US10922031B2 - Image forming apparatus that adjusts a cycle of a horizontal synchronization signal in accordance with an image width of a page image - Google Patents

Image forming apparatus that adjusts a cycle of a horizontal synchronization signal in accordance with an image width of a page image Download PDF

Info

Publication number
US10922031B2
US10922031B2 US16/877,698 US202016877698A US10922031B2 US 10922031 B2 US10922031 B2 US 10922031B2 US 202016877698 A US202016877698 A US 202016877698A US 10922031 B2 US10922031 B2 US 10922031B2
Authority
US
United States
Prior art keywords
image
board
synchronization signal
horizontal synchronization
page
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/877,698
Other versions
US20200371727A1 (en
Inventor
Takenori Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Document Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Document Solutions Inc filed Critical Kyocera Document Solutions Inc
Assigned to KYOCERA DOCUMENT SOLUTIONS INC. reassignment KYOCERA DOCUMENT SOLUTIONS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YAMAMOTO, TAKENORI
Publication of US20200371727A1 publication Critical patent/US20200371727A1/en
Application granted granted Critical
Publication of US10922031B2 publication Critical patent/US10922031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/14Electronic sequencing control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1202Dedicated interfaces to print systems specifically adapted to achieve a particular effect
    • G06F3/1211Improving printing performance
    • G06F3/1215Improving printing performance achieving increased printing speed, i.e. reducing the time between printing start and printing end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00567Handling of original or reproduction media, e.g. cutting, separating, stacking
    • H04N1/0057Conveying sheets before or after scanning
    • H04N1/00599Using specific components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/23Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 specially adapted for copying both sides of an original or for copying on both sides of a recording or image-receiving material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/65Apparatus which relate to the handling of copy material
    • G03G15/6555Handling of sheet copy material taking place in a specific part of the copy material feeding path
    • G03G15/6558Feeding path after the copy sheet preparation and up to the transfer point, e.g. registering; Deskewing; Correct timing of sheet feeding to the transfer point
    • G03G15/6561Feeding path after the copy sheet preparation and up to the transfer point, e.g. registering; Deskewing; Correct timing of sheet feeding to the transfer point for sheet registration
    • G03G15/6564Feeding path after the copy sheet preparation and up to the transfer point, e.g. registering; Deskewing; Correct timing of sheet feeding to the transfer point for sheet registration with correct timing of sheet feeding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1223Dedicated interfaces to print systems specifically adapted to use a particular technique
    • G06F3/1237Print job management
    • G06F3/1253Configuration of print job parameters, e.g. using UI at the client
    • G06F3/1254Automatic configuration, e.g. by driver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00567Handling of original or reproduction media, e.g. cutting, separating, stacking
    • H04N1/0057Conveying sheets before or after scanning
    • H04N1/00599Using specific components
    • H04N1/00602Feed rollers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00567Handling of original or reproduction media, e.g. cutting, separating, stacking
    • H04N1/00649Control or synchronising different handling operations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present disclosure relates to an image forming apparatus.
  • An image forming apparatus includes a controller board and an engine board, and the engine board controls a print engine to perform a printing process, and the controller board prepares image data to be supplied to the engine board, transfers the image data to the engine board, and controls the start of the printing process and the like.
  • the engine board stops a printing sheet at a resist position short of the print engine.
  • the controller board transfers the image data to the engine board.
  • the engine board starts conveyance of the printing sheet from the resist position to the print engine and controls the print engine to form an image by a color material (toner or ink) on the printing sheet.
  • the image data of the page image may not be transferred from the controller board to the engine board in time to satisfy the print productivity condition as required by the size.
  • An image forming apparatus includes a print engine to form a page image on a printing sheet, a sheet conveyance unit to convey the printing sheet to the print engine in a non-stop conveyance mode, a video board to supply image data of the page image to the print engine, and a controller board to execute predetermined image processing to generate the image data and transfer the image data to the video board.
  • the video board transmits a horizontal synchronization signal to the controller board.
  • the controller board transfers the image data to the video board line by line in synchronization with the horizontal synchronization signal.
  • the video board adjusts a cycle of the horizontal synchronization signal in accordance with an image width of the page image to satisfy a print productivity condition set correspondingly to a size of the printing sheet and indicating a number of printed sheets per unit time.
  • FIG. 1 is a side view for describing a mechanical internal configuration of an image forming apparatus according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram illustrating a configuration of a controller board used in the image forming apparatus according to the embodiment of the present disclosure.
  • FIG. 3 is a block diagram illustrating an electrical configuration of the image forming apparatus according to the embodiment of the present disclosure.
  • FIG. 4 is a timing chart for describing transfer of image data from the controller board to a video board in the image forming apparatus illustrated in FIGS. 1 and 3 .
  • FIG. 5 is a sequence diagram for describing an operation of the image forming apparatus illustrated in FIGS. 1 and 3 .
  • FIG. 6 is a flowchart illustrating an operation of an image receiving unit in the video board in FIG. 3 .
  • FIG. 7 is a diagram illustrating an exemplary correspondence relationship between the size of a printing sheet and the cycle of a horizontal synchronization signal.
  • FIG. 8 is another diagram illustrating an exemplary correspondence relationship between the size of a printing sheet and the cycle of a horizontal synchronization signal.
  • FIG. 1 is a side view for describing a mechanical internal configuration of an image forming apparatus according to an embodiment of the present disclosure.
  • An image forming apparatus 10 according to the present embodiment is such an apparatus as a printer, a copier, a facsimile machine, or a multifunction peripheral.
  • the image forming apparatus 10 illustrated in FIG. 1 includes a print engine 10 a and a sheet conveyance unit 10 b .
  • the print engine 10 a physically forms a page image to be printed on a printing sheet (such as a printing sheet of paper).
  • the print engine 10 a is a line-type inkjet print engine.
  • the print engine 10 a may be an electrophotographic print engine of an electrophotographic type.
  • the print engine 10 a includes line-type inkjet recording units 1 a to 1 d corresponding to four ink colors of cyan, magenta, yellow, and black.
  • each of the inkjet recording units 1 a , 1 b , 1 c , and 1 d has one or more head units.
  • the sheet conveyance unit 10 b conveys the printing sheet before printing to the print engine 10 a along the predetermined conveyance path, and conveys the printing sheet after printing from the print engine 10 a to the predetermined discharge destination.
  • the image forming apparatus 10 executes high-speed continuous printing by the sheet conveyance unit 10 b of the non-stop conveyance mode. Therefore, the sheet conveyance unit 10 b conveys the printing sheet to the print engine 10 a by the non-stop conveyance mode.
  • the sheet conveyance unit 10 b is not provided with a resist roller for stopping the printing sheet at the resist position.
  • the sheet conveyance unit 10 b includes an annular conveyance belt 2 that is disposed to face the print engine 10 a and conveys the printing sheet, a drive roller 3 and a driven roller 4 , on which the conveyance belt 2 is suspended, a suction roller 5 that nips the printing sheet together with the conveyance belt 2 , and a pair of discharge rollers 6 and 6 a.
  • the drive roller 3 and the driven roller 4 rotate the conveyance belt 2 .
  • the suction roller 5 nips the printing sheets conveyed from a plurality of sheet feeding cassettes 20 - 1 and 20 - 2 described later, and the nipped printing sheets are sequentially conveyed to the print positions of the inkjet recording units 1 a to 1 d by the conveyance belt 2 , and the images of the respective colors are printed by the inkjet recording units 1 a to 1 d .
  • the printing sheet after completion of the color printing is discharged to the discharge tray 10 c or the like by the pair of discharge rollers 6 and 6 a.
  • the sheet conveyance unit 10 b includes the sheet feeding cassettes 20 - 1 and 20 - 2 .
  • the sheet feeding cassettes 20 - 1 and 20 - 2 house printing sheets SH 1 and SH 2 , push up the printing sheets SH 1 and SH 2 upward by lift plates 21 and 24 , and bring the printing sheets SH 1 and SH 2 into contact with pickup rollers 22 and 25 .
  • the printing sheets SH 1 and SH 2 placed in the sheet feeding cassettes 20 - 1 and 20 - 2 are picked up by the pickup rollers 22 and 25 from the top one by one to sheet feeding rollers 23 and 26 .
  • the sheet feeding rollers 23 and 26 are rollers for conveying the sheets SH 1 and SH 2 , which are fed by the pickup rollers 22 and 25 from the sheet feeding cassettes 20 - 1 and 20 - 2 to the conveyance path one by one, respectively.
  • a conveyance roller 27 is a conveyance roller on the conveyance path, which is common to the printing sheets SH 1 and SH 2 conveyed from the sheet feeding cassettes 20 - 1 and 20 - 2 .
  • FIG. 2 is a block diagram illustrating a configuration of a controller board 61 used in the image forming apparatus 10 according to the embodiment of the present disclosure.
  • the controller board 61 does not have a non-stop conveyance function (namely, a function of managing the conveyance timing of the printing sheet in the non-stop conveyance mode).
  • the controller board 61 includes an image generation unit 71 , a memory 72 , an image processing unit 73 , an image output unit 74 , and a print control unit 75 .
  • the controller board 61 includes an arithmetic processing unit such as a computer that executes a predetermined program, an application specific integrated circuit (ASIC) that executes specific data processing, and the like, and the arithmetic processing unit functions as the image generation unit 71 , the memory 72 , the image processing unit 73 , the image output unit 74 , and the print control unit 75 .
  • ASIC application specific integrated circuit
  • the image generation unit 71 generates raster image data of an image to be printed from the print data described in the page description language.
  • the memory 72 stores image data generated by the image generation unit 71 , image data subjected to image processing performed by the image processing unit 73 , and the like.
  • the memory 72 is a random access memory (RAM).
  • the image processing unit 73 performs predetermined image processing on the above-described image data. Specifically, the image processing unit 73 executes predetermined image processing such as an image rotation at 90°, 180°, or 270°, an image synthesis, color conversion, a color tone correction based on gamma curve, a halftoning, and a consumed toner reduction process (for example, thinning of characters or reduction in density), and the like.
  • predetermined image processing such as an image rotation at 90°, 180°, or 270°, an image synthesis, color conversion, a color tone correction based on gamma curve, a halftoning, and a consumed toner reduction process (for example, thinning of characters or reduction in density), and the like.
  • the image output unit 74 transfers the image data after the image processing to a subsequent board 101 (board for controlling the print engine) according to a synchronization signal.
  • the subsequent board 101 upon detecting the arrival of the printing sheet at the resist position, transmits a synchronization signal to the controller board 61 , and the controller board 61 begins to transfer the image data in accordance with the synchronization signal.
  • the subsequent board 101 does not have a page memory, and outputs the transferred image data to the print engine sequentially.
  • the print control unit 75 transmits a print instruction to the subsequent board 101 (board for controlling the print engine or the sheet conveyance unit).
  • the controller board 61 is used in the stop conveyance system, in which the printing sheet is temporarily stopped at the resist position short of the print engine.
  • FIG. 3 is a block diagram illustrating an electrical configuration of an image forming apparatus 10 according to an embodiment of the present disclosure.
  • the image forming apparatus 10 includes, in addition to the print engine 10 a and the sheet conveyance unit 10 b as illustrated in FIG. 1 and the controller board 61 as above, an engine board 62 , a video board 63 , and a relay board 64 .
  • the controller board 61 performs predetermined image processing to generate image data of the page image.
  • the controller board 61 transfers the image data of the page image to the video board 63 .
  • the engine board 62 includes a print control unit 81 and a conveyance control unit 82 .
  • the engine board 62 includes an arithmetic processing unit such as a computer that executes a predetermined program and an ASIC that executes specific data processing, and the arithmetic processing unit functions as the print control unit 81 and the conveyance control unit 82 .
  • the print control unit 81 instructs the image output unit 93 of the video board 63 to output the image data of the page image to be output from the video board 63 to the print engine 10 a.
  • the conveyance control unit 82 controls the sheet conveyance unit 10 b . Specifically, the conveyance control unit 82 electrically controls drive devices (such as motors) of the drive roller 3 , the driven roller 4 , the suction roller 5 , the pair of discharge rollers 6 and 6 a , the sheet feeding rollers 23 and 26 , the conveyance roller 27 , and the like.
  • drive devices such as motors
  • the conveyance control unit 82 causes the sheet conveyance unit 10 b to start the conveyance of the printing sheet on which the page image is to be printed.
  • the video board 63 supplies the image data of the page image to the print engine 10 a .
  • the video board 63 includes an image receiving unit 91 , the page memory 92 , and an image output unit 93 .
  • the video board 63 includes an arithmetic processing unit such as a computer that executes a predetermined program and an ASIC that performs specific data processing, and the arithmetic processing unit functions as the image receiving unit 91 and the image output unit 93 .
  • the image receiving unit 91 receives image data of a page image transferred from the controller board 61 , and stores the received image data in the page memory 92 .
  • the page memory 92 temporarily stores image data of one or more page images.
  • the page memory 92 is a RAM.
  • the image receiving unit 91 transmits the ready signal (for the page image) to the print control unit 81 of the engine board 62 .
  • the conveyance control unit 82 causes the sheet conveyance unit 10 b to start conveyance of the printing sheet on which the page image is to be printed.
  • the image output unit 93 reads the image data of the page image to be printed from the page memory 92 , and outputs the image data to the print engine 10 a .
  • the page image to be printed is designated by the print control unit 81 of the engine board 62 .
  • FIG. 4 is a timing chart illustrating transfer of image data from the controller board 61 to the video board 63 in the image forming apparatus 10 illustrated in FIGS. 1 and 3 .
  • the image receiving unit 91 of the video board 63 transmits the vertical synchronization signal and the horizontal synchronization signal to the controller board 61 , and the image output unit 74 of the controller board 61 starts transferring the image data of the page image of one page in synchronization with the vertical synchronization signal (at the rising edge of the vertical synchronization signal), and transfers the image data to the video board 63 line by line in synchronization with the horizontal synchronization signal, as shown in FIG. 4 . More specifically, the image output unit 74 starts to transfer the image data for one line in synchronization with the horizontal synchronization signal, and asserts the image transfer signal only for the transfer period of the image data.
  • the image receiving unit 91 of the video board 63 adjusts a cycle HSYNC of the horizontal synchronization signal in accordance with the image width of the page image so as to satisfy the print productivity condition (the number of printed sheets per unit time) set correspondingly to the size of the printing sheet used for the printing.
  • the image receiving unit 91 of the video board 63 adjusts the cycle HSYNC such that the cycle HSYNC of the horizontal synchronization signal is shorter as the image width of the page image is smaller.
  • the image receiving unit 91 of the video board 63 adjusts the cycle HSYNC to a value obtained by subtracting the decrement according to the image width from a predetermined upper limit value.
  • HSYNC NSYNC_max ⁇ Nsb/Nsb _max
  • NSYNC_max is a cycle NSYNC (fixed value) for a printing sheet having a maximum size (for example, 13 ⁇ 19 inches)
  • Nsb_max is the number (fixed value) of subbands (blocks) in a main scanning direction for a printing sheet having a maximum size (for example, 13 ⁇ 19 inches)
  • Nsb is the number of subbands (blocks) in a main scanning direction for a printing sheet used for printing, with the number of subbands being an integer obtained by dividing the image width by the subband width (e.g., 128 pixels) and rounding up.
  • the subband is a block of 128 ⁇ 128 pixels.
  • NSYNC_max is set to 64.6 microseconds
  • Nsb_max is set to 122.
  • the image receiving unit 91 of the video board 63 sets a predetermined lower limit value as the value of the cycle HSYNC of the horizontal synchronization signal if the cycle HSYNC is lower in value than the predetermined lower limit value. That is, the cycle HSYNC of the horizontal synchronization signal is clamped at the predetermined lower limit value.
  • the predetermined lower limit value is a value of HSYNC in the above-described equation that corresponds to a predetermined size of the printing sheet (size for which the numerical value of the print productivity condition is the largest, that is to say, the size of A4-E in this embodiment).
  • the predetermined lower limit value is 58.25 microseconds.
  • the upper limit value is set correspondingly to the maximum size of the printing sheet.
  • the relay board 64 receives print data (image data subjected to rasterizing and image processing) transferred from an external controller in an image receiving unit 64 a , stores the received data in a memory 64 b , reads the print data from the memory 64 b by an image output unit 64 c , and transfers the read data to the video board 63 in the same manner as the controller board 61 .
  • FIG. 5 is a sequence diagram for describing the operation of the image forming apparatus 10 illustrated in FIGS. 1 and 3 .
  • the image generation unit 71 when the image generation unit 71 receives the print data from a host apparatus by using a communication apparatus (not illustrated), the image generation unit 71 sequentially generates the image data of the page image and stores the generated image data in the memory 72 .
  • the image processing unit 73 reads the image data of the page image, and performs predetermined image processing on the image data. When the image processing is completed, the preparation of the image data of the page image is completed.
  • the image processing unit 73 transmits a print instruction to the image output unit 74 and the print control unit 75 (step S 1 ).
  • the image output unit 74 transmits the print instruction to the image receiving unit 91 of the video board 63 (step S 2 ).
  • the print control unit 81 of the engine board 62 Upon receiving the print instruction from the image output unit 74 , the print control unit 81 of the engine board 62 transmits a print instruction including the image width information indicating the image width (the number of pixels in the main scanning direction) for the printing sheet to the image receiving unit 91 of the video board 63 (step S 4 ).
  • the image receiving unit 91 Upon accepting the print instruction, the image receiving unit 91 specifies the cycle HSYNC of the horizontal synchronization signal that corresponds to the image width indicated by the image width information (step S 5 ), transmits the vertical synchronization signal to the image output unit 74 of the controller board 61 , and transmits the horizontal synchronization signal to the image output unit 74 of the controller board 61 repeatedly on the specified cycle HSYNC (step S 6 ).
  • the image output unit 74 of the controller board 61 transfers the image data of the page image in accordance with the synchronization signals (step S 7 ).
  • the image receiving unit 91 of the video board 63 receives the image data of the page image, and stores the received image data in the page memory 92 .
  • FIG. 6 is a flowchart illustrating the operation of the image receiving unit 91 of the video board 63 in FIG. 3 .
  • the image receiving unit 91 Upon accepting the above-described print instruction, the image receiving unit 91 first specifies a default cycle HSYNC of the horizontal synchronization signal (cycle HSYNC of the horizontal synchronization signal for a normal resolution (for example, 600 dpi)) (step S 21 ), and then determines whether the print resolution is set to a predetermined high resolution (for example, 1200 dpi) (step S 22 ).
  • a default cycle HSYNC of the horizontal synchronization signal for a normal resolution (for example, 600 dpi)
  • a predetermined high resolution for example, 1200 dpi
  • the image receiving unit 91 specifies the cycle HSYNC of the horizontal synchronization signal that corresponds to the image width designated by the print instruction, as described above (step S 23 ).
  • the image receiving unit 91 determines whether the specified cycle HSYNC of the horizontal synchronization signal is less than the above-described predetermined lower limit value (step S 24 ).
  • the image receiving unit 91 sets the cycle HSYNC of the horizontal synchronization signal to the predetermined lower limit value and transmits the horizontal synchronization signal repeatedly with the predetermined lower limit value as the cycle (step S 25 ).
  • the image receiving unit 91 when the specified cycle HSYNC of the horizontal synchronization signal is equal to or larger than the predetermined lower limit value, the image receiving unit 91 repeatedly transmits the horizontal synchronization signal on the specified cycle HSYNC of the horizontal synchronization signal. In addition, when the print resolution is the normal resolution in step S 22 , the image receiving unit 91 repeatedly transmits the horizontal synchronization signal on the default cycle of the horizontal synchronization signal.
  • FIGS. 7 and 8 are diagrams illustrating an example of a correspondence relationship between the size of a printing sheet and the cycle HSYNC of the horizontal synchronization signal.
  • the cycle HSYNC of the horizontal synchronization signal is set to the above-described predetermined lower limit value in terms of the printing sheets, for each of which the image width is equal to or less than the image width for a printing sheet of A4-E size.
  • the productivity condition is set in advance for each sheet size. From such productivity condition, the upper limit processing time per page is specified.
  • the cycle HSYNC described above is specified from the image width (the number of pixels in the main scanning direction) according to the sheet size
  • the image data transfer time for one page is specified from the number of lines (the number of pixels in the sub-scanning direction) according to the sheet size and the cycle HSYNC.
  • FIG. 8 a margin as a difference between the upper limit processing time per page and the image data transfer time for one page is illustrated. As shown in FIG. 8 , even the sheet size (B4 in FIG. 7 ), which allows the highest productivity condition in comparison with the data size, yields a sufficient margin, and the transfer of the image data from the controller board 61 to the video board 63 is adequately in time even in the continuous printing in the non-stop conveyance mode.
  • the image receiving unit 91 transmits the ready signal to the print control unit 81 of the engine board 62 (step S 8 ).
  • the print control unit 81 of the engine board 62 Upon receiving the ready signal for all the images to be printed on the i-th printing sheet, for which a print instruction has been accepted, the print control unit 81 of the engine board 62 transmits the print instruction to the conveyance control unit 82 and the image output unit 93 of the video board 63 (step S 9 ), and the conveyance control unit 82 immediately transmits the sheet conveyance instruction for the i-th printing sheet to the sheet conveyance unit 10 b upon receiving the print instruction (step S 10 ).
  • the image output unit 93 reads the image data of the page image to be printed on the printing sheet from the page memory 92 in synchronization with the conveyance of the printing sheet, and outputs the image data to the print engine 10 a (step S 11 ).
  • the printing sheet is conveyed to the print engine 10 a without stopping short of the print engine 10 a , and the print engine 10 a prints the page image on the printing sheet.
  • the page memory 92 is provided, transfer of image data of a page image from the controller board 61 to the video board 63 can be performed asynchronously with the conveyance of the printing sheet. Therefore, even when the conveyance of the printing sheet is started after the completion of the storage of the image data of the page image in the page memory 92 , the page image is prepared in the page memory 92 in time for the above-described fixed cycle by continuously executing the transfer of the image data of page images of a plurality of pages. Thereby, continuous printing in the non-stop conveyance mode is executed.
  • the controller board 61 executes predetermined image processing to generate image data of a page image and transfer the image data to the video board 63 .
  • the video board 63 supplies the image data to the print engine 10 a .
  • the video board 63 transmits a horizontal synchronization signal to the controller board 61 , and the controller board 61 transfers the image data of the page image to the video board 63 line by line in synchronization with the horizontal synchronization signal.
  • the video board 63 adjusts the cycle HSYNC of the horizontal synchronization signal in accordance with the image width of the page image so as to satisfy the print productivity condition set correspondingly to the size of the printing sheet and indicating the number of printed sheets per unit time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)
  • Record Information Processing For Printing (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Facsimiles In General (AREA)
  • Ink Jet (AREA)

Abstract

An image forming apparatus includes a print engine to form a page image on a printing sheet, a sheet conveyance unit to convey the printing sheet to the print engine in a non-stop conveyance mode, a video board to supply image data of the page image to the print engine, and a controller board to execute predetermined image processing to generate the image data and transfer the image data to the video board. The video board transmits a horizontal synchronization signal to the controller board. The controller board transfers the image data to the video board line by line in synchronization with the horizontal synchronization signal. The video board adjusts a cycle of the horizontal synchronization signal in accordance with an image width of the page image to satisfy a print productivity condition set correspondingly to a size of the printing sheet.

Description

INCORPORATION BY REFERENCE
This application is based upon and claims the benefit of priority from the corresponding Japanese Patent Application No. 2019-097186 filed on May 23, 2019, the entire contents of which are incorporated herein by reference.
BACKGROUND
The present disclosure relates to an image forming apparatus.
An image forming apparatus includes a controller board and an engine board, and the engine board controls a print engine to perform a printing process, and the controller board prepares image data to be supplied to the engine board, transfers the image data to the engine board, and controls the start of the printing process and the like.
Typically, the engine board stops a printing sheet at a resist position short of the print engine. When the controller board completes preparation of image data of an image to be printed on the printing sheet, the controller board transfers the image data to the engine board. The engine board starts conveyance of the printing sheet from the resist position to the print engine and controls the print engine to form an image by a color material (toner or ink) on the printing sheet.
On the other hand, in continuous printing for a plurality of printing sheets, there has been proposed a non-stop conveyance mode in which printing sheets are conveyed to the print engine on a predetermined fixed cycle without stopping at the resist position.
In the non-stop conveyance mode, it is necessary with respect to the image data of the page image to be printed on one printing sheet to transfer image data of a page image of one page from the controller board to the engine board in a time equal to or shorter than the upper limit processing time per page (60/N×1000 [msec]) derived from the print productivity condition (the number N of printed sheets per unit time [ppm]).
However, depending on the size of a printing sheet and the print resolution (namely, the number of pixels in the image width), the image data of the page image may not be transferred from the controller board to the engine board in time to satisfy the print productivity condition as required by the size.
SUMMARY
An image forming apparatus according to the present disclosure includes a print engine to form a page image on a printing sheet, a sheet conveyance unit to convey the printing sheet to the print engine in a non-stop conveyance mode, a video board to supply image data of the page image to the print engine, and a controller board to execute predetermined image processing to generate the image data and transfer the image data to the video board. The video board transmits a horizontal synchronization signal to the controller board. The controller board transfers the image data to the video board line by line in synchronization with the horizontal synchronization signal. The video board adjusts a cycle of the horizontal synchronization signal in accordance with an image width of the page image to satisfy a print productivity condition set correspondingly to a size of the printing sheet and indicating a number of printed sheets per unit time.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side view for describing a mechanical internal configuration of an image forming apparatus according to an embodiment of the present disclosure.
FIG. 2 is a block diagram illustrating a configuration of a controller board used in the image forming apparatus according to the embodiment of the present disclosure.
FIG. 3 is a block diagram illustrating an electrical configuration of the image forming apparatus according to the embodiment of the present disclosure.
FIG. 4 is a timing chart for describing transfer of image data from the controller board to a video board in the image forming apparatus illustrated in FIGS. 1 and 3.
FIG. 5 is a sequence diagram for describing an operation of the image forming apparatus illustrated in FIGS. 1 and 3.
FIG. 6 is a flowchart illustrating an operation of an image receiving unit in the video board in FIG. 3.
FIG. 7 is a diagram illustrating an exemplary correspondence relationship between the size of a printing sheet and the cycle of a horizontal synchronization signal.
FIG. 8 is another diagram illustrating an exemplary correspondence relationship between the size of a printing sheet and the cycle of a horizontal synchronization signal.
DETAILED DESCRIPTION
Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings.
FIG. 1 is a side view for describing a mechanical internal configuration of an image forming apparatus according to an embodiment of the present disclosure. An image forming apparatus 10 according to the present embodiment is such an apparatus as a printer, a copier, a facsimile machine, or a multifunction peripheral.
The image forming apparatus 10 illustrated in FIG. 1 includes a print engine 10 a and a sheet conveyance unit 10 b. The print engine 10 a physically forms a page image to be printed on a printing sheet (such as a printing sheet of paper). In this embodiment, the print engine 10 a is a line-type inkjet print engine. Note that the print engine 10 a may be an electrophotographic print engine of an electrophotographic type.
In this embodiment, the print engine 10 a includes line-type inkjet recording units 1 a to 1 d corresponding to four ink colors of cyan, magenta, yellow, and black. In the present embodiment, each of the inkjet recording units 1 a, 1 b, 1 c, and 1 d has one or more head units.
The sheet conveyance unit 10 b conveys the printing sheet before printing to the print engine 10 a along the predetermined conveyance path, and conveys the printing sheet after printing from the print engine 10 a to the predetermined discharge destination.
The image forming apparatus 10 executes high-speed continuous printing by the sheet conveyance unit 10 b of the non-stop conveyance mode. Therefore, the sheet conveyance unit 10 b conveys the printing sheet to the print engine 10 a by the non-stop conveyance mode. In this embodiment, the sheet conveyance unit 10 b is not provided with a resist roller for stopping the printing sheet at the resist position.
In this embodiment, the sheet conveyance unit 10 b includes an annular conveyance belt 2 that is disposed to face the print engine 10 a and conveys the printing sheet, a drive roller 3 and a driven roller 4, on which the conveyance belt 2 is suspended, a suction roller 5 that nips the printing sheet together with the conveyance belt 2, and a pair of discharge rollers 6 and 6 a.
The drive roller 3 and the driven roller 4 rotate the conveyance belt 2. Then, the suction roller 5 nips the printing sheets conveyed from a plurality of sheet feeding cassettes 20-1 and 20-2 described later, and the nipped printing sheets are sequentially conveyed to the print positions of the inkjet recording units 1 a to 1 d by the conveyance belt 2, and the images of the respective colors are printed by the inkjet recording units 1 a to 1 d. Then, the printing sheet after completion of the color printing is discharged to the discharge tray 10 c or the like by the pair of discharge rollers 6 and 6 a.
Further, the sheet conveyance unit 10 b includes the sheet feeding cassettes 20-1 and 20-2. The sheet feeding cassettes 20-1 and 20-2 house printing sheets SH1 and SH2, push up the printing sheets SH1 and SH2 upward by lift plates 21 and 24, and bring the printing sheets SH1 and SH2 into contact with pickup rollers 22 and 25. The printing sheets SH1 and SH2 placed in the sheet feeding cassettes 20-1 and 20-2 are picked up by the pickup rollers 22 and 25 from the top one by one to sheet feeding rollers 23 and 26. The sheet feeding rollers 23 and 26 are rollers for conveying the sheets SH1 and SH2, which are fed by the pickup rollers 22 and 25 from the sheet feeding cassettes 20-1 and 20-2 to the conveyance path one by one, respectively. A conveyance roller 27 is a conveyance roller on the conveyance path, which is common to the printing sheets SH1 and SH2 conveyed from the sheet feeding cassettes 20-1 and 20-2.
FIG. 2 is a block diagram illustrating a configuration of a controller board 61 used in the image forming apparatus 10 according to the embodiment of the present disclosure.
The controller board 61 does not have a non-stop conveyance function (namely, a function of managing the conveyance timing of the printing sheet in the non-stop conveyance mode). The controller board 61 includes an image generation unit 71, a memory 72, an image processing unit 73, an image output unit 74, and a print control unit 75. Specifically, the controller board 61 includes an arithmetic processing unit such as a computer that executes a predetermined program, an application specific integrated circuit (ASIC) that executes specific data processing, and the like, and the arithmetic processing unit functions as the image generation unit 71, the memory 72, the image processing unit 73, the image output unit 74, and the print control unit 75.
The image generation unit 71 generates raster image data of an image to be printed from the print data described in the page description language.
The memory 72 stores image data generated by the image generation unit 71, image data subjected to image processing performed by the image processing unit 73, and the like. Here, the memory 72 is a random access memory (RAM).
The image processing unit 73 performs predetermined image processing on the above-described image data. Specifically, the image processing unit 73 executes predetermined image processing such as an image rotation at 90°, 180°, or 270°, an image synthesis, color conversion, a color tone correction based on gamma curve, a halftoning, and a consumed toner reduction process (for example, thinning of characters or reduction in density), and the like.
The image output unit 74 transfers the image data after the image processing to a subsequent board 101 (board for controlling the print engine) according to a synchronization signal.
For example, upon detecting the arrival of the printing sheet at the resist position, the subsequent board 101 transmits a synchronization signal to the controller board 61, and the controller board 61 begins to transfer the image data in accordance with the synchronization signal. The subsequent board 101 does not have a page memory, and outputs the transferred image data to the print engine sequentially.
The print control unit 75 transmits a print instruction to the subsequent board 101 (board for controlling the print engine or the sheet conveyance unit).
As described above, in the image forming apparatus 10 according to this embodiment, the controller board 61 is used in the stop conveyance system, in which the printing sheet is temporarily stopped at the resist position short of the print engine.
FIG. 3 is a block diagram illustrating an electrical configuration of an image forming apparatus 10 according to an embodiment of the present disclosure. As shown in FIG. 3, the image forming apparatus 10 includes, in addition to the print engine 10 a and the sheet conveyance unit 10 b as illustrated in FIG. 1 and the controller board 61 as above, an engine board 62, a video board 63, and a relay board 64.
As described above, the controller board 61 performs predetermined image processing to generate image data of the page image. In the present embodiment, the controller board 61 transfers the image data of the page image to the video board 63.
The engine board 62 includes a print control unit 81 and a conveyance control unit 82. Specifically, the engine board 62 includes an arithmetic processing unit such as a computer that executes a predetermined program and an ASIC that executes specific data processing, and the arithmetic processing unit functions as the print control unit 81 and the conveyance control unit 82.
The print control unit 81 instructs the image output unit 93 of the video board 63 to output the image data of the page image to be output from the video board 63 to the print engine 10 a.
The conveyance control unit 82 controls the sheet conveyance unit 10 b. Specifically, the conveyance control unit 82 electrically controls drive devices (such as motors) of the drive roller 3, the driven roller 4, the suction roller 5, the pair of discharge rollers 6 and 6 a, the sheet feeding rollers 23 and 26, the conveyance roller 27, and the like.
In particular, after the storage of the image data of the page image in a page memory 92 of the video board 63 is completed, the conveyance control unit 82 causes the sheet conveyance unit 10 b to start the conveyance of the printing sheet on which the page image is to be printed.
The video board 63 supplies the image data of the page image to the print engine 10 a. The video board 63 includes an image receiving unit 91, the page memory 92, and an image output unit 93. Specifically, the video board 63 includes an arithmetic processing unit such as a computer that executes a predetermined program and an ASIC that performs specific data processing, and the arithmetic processing unit functions as the image receiving unit 91 and the image output unit 93.
The image receiving unit 91 receives image data of a page image transferred from the controller board 61, and stores the received image data in the page memory 92. The page memory 92 temporarily stores image data of one or more page images. For example, the page memory 92 is a RAM.
In this embodiment, when the storage of the image data of the page image in the page memory 92 of the video board 63 is completed, the image receiving unit 91 transmits the ready signal (for the page image) to the print control unit 81 of the engine board 62. Note that, in the engine board 62, when the print control unit 81 receives the ready signal, the conveyance control unit 82 causes the sheet conveyance unit 10 b to start conveyance of the printing sheet on which the page image is to be printed.
The image output unit 93 reads the image data of the page image to be printed from the page memory 92, and outputs the image data to the print engine 10 a. The page image to be printed is designated by the print control unit 81 of the engine board 62.
FIG. 4 is a timing chart illustrating transfer of image data from the controller board 61 to the video board 63 in the image forming apparatus 10 illustrated in FIGS. 1 and 3.
The image receiving unit 91 of the video board 63 transmits the vertical synchronization signal and the horizontal synchronization signal to the controller board 61, and the image output unit 74 of the controller board 61 starts transferring the image data of the page image of one page in synchronization with the vertical synchronization signal (at the rising edge of the vertical synchronization signal), and transfers the image data to the video board 63 line by line in synchronization with the horizontal synchronization signal, as shown in FIG. 4. More specifically, the image output unit 74 starts to transfer the image data for one line in synchronization with the horizontal synchronization signal, and asserts the image transfer signal only for the transfer period of the image data.
The image receiving unit 91 of the video board 63 adjusts a cycle HSYNC of the horizontal synchronization signal in accordance with the image width of the page image so as to satisfy the print productivity condition (the number of printed sheets per unit time) set correspondingly to the size of the printing sheet used for the printing.
Specifically, the image receiving unit 91 of the video board 63 adjusts the cycle HSYNC such that the cycle HSYNC of the horizontal synchronization signal is shorter as the image width of the page image is smaller.
In the present embodiment, the image receiving unit 91 of the video board 63 adjusts the cycle HSYNC to a value obtained by subtracting the decrement according to the image width from a predetermined upper limit value.
Here, the cycle HSYNC is specified according to the following equation.
HSYNC=NSYNC_max×Nsb/Nsb_max
In the equation, NSYNC_max is a cycle NSYNC (fixed value) for a printing sheet having a maximum size (for example, 13×19 inches), Nsb_max is the number (fixed value) of subbands (blocks) in a main scanning direction for a printing sheet having a maximum size (for example, 13×19 inches), and Nsb is the number of subbands (blocks) in a main scanning direction for a printing sheet used for printing, with the number of subbands being an integer obtained by dividing the image width by the subband width (e.g., 128 pixels) and rounding up. Here, the subband is a block of 128×128 pixels. In addition, in this case, for a printing sheet having a maximum size (for example, 13×19 inches), NSYNC_max is set to 64.6 microseconds, and Nsb_max is set to 122.
Further, in this embodiment, when the cycle HSYNC of the horizontal synchronization signal is set according to the image width of the page image, the image receiving unit 91 of the video board 63 sets a predetermined lower limit value as the value of the cycle HSYNC of the horizontal synchronization signal if the cycle HSYNC is lower in value than the predetermined lower limit value. That is, the cycle HSYNC of the horizontal synchronization signal is clamped at the predetermined lower limit value.
The predetermined lower limit value is a value of HSYNC in the above-described equation that corresponds to a predetermined size of the printing sheet (size for which the numerical value of the print productivity condition is the largest, that is to say, the size of A4-E in this embodiment). In the above-described case (NSYNC_max=64.6 microseconds, Nsb_max=122), the predetermined lower limit value is 58.25 microseconds.
The upper limit value is set correspondingly to the maximum size of the printing sheet.
The relay board 64 receives print data (image data subjected to rasterizing and image processing) transferred from an external controller in an image receiving unit 64 a, stores the received data in a memory 64 b, reads the print data from the memory 64 b by an image output unit 64 c, and transfers the read data to the video board 63 in the same manner as the controller board 61.
Next, the operation of the above-described image forming apparatus 10 will be described. FIG. 5 is a sequence diagram for describing the operation of the image forming apparatus 10 illustrated in FIGS. 1 and 3.
In the controller board 61, when the image generation unit 71 receives the print data from a host apparatus by using a communication apparatus (not illustrated), the image generation unit 71 sequentially generates the image data of the page image and stores the generated image data in the memory 72.
On the other hand, the image processing unit 73 reads the image data of the page image, and performs predetermined image processing on the image data. When the image processing is completed, the preparation of the image data of the page image is completed.
When the preparation of the image data of the page image to be printed is completed, the image processing unit 73 transmits a print instruction to the image output unit 74 and the print control unit 75 (step S1). Upon receiving the print instruction, the image output unit 74 transmits the print instruction to the image receiving unit 91 of the video board 63 (step S2).
The print control unit 75 of the controller board 61 transmits a print instruction to the print control unit 81 of the engine board 62 for each sheet (step S3). That is, when the preparation of the image data of the page image (page images for both surfaces in the case of double-sided printing) to be printed on the i-th sheet (i=1, . . . , N: N>0) in the print job is completed, the print control unit 75 of the controller board 61 transmits the print instruction of the i-th printing sheet to the print control unit 81 of the engine board 62.
Upon receiving the print instruction from the image output unit 74, the print control unit 81 of the engine board 62 transmits a print instruction including the image width information indicating the image width (the number of pixels in the main scanning direction) for the printing sheet to the image receiving unit 91 of the video board 63 (step S4).
Upon accepting the print instruction, the image receiving unit 91 specifies the cycle HSYNC of the horizontal synchronization signal that corresponds to the image width indicated by the image width information (step S5), transmits the vertical synchronization signal to the image output unit 74 of the controller board 61, and transmits the horizontal synchronization signal to the image output unit 74 of the controller board 61 repeatedly on the specified cycle HSYNC (step S6). The image output unit 74 of the controller board 61 transfers the image data of the page image in accordance with the synchronization signals (step S7). The image receiving unit 91 of the video board 63 receives the image data of the page image, and stores the received image data in the page memory 92.
FIG. 6 is a flowchart illustrating the operation of the image receiving unit 91 of the video board 63 in FIG. 3.
Upon accepting the above-described print instruction, the image receiving unit 91 first specifies a default cycle HSYNC of the horizontal synchronization signal (cycle HSYNC of the horizontal synchronization signal for a normal resolution (for example, 600 dpi)) (step S21), and then determines whether the print resolution is set to a predetermined high resolution (for example, 1200 dpi) (step S22).
When the print resolution is set to a predetermined high resolution, the image receiving unit 91 specifies the cycle HSYNC of the horizontal synchronization signal that corresponds to the image width designated by the print instruction, as described above (step S23).
The image receiving unit 91 determines whether the specified cycle HSYNC of the horizontal synchronization signal is less than the above-described predetermined lower limit value (step S24).
When the specified cycle HSYNC of the horizontal synchronization signal is less than the predetermined lower limit value, the image receiving unit 91 sets the cycle HSYNC of the horizontal synchronization signal to the predetermined lower limit value and transmits the horizontal synchronization signal repeatedly with the predetermined lower limit value as the cycle (step S25).
On the other hand, when the specified cycle HSYNC of the horizontal synchronization signal is equal to or larger than the predetermined lower limit value, the image receiving unit 91 repeatedly transmits the horizontal synchronization signal on the specified cycle HSYNC of the horizontal synchronization signal. In addition, when the print resolution is the normal resolution in step S22, the image receiving unit 91 repeatedly transmits the horizontal synchronization signal on the default cycle of the horizontal synchronization signal.
FIGS. 7 and 8 are diagrams illustrating an example of a correspondence relationship between the size of a printing sheet and the cycle HSYNC of the horizontal synchronization signal. As shown in FIG. 7, the cycle HSYNC of the horizontal synchronization signal is set to the above-described predetermined lower limit value in terms of the printing sheets, for each of which the image width is equal to or less than the image width for a printing sheet of A4-E size. As shown in FIG. 8, the productivity condition is set in advance for each sheet size. From such productivity condition, the upper limit processing time per page is specified. Further, as described above, the cycle HSYNC described above is specified from the image width (the number of pixels in the main scanning direction) according to the sheet size, and the image data transfer time for one page is specified from the number of lines (the number of pixels in the sub-scanning direction) according to the sheet size and the cycle HSYNC. In FIG. 8, a margin as a difference between the upper limit processing time per page and the image data transfer time for one page is illustrated. As shown in FIG. 8, even the sheet size (B4 in FIG. 7), which allows the highest productivity condition in comparison with the data size, yields a sufficient margin, and the transfer of the image data from the controller board 61 to the video board 63 is adequately in time even in the continuous printing in the non-stop conveyance mode.
Returning to FIG. 5, when the storage of the image data of the page image in the page memory 92 is completed, the image receiving unit 91 transmits the ready signal to the print control unit 81 of the engine board 62 (step S8).
Upon receiving the ready signal for all the images to be printed on the i-th printing sheet, for which a print instruction has been accepted, the print control unit 81 of the engine board 62 transmits the print instruction to the conveyance control unit 82 and the image output unit 93 of the video board 63 (step S9), and the conveyance control unit 82 immediately transmits the sheet conveyance instruction for the i-th printing sheet to the sheet conveyance unit 10 b upon receiving the print instruction (step S10).
The image output unit 93 reads the image data of the page image to be printed on the printing sheet from the page memory 92 in synchronization with the conveyance of the printing sheet, and outputs the image data to the print engine 10 a (step S11).
Accordingly, the printing sheet is conveyed to the print engine 10 a without stopping short of the print engine 10 a, and the print engine 10 a prints the page image on the printing sheet. Further, since the page memory 92 is provided, transfer of image data of a page image from the controller board 61 to the video board 63 can be performed asynchronously with the conveyance of the printing sheet. Therefore, even when the conveyance of the printing sheet is started after the completion of the storage of the image data of the page image in the page memory 92, the page image is prepared in the page memory 92 in time for the above-described fixed cycle by continuously executing the transfer of the image data of page images of a plurality of pages. Thereby, continuous printing in the non-stop conveyance mode is executed.
As described above, according to the above-described embodiment, the controller board 61 executes predetermined image processing to generate image data of a page image and transfer the image data to the video board 63. The video board 63 supplies the image data to the print engine 10 a. The video board 63 transmits a horizontal synchronization signal to the controller board 61, and the controller board 61 transfers the image data of the page image to the video board 63 line by line in synchronization with the horizontal synchronization signal. Then, the video board 63 adjusts the cycle HSYNC of the horizontal synchronization signal in accordance with the image width of the page image so as to satisfy the print productivity condition set correspondingly to the size of the printing sheet and indicating the number of printed sheets per unit time.
Thus, the print productivity condition is satisfied, and the high-speed printing is performed in the non-stop conveyance mode.
It will be apparent to those skilled in the art that various changes and modifications to the above-described embodiment may be made. Such changes and modifications may be made without departing from the spirit and scope of the subject matter of the embodiment and without diminishing the intended advantages. That is, it is intended that such changes and modifications be incorporated in the claims.

Claims (5)

What is claimed is:
1. An image forming apparatus comprising:
a print engine that forms a page image on a printing sheet;
a sheet conveyance unit that conveys the printing sheet to the print engine in a non-stop conveyance mode;
a video board that supplies image data of the page image to the print engine; and
a controller board that executes predetermined image processing to generate the image data and transfer the image data to the video board,
wherein the video board transmits a horizontal synchronization signal to the controller board,
wherein the controller board transfers the image data to the video board line by line in synchronization with the horizontal synchronization signal, and
wherein the video board adjusts a cycle of the horizontal synchronization signal in accordance with an image width of the page image to satisfy a print productivity condition set correspondingly to a size of the printing sheet and indicating a number of printed sheets per unit time.
2. The image forming apparatus according to claim 1, wherein the video board adjusts the cycle of the horizontal synchronization signal to make the cycle shorter as the image width of the page image is smaller.
3. The image forming apparatus according to claim 1, wherein the video board adjusts the cycle to a value obtained by subtracting a decrement according to the image width from a predetermined upper limit value.
4. The image forming apparatus according to claim 3, wherein the video board sets a predetermined lower limit value as a value of the cycle of the horizontal synchronization signal when the cycle of the horizontal synchronization signal is set according to the image width of the page image and the cycle is lower in value than the predetermined lower limit value.
5. The image forming apparatus according to claim 3, wherein the predetermined upper limit value is set correspondingly to a maximum size of the printing sheet.
US16/877,698 2019-05-23 2020-05-19 Image forming apparatus that adjusts a cycle of a horizontal synchronization signal in accordance with an image width of a page image Active US10922031B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP2019-097186 2019-05-23
JP2019097186A JP7296039B2 (en) 2019-05-23 2019-05-23 image forming device
JP2019-097186 2019-05-23

Publications (2)

Publication Number Publication Date
US20200371727A1 US20200371727A1 (en) 2020-11-26
US10922031B2 true US10922031B2 (en) 2021-02-16

Family

ID=70802589

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/877,698 Active US10922031B2 (en) 2019-05-23 2020-05-19 Image forming apparatus that adjusts a cycle of a horizontal synchronization signal in accordance with an image width of a page image

Country Status (4)

Country Link
US (1) US10922031B2 (en)
EP (1) EP3742234A1 (en)
JP (1) JP7296039B2 (en)
CN (1) CN111988485A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080143757A1 (en) * 2006-12-13 2008-06-19 Nec Electronics Corporation Backlight brightness control for liquid crystal display panel
JP2018132596A (en) 2017-02-14 2018-08-23 株式会社リコー Image forming apparatus and image forming method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278463A (en) * 1987-05-09 1988-11-16 Ricoh Co Ltd Multi-copy system for digital copying machine
JPH07212581A (en) * 1994-01-20 1995-08-11 Ricoh Co Ltd Composite equipment
JP2002036655A (en) * 2000-07-27 2002-02-06 Canon Inc Image-forming apparatus and its control method
JP2003345551A (en) * 2002-05-29 2003-12-05 Canon Inc Multi-function system and its control method
JP4916125B2 (en) * 2005-04-26 2012-04-11 株式会社リコー Pixel clock generation apparatus, pulse modulation apparatus, and image forming apparatus
JP4586691B2 (en) * 2005-09-09 2010-11-24 セイコーエプソン株式会社 Printer and printing control method
JP2011136446A (en) * 2009-12-28 2011-07-14 Seiko Epson Corp Image forming apparatus, image forming method, and exposure device
JP5590183B1 (en) * 2013-04-19 2014-09-17 カシオ電子工業株式会社 Image forming apparatus
JP6007944B2 (en) * 2014-05-22 2016-10-19 コニカミノルタ株式会社 Signal processing apparatus, signal processing method, and image forming apparatus
KR20170004305A (en) * 2015-07-02 2017-01-11 에스프린팅솔루션 주식회사 Image forming apparatus, controlling method of thereof and non-transitory computer readable storage medium
JP6801582B2 (en) * 2017-05-22 2020-12-16 京セラドキュメントソリューションズ株式会社 Sheet transfer device, image forming device, sheet shape detection method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080143757A1 (en) * 2006-12-13 2008-06-19 Nec Electronics Corporation Backlight brightness control for liquid crystal display panel
JP2018132596A (en) 2017-02-14 2018-08-23 株式会社リコー Image forming apparatus and image forming method

Also Published As

Publication number Publication date
US20200371727A1 (en) 2020-11-26
CN111988485A (en) 2020-11-24
JP2020189469A (en) 2020-11-26
EP3742234A1 (en) 2020-11-25
JP7296039B2 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
US9016688B2 (en) Image forming apparatus, method for controlling image forming apparatus, and storage medium with deciding unit for orientation of image to be printed
US20190238717A1 (en) Image reader, image forming apparatus, and density correcting method
JP2017046291A (en) Image forming apparatus
US20070211306A1 (en) Image forming apparatus and double-sided image forming method
US20180255197A1 (en) Image forming apparatus
CN104345599B (en) Image Forming Apparatus and Image Forming Method
US11386312B2 (en) Image forming apparatus
US10922031B2 (en) Image forming apparatus that adjusts a cycle of a horizontal synchronization signal in accordance with an image width of a page image
US11645016B2 (en) Image forming system, inspection device, and inspection method
US9001341B2 (en) Printing apparatus, control method for printing apparatus, and storage medium
US20200374417A1 (en) Image forming apparatus
US20130293903A1 (en) Printing apparatus, control method thereof, and storage medium
US20110158663A1 (en) Printing apparatus, printing method, printing system, and program for implementing the printing method
JP2001100487A (en) Device and system for forming image
JP2003125202A (en) Image forming device
US20240100839A1 (en) Image forming apparatus that performs correction processing based on target nozzle
US12117756B2 (en) Image forming system, inspection device, and inspection method
WO2020217713A1 (en) Image formation device
JP2012250413A (en) Image forming device
JP2017161597A (en) Image forming apparatus and image formation control method
US9894231B2 (en) Image-forming device having a plurality of paper-supply stages
JP2024063932A (en) Image forming device
EP3454536A1 (en) Image processing apparatus, printing apparatus, control method, and program
JP2023173026A (en) Image processing apparatus, image forming apparatus, and program
JP2001277606A (en) Printing system, its control method, and computer readable storage medium with the control program stored therein

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: KYOCERA DOCUMENT SOLUTIONS INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YAMAMOTO, TAKENORI;REEL/FRAME:053711/0130

Effective date: 20200907

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4