according to FIG. 1, and
FIGS. 5 to 8 show an alternative embodiment in views corresponding to FIGS. 1 to 4.
The profiled metal fiber 1 shown in the drawing has a substantially rectangular cross section and is used for stabilizing, bonding, attaching, or joining materials and building materials such as concrete, wood, paper and the like. It is made particularly of steel and, depending on the application, can also be shaped in a manner not shown in further detail with bent ends to form a clip.
The narrow side faces of the fiber side faces are flanked by corner chamfers 2 that are aligned obliquely to the fiber side faces, as can be seen particularly in FIG. 2.
The two wide side faces 3.1, 3.2 are provided with longitudinally extending V-shaped grooves 4 having their longitudinal opposite end zones 5. Moreover, the chamfers 2 are provided with projections 6 forming anchoring heads and the end zones 5 of the V-shaped grooves 4 forming anchor surfaces that act on the materials to be stabilized, bonded, and/or attached. The projections 6, also denoted by x in FIG. 2, occur initially as a result of the notching process but can be altered with respect to their rolling surface by a scribing process (y). This can be regarded as a “fine adjustment” for the anchoring effect of the entire fiber. The anchor surfaces formed by the end zones 5 (denoted by z in FIG. 2), which are likewise formed by the notching process and whose size is determined by the notch depth, can no longer be changed after the notching process. They provide more uniform anchorage, since they are determined only by the notching tool, which is manufactured with the utmost precision.
As can be seen from FIG. 2, one of the wide side faces 3.1 has at least one V-shaped groove 4, while the fiber side face 3.2 situated opposite thereto has at least two V-shaped grooves 4 of the same size. Here, each V-shaped groove 4 is oriented centrally on the respective wide fiber side face 3.
The two V-shaped grooves 4 on the oppositely situated wide fiber side face 3.2 are positioned symmetrically and/or centrally with respect to the wide fiber side face 3.2 and are immediately adjacent one another in the middle or can also be close to one another. The depth of the V-shaped grooves 4 is usually selected so as to be in the range from 25% to 40% of the metal fiber thickness.
In an alternative embodiment of the invention, as shown particularly in FIGS. 5 to 8, there is also the equally advantageous possibility that the two wide side faces 3.1, 3.2 have respective V-shaped grooves 4 that oppose one another and have the same size and are centrally positioned in the surface.
The anchor surfaces formed by the end zones 5 terminally bounding the V-shaped grooves 4 have a fixed size that is determined by the cross-sectional shape and depth of the V-shaped groove 4, as can be seen particularly in FIG. 4.
The ratio of the width dimension to the thickness dimension of the metal fiber 1 is advantageously in the range between 4:1 and 1.5:1; in particular, a ratio in which the width dimension and thickness dimension of the metal fiber 1 is about 2:1 has proven advantageous.
As can be seen from FIG. 4 in particular, the anchoring heads formed by the projections 6 and the anchor surfaces formed by the end zones 5 lie on a common anchor line 8 that extends perpendicular to the longitudinal direction of the fiber.
Each metal fiber can have one or more anchor lines 8, preferably arranged at the ends.
To manufacture these metal fibers 1, a method is recommended in particular in which a metal strip for forming the metal fibers 1 is first notched on both sides in opposing fashion, thus forming metal fiber cores. At first, these are additionally interconnected by webs. In order to subsequently reshape the webs into thin, easily separable separating webs that form burr-free and split-faced interfaces 7 when separated, the metal fiber web undergoes a rolling process in which each web is subjected to multiple flexural deformation about its longitudinal axis. As a result, incipient cracks form in the webs due to fatigue fracturing, thereby creating a separating web. In order to form rectangular metal fibers 1, the notches are then selected so as to be larger than the thickness of the sheet-metal strip. V-shaped grooves 4 are rolled in with the notch onto the two wider outer faces formed in this way and are each terminally bounded. These grooves 4 assist in the rolling process, the axial guidance of upper and lower roller, the end boundaries of the grooves 4 forming the later anchor surfaces of the metal fiber.

Claims (9)

The invention claimed is:
1. A profiled metal fiber having:
a polygonal cross section with bent ends to form a clip for stabilizing, bonding, attaching, or joining materials and construction materials and made of steel,
two mutually parallel narrow side faces extending in a fiber longitudinal direction;
two mutually parallel wide longitudinally extending side faces wider than the narrow faces, one of the wide side faces being formed with two respective longitudinally extending and transversely spaced V-shaped grooves that are flank and are symmetrically offset from a center of the one wide side and the other of the wide faces being formed with a single V-shaped groove oriented centrally of the other wide face, and
four corner chamfer faces each extending obliquely between a respective one of the narrow side faces and a respective one of the wide side faces, the chamfer faces being formed with projections and the V-shaped grooves with end zones at their longitudinal ends, the projections forming anchor heads and the end zones forming anchor surfaces with respect to the materials to be stabilized, bonded, or attached, a ratio of a width dimension perpendicular to the narrow side faces to a thickness dimension perpendicular to the wide side faces of the metal fiber is at least 1.5:1.
2. The metal fiber according to claim 1, wherein the two V-shaped grooves on the wide side face are positioned symmetrically or centrally with respect to the other wide side face and are immediately adjacent one another in the middle or lie close to one another.
3. The metal fiber according to claim 1, wherein a depth of the V-shaped grooves is in the range from 25-40% of a thickness of the metal fiber.
4. The metal fiber according to claim 1, wherein the anchor surfaces terminally bounding the V-shaped grooves have a fixed size that is determined by a cross-sectional shape and depth of the V-shaped grooves.
5. The metal fiber according to claim 1, wherein a ratio of a width dimension perpendicular to the narrow side faces to a thickness dimension perpendicular to the wide side faces of the metal fiber is in the range from 4:1 to 1.5:1.
6. The metal fiber according to claim 5, wherein the ratio of is about 2:1.
7. The metal fiber according to claim 1, wherein the anchoring heads formed by the projections and the anchor surfaces formed by the end zones lie on a common anchor line that extends perpendicular to the longitudinal direction of the fiber.
8. The metal fiber according to claim 7, wherein each fiber has at longitudinal ends one or more anchor lines.
9. The metal fiber according to claim 1, wherein one of the wide side faces has only one of the V-shaped grooves and the other wide side face has one or two of the V-shaped grooves of the same size as the groove of the one wide side face.
US16/347,687 2016-11-15 2017-11-02 Profiled metal fiber Active US10995493B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102016013615 2016-11-15
DE102016013615.4 2016-11-15
DE102017006298.6 2017-07-04
DE102017006298.6A DE102017006298A1 (en) 2016-11-15 2017-07-04 Profiled metal fiber
PCT/DE2017/000364 WO2018091005A1 (en) 2016-11-15 2017-11-02 Profiled metal fibre

Publications (2)

Publication Number Publication Date
US20190257085A1 US20190257085A1 (en) 2019-08-22
US10995493B2 true US10995493B2 (en) 2021-05-04

Family

ID=62026314

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/347,687 Active US10995493B2 (en) 2016-11-15 2017-11-02 Profiled metal fiber

Country Status (10)

Country Link
US (1) US10995493B2 (en)
EP (1) EP3542010B1 (en)
CN (1) CN110268125B (en)
DE (1) DE102017006298A1 (en)
ES (1) ES2968144T3 (en)
HR (1) HRP20240001T1 (en)
HU (1) HUE064802T2 (en)
PL (1) PL3542010T3 (en)
RS (1) RS65062B1 (en)
WO (1) WO2018091005A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021001946A1 (en) 2021-04-14 2022-10-20 Hacanoka Gmbh Process for the production of metal fibres, in particular steel fibres

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1400278A (en) * 1921-03-15 1921-12-13 Fougner Hermann Reinforcing-bar
GB882701A (en) * 1957-09-28 1961-11-15 Anton Bugan Star-section reinforcing bar for reinforced concrete
US5419965A (en) * 1990-06-01 1995-05-30 Domecrete Ltd. Reinforcing element with slot and optional anchoring means and reinforced material incorporating same
US5548986A (en) * 1992-04-22 1996-08-27 Structural Metals, Inc. Method and apparatus for simultaneously forming at least four metal rounds
US6045910A (en) * 1995-09-19 2000-04-04 N. V. Bekaert S. A. Steel wire element for mixing into subsequently hardening materials
JP2001220190A (en) 2000-02-08 2001-08-14 Cmc Kk S-shaped steel fiber for reinforcing concrete
US6612085B2 (en) * 2000-01-13 2003-09-02 Dow Global Technologies Inc. Reinforcing bars for concrete structures
US20060008613A1 (en) * 2001-05-04 2006-01-12 Ronny Dewinter Closed reinforcement fiber package, as well as chain packing consisting of such closed packages
US20120097073A1 (en) * 2009-06-12 2012-04-26 Nv Bekaert Sa High elongation fibre with good anchorage
US20120131976A1 (en) 2009-08-14 2012-05-31 Karl-Herman Stahl Method for the multi-core deburring of wires and associate
US20120231291A1 (en) * 2009-10-08 2012-09-13 Karl-Hermann Stahl Metal fiber having a chamfer in the fiber edge extending in the longitudinal direction of the fiber
US20130108868A1 (en) * 2004-09-28 2013-05-02 Charles Nutter Fibers and fiber reinforced matrix materials
US20140178686A1 (en) * 2012-12-14 2014-06-26 Polysteel Atlantic Limited Filaments and fibers and method for making filaments and fibers
US8771937B2 (en) 2009-10-13 2014-07-08 Institut National De La Sante Et De La Recherche Medicale (Inserm) Methods for diagnosing and treating a pathology associated with a synonymous mutation occuring within a gene of interest
US20150361665A1 (en) * 2013-01-31 2015-12-17 Optiment Concrete Products Inc. Three-Dimensionally Deformed Fiber for Concrete Reinforcement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2112934A1 (en) * 1993-01-21 1994-07-22 Robert Hugo Jacob Over Reinforcement fibre for reinforcing concrete
JP2613844B2 (en) * 1993-12-03 1997-05-28 小松化成株式会社 Method and apparatus for continuous pultrusion of fiber reinforced plastic rod
DE102008034250A1 (en) 2008-07-23 2010-01-28 Karl-Hermann Stahl Process for the production of steel fibers

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1400278A (en) * 1921-03-15 1921-12-13 Fougner Hermann Reinforcing-bar
GB882701A (en) * 1957-09-28 1961-11-15 Anton Bugan Star-section reinforcing bar for reinforced concrete
US5419965A (en) * 1990-06-01 1995-05-30 Domecrete Ltd. Reinforcing element with slot and optional anchoring means and reinforced material incorporating same
US5548986A (en) * 1992-04-22 1996-08-27 Structural Metals, Inc. Method and apparatus for simultaneously forming at least four metal rounds
US6045910A (en) * 1995-09-19 2000-04-04 N. V. Bekaert S. A. Steel wire element for mixing into subsequently hardening materials
US6612085B2 (en) * 2000-01-13 2003-09-02 Dow Global Technologies Inc. Reinforcing bars for concrete structures
JP2001220190A (en) 2000-02-08 2001-08-14 Cmc Kk S-shaped steel fiber for reinforcing concrete
US20060008613A1 (en) * 2001-05-04 2006-01-12 Ronny Dewinter Closed reinforcement fiber package, as well as chain packing consisting of such closed packages
US20130108868A1 (en) * 2004-09-28 2013-05-02 Charles Nutter Fibers and fiber reinforced matrix materials
US20120097073A1 (en) * 2009-06-12 2012-04-26 Nv Bekaert Sa High elongation fibre with good anchorage
US20120131976A1 (en) 2009-08-14 2012-05-31 Karl-Herman Stahl Method for the multi-core deburring of wires and associate
US20120231291A1 (en) * 2009-10-08 2012-09-13 Karl-Hermann Stahl Metal fiber having a chamfer in the fiber edge extending in the longitudinal direction of the fiber
US8771937B2 (en) 2009-10-13 2014-07-08 Institut National De La Sante Et De La Recherche Medicale (Inserm) Methods for diagnosing and treating a pathology associated with a synonymous mutation occuring within a gene of interest
US20140178686A1 (en) * 2012-12-14 2014-06-26 Polysteel Atlantic Limited Filaments and fibers and method for making filaments and fibers
US20150361665A1 (en) * 2013-01-31 2015-12-17 Optiment Concrete Products Inc. Three-Dimensionally Deformed Fiber for Concrete Reinforcement

Also Published As

Publication number Publication date
CN110268125B (en) 2022-06-28
CN110268125A (en) 2019-09-20
DE102017006298A1 (en) 2018-05-17
HUE064802T2 (en) 2024-04-28
HRP20240001T1 (en) 2024-03-29
EP3542010C0 (en) 2023-11-29
EP3542010B1 (en) 2023-11-29
ES2968144T3 (en) 2024-05-08
PL3542010T3 (en) 2024-04-08
WO2018091005A1 (en) 2018-05-24
EP3542010A1 (en) 2019-09-25
US20190257085A1 (en) 2019-08-22
RS65062B1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
US9511413B2 (en) Method of making strip formed by web-connected wires
US3991535A (en) Pressed-in dovetail type joint
ES2601231T3 (en) Clip connection
US20120186190A1 (en) Metal stud
US10711462B1 (en) Friction fit composite column
US8771837B2 (en) Metal fiber with chamfered longitudinal corners
AT515171B1 (en) Sawn board from side board ware and process for its production
US10995493B2 (en) Profiled metal fiber
JP5429923B2 (en) Backing material for gas shielded arc-enclosed welding of steel bars
EP1687106B1 (en) Structural beam with openings and it's method of manufacturing
US20150375282A1 (en) Method of manufacturing a beam
US20050086898A1 (en) Castellated wood beam and method of its manufacture
CA2793494A1 (en) Self-tapping screw
US7784230B2 (en) Solid wood block
AU2016204743A1 (en) A structural decking sheet
RU2123404C1 (en) Tool for cutting-through steel strips
JP4916533B2 (en) Steel pipe column
EP2944733B1 (en) Corner joint for a log structure and method for making a log structure's corner joint
GB2623879A (en) Method of manufacturing a joist
TW201231768A (en) Metal fiber
ZA200806162B (en) A structural timber product

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: HACANOKA GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STAHL, KARL-HERMANN;REEL/FRAME:049125/0424

Effective date: 20190507

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE