US10987455B2 - Breast pump, method and computer program - Google Patents

Breast pump, method and computer program Download PDF

Info

Publication number
US10987455B2
US10987455B2 US16/064,638 US201616064638A US10987455B2 US 10987455 B2 US10987455 B2 US 10987455B2 US 201616064638 A US201616064638 A US 201616064638A US 10987455 B2 US10987455 B2 US 10987455B2
Authority
US
United States
Prior art keywords
vacuum
container
milk
breast
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/064,638
Other languages
English (en)
Other versions
US20180369464A1 (en
Inventor
Arnold Aalders
Arjan Teodor Van Wieringen
Hassan El Barakat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of US20180369464A1 publication Critical patent/US20180369464A1/en
Assigned to KONINKLIJKE PHILIPS N.V. reassignment KONINKLIJKE PHILIPS N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AALDERS, ARNOLD, VAN WIERINGEN, Arjan Teodor
Application granted granted Critical
Publication of US10987455B2 publication Critical patent/US10987455B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/06Milking pumps
    • A61M1/0025
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/06Milking pumps
    • A61M1/069Means for improving milking yield
    • A61M1/0693Means for improving milking yield with programmable or pre-programmed sucking patterns
    • A61M1/06935Means for improving milking yield with programmable or pre-programmed sucking patterns imitating the suckling of an infant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/06Milking pumps
    • A61M1/069Means for improving milking yield
    • A61M1/0697Means for improving milking yield having means for massaging the breast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/73Suction drainage systems comprising sensors or indicators for physical values
    • A61M1/0031
    • A61M1/0072
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/74Suction control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/80Suction pumps
    • A61M1/82Membrane pumps, e.g. bulbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3327Measuring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3379Masses, volumes, levels of fluids in reservoirs, flow rates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/582Means for facilitating use, e.g. by people with impaired vision by tactile feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/073Pumps having fluid drive the actuating fluid being controlled by at least one valve

Definitions

  • the present invention relates to a breast pump with a functionality which allows monitoring of the milk expressed from a female breast during an expression session by way of a vacuum pressure sensor.
  • the invention further relates to a method of determining the milk volume and to a computer program calculating a respective milk volume.
  • WO 2010/095133 A1 refers to a device and a method for measuring an amount of breast milk suckled during a breastfeeding session, the device including a mechanism for determining the change in volume of a breast during the breastfeeding session (before breastfeeding and after breastfeeding), and a calculation unit for calculating therefrom the quantity of milk suckled during the breastfeeding session.
  • US 2015/0112298 A1 discloses a breastfeeding device having a microprocessor having a memory embedded therein that can be pre-programmed to have a plurality of different sucking cycles interspersed with periodic pauses. These different cycles and pauses allow for an accurate modeling of a woman breastfeeding a child.
  • this system and process can also result in a pre-programmable breastfeeding pump, which creates a preset time for initialization and a preset schedule of a series of events for breastfeeding over a period of time such as over a 24 hour or 30 hour period of time so that the user can automatically use the breast pump without having to use any of the keys on the keyboard of the device.
  • the device including any software which can be programmed thereon is configured to mimic or model itself towards a suction pattern of a child.
  • a breast pump for extracting milk from a female breast comprising an expression kit, a container connected to the expression kit, and a vacuum unit connected to the expression kit, wherein the combined volumes of the expression kit, the container, the vacuum unit and the connections thereof define a system air volume, a control unit for receiving a sensor signal of the vacuum pressure sensor and a processor for calculating a respective milk volume based on the sensor signal, and a vacuum pressure sensor configured to determine volume changes in the system air volume in response to changes in vacuum pressure.
  • a method for determining the amount of milk expressed from a female breast by a breast pump comprising the step of determining volume changes in the system air volume in response to changes in vacuum pressure.
  • a computer program comprising program code means for causing a computer to carry out the steps of the aforementioned method when said computer program is carried out on a computer.
  • the vacuum pressure sensor is arranged in the system air volume or is in air-ducting connection to the system air volume. By this arrangement the accuracy of the measurement is ensured.
  • a hygienic barrier in particular a diaphragm with a porous membrane is arranged between the expression kit and the vacuum unit.
  • the change in air volume is preferably defined by
  • ⁇ ⁇ ⁇ V ( t 1 - t 2 ) * Q 0 ⁇ p min ( p min - p 0 ) ⁇ ⁇ Log ⁇ [ p 0 p 1 ⁇ ( p 1 - p min ) ( p 0 - p min ) ] , wherein p 1 is the sensor signal received from the vacuum pressure sensor ( ) and wherein the parameters p min , p 0 and Q 0 are known. This leaves the vacuum pressure being the only variable which has to be determined by the sensor. Any other parameter is known. The measurement thus is very precise and only depends on one source of potential error.
  • the breast pump can further comprise a vacuum release valve.
  • This release valve helps operating the breast pump with a hygienic barrier between the expression kit and the pump unit.
  • the breast pump further comprises a flow sensor for measuring the milk flow from the expression kit to the container. This combination can improve accuracy of the measured values and thus of the calculated milk volume.
  • an orifice is arranged between the housing and the container.
  • a valve is arranged between the housing and the container, in particular a one-way-valve like a duck bill valve or a flap valve.
  • the valve allows another possibility to reduce power consumption of the vacuum unit.
  • the valve is configured to close at a predetermined pressure difference between the housing and the container.
  • the power demand of the vacuum source is reduced and further the milk volume expressed can be calculated based on a different parameter additionally to the change in vacuum pressure during expression.
  • the breast pump comprises a user interface including one or more of a display, a speaker, a vibrational element, an actuating element.
  • An interface can convey information to the user of the breast pump thus calming the user down by reporting a successful session.
  • Various possibilities to convey the information can include displaying parameters on a display, or emitting a vibrational or audio signal when a desired milk volume is exceeded. Actuating elements allow easy manipulation of the breast pump like turning the device on or off.
  • the vacuum pressure sensor can be configured to determine pressure changes during a vacuum stroke of the vacuum unit, during a vacuum release stroke of the vacuum unit or in a single stroke modus.
  • FIG. 1 shows a schematic view of a breast pump according to the invention
  • FIGS. 2A and 2B show a schematic view of an alternative embodiment of a breast pump according to the invention and a corresponding vacuum profile
  • FIGS. 3A and 3B shows a schematic view of yet another embodiment of a breast pump according to the invention and a corresponding pressure diagram.
  • FIG. 1 shows in a very schematic illustration an embodiment of a breast pump 1 suitable for the invention. Lactating women need to regularly express milk to maintain a good milk supply. Without expressing milk regularly, the milk supply is liable to drop. For expressing milk from the female breast, commonly electric breast pumps 1 are used.
  • the embodiment of the breast pump 1 comprises an expression kit 2 with a funnel 3 which is designed to receive a female breast therein. The funnel 3 is coupled to a housing 4 , as is a container 5 which is to receive the milk expressed from the female breast.
  • a vacuum unit 6 is connected to the expression kit 2 by way of a pipe 7 .
  • the vacuum unit 6 exerts a suction force to the breast thus sucking milk from the breast by applying a vacuum to the nipple. This process is analogous to the sucking action of a baby during breast feeding.
  • Electrical breast pumps 1 can be split into two groups.
  • One group of known breast pumps 1 is equipped with a hygienic shield between the vacuum unit 6 and the breast, while the other group lacks this feature.
  • the latter ones comprise a one-way valve which can be housed in the housing 4 to avoid breast milk from flowing back to the funnel 3 .
  • the housing 4 can contain a diaphragm or membrane to establish a vacuum or air tight interface between the funnel 3 and the container 5 to prevent milk from entering the vacuum system.
  • Most breast pumps 1 are equipped with a silicone membrane between the vacuum unit 6 and the breast.
  • the vacuum produced by the vacuum unit 6 causes the membrane to move upwards, thereby expanding the air in the funnel 3 in which the breast is positioned. This expansion creates the required vacuum at the breast for the expression of milk therefrom.
  • the membrane will move to its rest position again.
  • the vacuum at the vacuum unit 6 is indirectly causing the vacuum at the breast.
  • a general problem of expressing milk by way of an electrical breast pump 1 is the effort a user has to take to keep count of the milk expressed from the breast.
  • the invention is directed to a new way of determining the expressed milk volume without relying on or requiring the user inputting the amount of milk expressed herself.
  • the air volume of the breast pump 1 is defined as the sum of the air volumes of the housing 4 , the container 5 , the vacuum unit 6 and the connecting pipes 7 .
  • Sensors known from the state of the art can e.g. be airflow sensors in the vacuum path or current measurement sensors on the electric motor of the vacuum unit 6 .
  • the present invention deals with a pressure sensor in the vacuum path.
  • a vacuum pressure sensor which is preferably arranged in the housing 4 or in the vacuum unit 6 , in any case however in the vacuum air volume or in air-ducting connection herewith, is described.
  • the basic measurement principle behind the calculation is the observation that in a closed volume of air the pressure will rise when fluid entering the system displaces air. When milk from the female breast fills the container 5 , the air in the system will be compressed resulting in a higher pressure. The increase of the pressure is a measure for the milk volume entering the system.
  • the performance of the vacuum unit 6 should be known.
  • the flow-pressure curve of a vacuum unit is typically part of the specifications of the vacuum unit 6 and thus known as such, but the curve can also be determined during production. Especially the latter method will result in a very precise curve and thus in very precise measurements later.
  • the invention can be used for breast pumps with a hygienic barrier in form of a membrane or diaphragm as well as for breast pumps without a hygienic barrier between the milk and the vacuum unit.
  • a closed system with a hygienic diaphragm will be easier to handle due to the closed air volume inside the breast pump 1 .
  • Open systems can be handled, too, when the vacuum has been built up and the system is closed to the environment by air-tight placement of the breast in the funnel 3 .
  • the values measured by the vacuum pressure sensor can then be used to determine the air volume in the system which in turn is dependent on the milk volume expressed from the female breast and collected in the container 5 .
  • the thus determined amount of milk can be stored in a control unit 8 which is connected to the vacuum unit 6 .
  • the values can be conveyed to the user of the breast pump 1 e.g. by way of a user interface 10 or via a connection to a separate device (not shown) e.g. via wireless connection to the cloud or to a smart device like a mobile phone.
  • the user interface 10 can for example comprise a display 13 to show the amount of milk expressed during the session, a speaker 14 for a voice feedback, a vibrational unit 15 for a vibrational signal e.g. announcing a certain milk volume which has ben expressed, and one or more actuating elements 16 like a Start-/Stop-button.
  • a vacuum/air tight interface between the funnel 3 and the container 5 is described exemplary.
  • a one-way valve is not necessary. Instead, the system will contain a vacuum release valve 9 which can for example be integrated in the housing 4 .
  • the breast pump 1 comprises a porous membrane as a hygienic barrier to prevent breast milk from entering the vacuum pump.
  • the membrane can also be housed in the housing as described above.
  • the vacuum pressure sensor is arranged between the porous membrane and the vacuum unit 6 .
  • the vacuum pressure sensor can be arranged in the housing 4 , in the pump unit 6 or in the connecting pipe 7 .
  • the vacuum unit 6 is operated in a stimulation phase with short vacuum cycles. This is physiologically necessary to stimulate the milk flow.
  • the vacuum pressure sensor will measure the change of the vacuum pressure, which will increase during this phase. This value can directly be used to calculate a vacuum system air volume or starting volume.
  • the milk begins to flow and fills the container 5 .
  • the speed of increase of the vacuum will rise because the dead air volume contained in the breast pump 1 is decreased. While the speed of increase of the vacuum is a measure of the dead volume, the difference between the start volume and the current volume is a measure for the expressed amount of milk.
  • the mathematics involved is not very complex but requires a processor 11 in form of a microcontroller with mathematic capabilities for log calculations.
  • the processor 11 is preferably arranged in the control unit 8 . It can communicate with the vacuum pressure sensor in the breast pump 1 and with a storage unit 12 which is preferably also housed in the control unit 8 .
  • the breast pump 1 can be interpreted as a pump unit 6 emptying an unknown volume V.
  • the parameters of the pump unit 6 are known and are idealized as a linear Q-H curve defined by its maximum flow rate Q 0 (in m 3 /s) and p min (in Pa). This leads to the following equation which can be rewritten to a ordinary differential equation (ODE):
  • p ⁇ ( t ) p min ( 1 + p 0 - p min p ⁇ ⁇ 0 ⁇ ( e p mi ⁇ n ⁇ Q 0 t v ⁇ ( p 0 - p min ) - 1 ) + p min ) .
  • m mass
  • density
  • V volume
  • Q flow rate
  • p pressure
  • t time.
  • p min is given by the pump unit's 6 characteristic, as is Q 0 .
  • p 0 denotes the pressure in the beginning and is assumed to be known.
  • V 1 t 1 * Q 0 ⁇ p min ( p min - p 0 ) ⁇ ⁇ Log ⁇ [ p 0 p 1 ⁇ ( p 1 - p min ) ( p 0 - p min ) ] .
  • ⁇ ⁇ ⁇ V ( t 1 - t 2 ) * Q 0 ⁇ p min ( p min - p 0 ) ⁇ ⁇ Log ⁇ [ p 0 p 1 ⁇ ( p 1 - p min ) ( p 0 - p min ) ] .
  • a control loop for determining the milk volume could be implemented by measuring multiple vacuum profiles/cycles. This will increase the accuracy because errors are averaged out. The disadvantage of this is that the vacuum profile that is expected will deviate more from the profile that is generated (correcting will take multiple cycles).
  • control loop could be implemented within one vacuum cycle.
  • the control loop would compare a predetermined vacuum profile with the error measured between the expected and the real vacuum.
  • the advantage of this control principle is that the user is less aware of the measurement that is going on, while the vacuum profile is what is expected.
  • the nipple will act somewhat elastic and visco-elastic, but the effect is relative small.
  • An exemplary start volume can be in the order of 175 ml of which 50 ml are dead volume and 125 ml in the empty container 5 .
  • the elastic behavior of the nipple will result in a 2 ml volume error which can be partially compensated while it is quite standard.
  • the visco-elastic behavior will result in an additional 2 ml volume error, also this can be estimated and partially compensated.
  • the milk volume expected is in the order of 75 ml. This results in an error of 1 . . . 5%.
  • the measurement could also be performed in the vacuum release stroke.
  • this stroke is typically very short and therefore the accuracy is likely to be smaller. Nevertheless it is possible to measure a vacuum release pressure-time curve.
  • the air volume and therefor also the milk volume information is also part of the sensor signal.
  • the release of the vacuum is typically achieved via a known air restriction. A large air volume corresponding to a small milk volume will result in a slow vacuum release, while a small air volume corresponding to a large milk volume will result in a fast vacuum release. To increase the resolution of this measurement the restriction can temporarily be made quite small leading to a higher resolution.
  • FIGS. 2A, 2B, 3A and 3B show two alternative embodiments of the invention which are based on the principle of measurement of the changes in vacuum pressure. Both embodiments use a breast pump 1 which has a hygienic barrier 21 to prevent breast milk from entering the vacuum system.
  • the breast pumps 1 each comprise a funnel 3 , a housing 4 and a container 5 as described previously with reference to FIG. 1 .
  • the breast pumps 1 further are connected to a vacuum unit 6 via a connecting pipe 7 .
  • a release valve 9 and a pressure sensor 17 and a flow sensor 18 are present.
  • the release valve can be arranged in the vacuum unit 6 .
  • FIGS. 2A and 3A provide a solution which allows a minor vacuum at the container 5 , which results in a decrease in power demand at the vacuum source.
  • a small inlet orifice 19 is provided at the entry of the container 5 .
  • the small inlet orifice 19 causes a delay in the vacuum of the container 5 . This delay will result in a deviation from the expected target vacuum value. The deviation is then a measure for the amount of milk in the container 5 .
  • FIG. 2B shows a respective diagram of the pressure measured at the breast 23 in the chamber 22 , which is represented by the lower of the two curves of FIG. 2B .
  • the upper curve represents the pressure in the container 5 .
  • the latter does not reach the base line of FIG. 2B representing the expected target pressure.
  • the power demand per cycle is not as high as in the breast pump 1 according to FIG. 1 .
  • FIG. 3A another alternative embodiment is shown which features a duck bill valve 20 instead of the small inlet orifice 19 of FIG. 2B .
  • the duck bill valve 20 is configured to close at a pressure difference of e.g. approximately 10 mbar.
  • a pressure difference e.g. approximately 10 mbar.
  • the vacuum diagram of FIG. 3B shows the pressure difference at which the duck bill valve 20 is closed.
  • the resulting vacuum is significantly lower than the expected vacuum level without closed valve 20 .
  • the resulting power demand for the vacuum unit 6 is lower, thus resulting in less wear, less noise and less power consumption.
  • a flap valve may be used.
  • the invention can also used with a single stroke principle that does not use a release valve. This would require a large stroke volume to compensate for the dead volume in the container 5 .
  • the breast pump 1 can be operated without a silicone hygienic barrier as mentioned above.
  • the silicone hygienic barrier will need to make quite a large stroke to compensate for the large dead volume in the container 5 when empty.
  • With a silicone hygienic barrier the milk volume and the pressure in the pipe 7 at the pump unit 6 side has a direct link to the pressure in the funnel 3 via the stiffness of the silicone hygienic barrier.
  • a computer program may be stored/distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with or as part of other hardware, but may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems.
  • a suitable medium such as an optical storage medium or a solid-state medium supplied together with or as part of other hardware, but may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pediatric Medicine (AREA)
  • External Artificial Organs (AREA)
US16/064,638 2015-12-23 2016-12-15 Breast pump, method and computer program Active 2037-09-12 US10987455B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP15202295 2015-12-23
EP15202295 2015-12-23
EP15202295.0 2015-12-23
PCT/EP2016/081109 WO2017108555A1 (en) 2015-12-23 2016-12-15 Breast pump, method and computer program

Publications (2)

Publication Number Publication Date
US20180369464A1 US20180369464A1 (en) 2018-12-27
US10987455B2 true US10987455B2 (en) 2021-04-27

Family

ID=55022373

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/064,638 Active 2037-09-12 US10987455B2 (en) 2015-12-23 2016-12-15 Breast pump, method and computer program

Country Status (7)

Country Link
US (1) US10987455B2 (ru)
EP (1) EP3393540B1 (ru)
JP (1) JP2018538105A (ru)
CN (1) CN108430530B (ru)
BR (1) BR112018012671A2 (ru)
RU (1) RU2729444C2 (ru)
WO (1) WO2017108555A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD968585S1 (en) * 2019-05-17 2022-11-01 Koninklijke Philips N.V. Breast pump
WO2024047205A1 (en) * 2022-08-31 2024-03-07 Chiaro Technology Limited Milk-volume measurement system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018006778U1 (de) 2017-06-15 2022-12-14 Chiaro Technology Limited Brustpumpensystem
EP3520831A1 (en) * 2018-02-02 2019-08-07 Koninklijke Philips N.V. Breast pump device comprising an expression kit, a vacuum unit and a milk expression assessment system
EP3533479A1 (en) * 2018-02-28 2019-09-04 Koninklijke Philips N.V. Breast pump arrangement
US11433166B2 (en) * 2018-04-27 2022-09-06 Moxxly Llc Liquid level sensor for liquid receptacle
CN108837199B (zh) * 2018-07-13 2021-08-10 无锡新中瑞婴儿用品有限公司 吸奶器主机方法、吸奶器主机系统、吸奶器主机及用途
WO2020051438A1 (en) * 2018-09-06 2020-03-12 Lansinoh Laboratories, Inc. Closed loop electric breast pump
WO2020051456A1 (en) 2018-09-06 2020-03-12 Lansinoh Laboratories, Inc. Breast pumps
CN112638438A (zh) * 2018-09-06 2021-04-09 兰思诺实验室有限公司 用于吸乳器的振动波形
EP3725340A1 (en) * 2019-04-19 2020-10-21 Koninklijke Philips N.V. Cushion configured to be mounted to an air passage element of a breast pump device
GB202004395D0 (en) 2020-03-26 2020-05-13 Chiaro Technology Ltd Lima

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031096A1 (en) 1994-05-17 1995-11-23 Tetra Laval Holdings & Finance S.A. A method of milking animals
EP1430918A1 (en) 2002-12-20 2004-06-23 Medela Holding AG Use of a breast pump
US6840918B1 (en) * 1999-10-13 2005-01-11 The First Years Inc. Pumping breast milk
US20090099511A1 (en) * 2007-04-11 2009-04-16 Medela Holding Ag Method and Apparatus for Minimum Negative Pressure Control, Particularly for a Breastpump with Breastshield Pressure Control System
WO2010095133A1 (en) 2009-02-17 2010-08-26 Innovia Medical Ltd Breastfeeding milk consumption measuring device
US20110004154A1 (en) 2007-12-21 2011-01-06 Koninklijke Philips Electronics N.V. Breast pump for expressing milk from a breast
US20150065994A1 (en) 2013-08-29 2015-03-05 Positive Care Ltd. Posterior breast massage unit
US20150112298A1 (en) 2012-05-03 2015-04-23 Genadyne Biotechnologies, Inc. Breast pump and system or program for pumping breasts
WO2015120321A1 (en) 2014-02-07 2015-08-13 Naia Health, Inc. Methods, apparatus, and system for expression of human breast milk
WO2016014469A1 (en) 2014-07-22 2016-01-28 Exploramed Nc7, Llc Breast pump system and methods
WO2016014488A1 (en) 2014-07-22 2016-01-28 Exploramed Nc7, Llc Breast pump system and methods

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9433562B2 (en) * 2010-07-27 2016-09-06 Neomed, Inc. System for aseptic collection and enteral delivery
US8992445B2 (en) * 2011-02-27 2015-03-31 Milkotech Systems Ltd Apparatus and method for real-time measurement of changes in volume of breast and other organs

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031096A1 (en) 1994-05-17 1995-11-23 Tetra Laval Holdings & Finance S.A. A method of milking animals
US6840918B1 (en) * 1999-10-13 2005-01-11 The First Years Inc. Pumping breast milk
EP1430918A1 (en) 2002-12-20 2004-06-23 Medela Holding AG Use of a breast pump
US20090099511A1 (en) * 2007-04-11 2009-04-16 Medela Holding Ag Method and Apparatus for Minimum Negative Pressure Control, Particularly for a Breastpump with Breastshield Pressure Control System
US20110004154A1 (en) 2007-12-21 2011-01-06 Koninklijke Philips Electronics N.V. Breast pump for expressing milk from a breast
WO2010095133A1 (en) 2009-02-17 2010-08-26 Innovia Medical Ltd Breastfeeding milk consumption measuring device
US20120004603A1 (en) * 2009-02-17 2012-01-05 Innovia Medical Ltd Breastfeeding milk consumption measuring device
US20150112298A1 (en) 2012-05-03 2015-04-23 Genadyne Biotechnologies, Inc. Breast pump and system or program for pumping breasts
US20150065994A1 (en) 2013-08-29 2015-03-05 Positive Care Ltd. Posterior breast massage unit
WO2015120321A1 (en) 2014-02-07 2015-08-13 Naia Health, Inc. Methods, apparatus, and system for expression of human breast milk
WO2016014469A1 (en) 2014-07-22 2016-01-28 Exploramed Nc7, Llc Breast pump system and methods
WO2016014488A1 (en) 2014-07-22 2016-01-28 Exploramed Nc7, Llc Breast pump system and methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD968585S1 (en) * 2019-05-17 2022-11-01 Koninklijke Philips N.V. Breast pump
WO2024047205A1 (en) * 2022-08-31 2024-03-07 Chiaro Technology Limited Milk-volume measurement system

Also Published As

Publication number Publication date
CN108430530B (zh) 2021-01-26
EP3393540B1 (en) 2019-11-20
JP2018538105A (ja) 2018-12-27
EP3393540A1 (en) 2018-10-31
BR112018012671A2 (pt) 2018-12-04
RU2018126785A3 (ru) 2020-01-27
RU2018126785A (ru) 2020-01-27
WO2017108555A1 (en) 2017-06-29
RU2729444C2 (ru) 2020-08-06
US20180369464A1 (en) 2018-12-27
CN108430530A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
US10987455B2 (en) Breast pump, method and computer program
US10857271B2 (en) Closed loop electric breast pump
JP2023162239A (ja) 創傷容積の推定を伴う創傷療法システム
RU2758941C1 (ru) Молокоотсос, содержащий набор для сцеживания, вакуумный блок и систему для оценки сцеживания молока
KR20170136568A (ko) 검출, 피드백, 및 연결 기능을 갖춘 개선된 모유 착유 시스템
CA2643907A1 (en) Volume measurement using gas laws
US20210393861A1 (en) Fluid and air volume measurement system for a breast pump assembly
AU2023226761A1 (en) Fluid flow control and delivery via multiple fluid pumps
US10966906B2 (en) Method for producing a medical preparation
FR2242994A1 (en) Blood treatment and pressure measuring equipment - with proportional anti-coagulant metering
CN107666916A (zh) 具有绝对压力传感器的压力系统
CN106267509B (zh) 一种气道湿化泵
US11566614B2 (en) Fluid flow control and delivery via multiple fluid pumps
WO2014203104A1 (en) Determining of subject zero flow using cluster analysis
WO2024047205A1 (en) Milk-volume measurement system
CN117530607A (zh) 出液方法、装置、处理器以及电子设备

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: KONINKLIJKE PHILIPS N.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AALDERS, ARNOLD;VAN WIERINGEN, ARJAN TEODOR;REEL/FRAME:051809/0821

Effective date: 20161215

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE