US10899818B2 - Therapeutic agents - Google Patents
Therapeutic agents Download PDFInfo
- Publication number
- US10899818B2 US10899818B2 US16/877,008 US202016877008A US10899818B2 US 10899818 B2 US10899818 B2 US 10899818B2 US 202016877008 A US202016877008 A US 202016877008A US 10899818 B2 US10899818 B2 US 10899818B2
- Authority
- US
- United States
- Prior art keywords
- cell
- cells
- responsive
- immuno
- binding element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003814 drug Substances 0.000 title 1
- 229940124597 therapeutic agent Drugs 0.000 title 1
- 210000001744 T-lymphocyte Anatomy 0.000 claims abstract description 109
- 210000004027 cell Anatomy 0.000 claims abstract description 109
- 230000027455 binding Effects 0.000 claims abstract description 58
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 claims abstract description 45
- 230000011664 signaling Effects 0.000 claims abstract description 35
- 239000000427 antigen Substances 0.000 claims abstract description 29
- 102000036639 antigens Human genes 0.000 claims abstract description 29
- 108091007433 antigens Proteins 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 19
- 108091008034 costimulatory receptors Proteins 0.000 claims abstract description 11
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 claims description 24
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 claims description 24
- 102000003675 cytokine receptors Human genes 0.000 claims description 15
- 108010057085 cytokine receptors Proteins 0.000 claims description 15
- 150000007523 nucleic acids Chemical class 0.000 claims description 15
- 102000004127 Cytokines Human genes 0.000 claims description 14
- 108090000695 Cytokines Proteins 0.000 claims description 14
- 101000851370 Homo sapiens Tumor necrosis factor receptor superfamily member 9 Proteins 0.000 claims description 14
- 102100036856 Tumor necrosis factor receptor superfamily member 9 Human genes 0.000 claims description 14
- 108020004707 nucleic acids Proteins 0.000 claims description 14
- 102000039446 nucleic acids Human genes 0.000 claims description 14
- 230000000139 costimulatory effect Effects 0.000 claims description 4
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 claims description 4
- 230000003834 intracellular effect Effects 0.000 claims description 4
- 230000002463 transducing effect Effects 0.000 claims description 2
- 210000000822 natural killer cell Anatomy 0.000 claims 3
- 102000005962 receptors Human genes 0.000 abstract description 14
- 108020003175 receptors Proteins 0.000 abstract description 14
- 238000002560 therapeutic procedure Methods 0.000 abstract description 6
- 230000003213 activating effect Effects 0.000 abstract description 4
- 210000004881 tumor cell Anatomy 0.000 description 25
- 206010028980 Neoplasm Diseases 0.000 description 22
- 102100028198 Macrophage colony-stimulating factor 1 receptor Human genes 0.000 description 19
- 108010044426 integrins Proteins 0.000 description 19
- 102000006495 integrins Human genes 0.000 description 19
- 108090000765 processed proteins & peptides Proteins 0.000 description 19
- 238000002474 experimental method Methods 0.000 description 16
- 102000000588 Interleukin-2 Human genes 0.000 description 15
- 108010002350 Interleukin-2 Proteins 0.000 description 15
- 150000001413 amino acids Chemical class 0.000 description 14
- 102000004388 Interleukin-4 Human genes 0.000 description 13
- 108090000978 Interleukin-4 Proteins 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 230000000638 stimulation Effects 0.000 description 11
- 239000013598 vector Substances 0.000 description 11
- 102100037850 Interferon gamma Human genes 0.000 description 10
- 108010074328 Interferon-gamma Proteins 0.000 description 10
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 10
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 10
- 108010058398 Macrophage Colony-Stimulating Factor Receptor Proteins 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 9
- 230000004913 activation Effects 0.000 description 8
- 101000916644 Homo sapiens Macrophage colony-stimulating factor 1 receptor Proteins 0.000 description 7
- 231100000002 MTT assay Toxicity 0.000 description 7
- 238000000134 MTT assay Methods 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 7
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 7
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 7
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 102100027207 CD27 antigen Human genes 0.000 description 6
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 6
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 6
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 230000001177 retroviral effect Effects 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 6
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 5
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 231100000135 cytotoxicity Toxicity 0.000 description 5
- 230000003013 cytotoxicity Effects 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 239000012636 effector Substances 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 230000002459 sustained effect Effects 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- 101150013553 CD40 gene Proteins 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 230000005867 T cell response Effects 0.000 description 4
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 4
- 230000029918 bioluminescence Effects 0.000 description 4
- 238000005415 bioluminescence Methods 0.000 description 4
- 230000022534 cell killing Effects 0.000 description 4
- 230000001472 cytotoxic effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 101710197658 Capsid protein VP1 Proteins 0.000 description 3
- 206010011968 Decreased immune responsiveness Diseases 0.000 description 3
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 3
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 description 3
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 3
- 102000017578 LAG3 Human genes 0.000 description 3
- -1 LIGHT Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 210000001165 lymph node Anatomy 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 108010054624 red fluorescent protein Proteins 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 238000010361 transduction Methods 0.000 description 3
- 230000026683 transduction Effects 0.000 description 3
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 101710132601 Capsid protein Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 108090000331 Firefly luciferases Proteins 0.000 description 2
- 208000017604 Hodgkin disease Diseases 0.000 description 2
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 2
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 2
- 101001068133 Homo sapiens Hepatitis A virus cellular receptor 2 Proteins 0.000 description 2
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 description 2
- 101000801234 Homo sapiens Tumor necrosis factor receptor superfamily member 18 Proteins 0.000 description 2
- 101000679903 Homo sapiens Tumor necrosis factor receptor superfamily member 25 Proteins 0.000 description 2
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 2
- 108010002586 Interleukin-7 Proteins 0.000 description 2
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 description 2
- 102100025584 Leukocyte immunoglobulin-like receptor subfamily B member 1 Human genes 0.000 description 2
- 108010061593 Member 14 Tumor Necrosis Factor Receptors Proteins 0.000 description 2
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 2
- 101710118046 RNA-directed RNA polymerase Proteins 0.000 description 2
- 238000010240 RT-PCR analysis Methods 0.000 description 2
- 230000006044 T cell activation Effects 0.000 description 2
- 230000006052 T cell proliferation Effects 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- 241001420369 Thosea Species 0.000 description 2
- 102100028785 Tumor necrosis factor receptor superfamily member 14 Human genes 0.000 description 2
- 102100033728 Tumor necrosis factor receptor superfamily member 18 Human genes 0.000 description 2
- 102100022203 Tumor necrosis factor receptor superfamily member 25 Human genes 0.000 description 2
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 2
- 102000018594 Tumour necrosis factor Human genes 0.000 description 2
- 108050007852 Tumour necrosis factor Proteins 0.000 description 2
- 101710108545 Viral protein 1 Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 125000003275 alpha amino acid group Chemical group 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 238000010804 cDNA synthesis Methods 0.000 description 2
- 238000002619 cancer immunotherapy Methods 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 238000003501 co-culture Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 201000008129 pancreatic ductal adenocarcinoma Diseases 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000002476 tumorcidal effect Effects 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- JPSHPWJJSVEEAX-OWPBQMJCSA-N (2s)-2-amino-4-fluoranylpentanedioic acid Chemical compound OC(=O)[C@@H](N)CC([18F])C(O)=O JPSHPWJJSVEEAX-OWPBQMJCSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 102100023990 60S ribosomal protein L17 Human genes 0.000 description 1
- 102100029822 B- and T-lymphocyte attenuator Human genes 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 102100040840 C-type lectin domain family 7 member A Human genes 0.000 description 1
- 102100024263 CD160 antigen Human genes 0.000 description 1
- 102100038078 CD276 antigen Human genes 0.000 description 1
- 102100036008 CD48 antigen Human genes 0.000 description 1
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- 101100314454 Caenorhabditis elegans tra-1 gene Proteins 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- 102100027816 Cytotoxic and regulatory T-cell molecule Human genes 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 102100025012 Dipeptidyl peptidase 4 Human genes 0.000 description 1
- 102100031984 Ephrin type-B receptor 6 Human genes 0.000 description 1
- 102100035943 HERV-H LTR-associating protein 2 Human genes 0.000 description 1
- 108010007712 Hepatitis A Virus Cellular Receptor 1 Proteins 0.000 description 1
- 102100034459 Hepatitis A virus cellular receptor 1 Human genes 0.000 description 1
- 101710083479 Hepatitis A virus cellular receptor 2 homolog Proteins 0.000 description 1
- 101000864344 Homo sapiens B- and T-lymphocyte attenuator Proteins 0.000 description 1
- 101000716130 Homo sapiens CD48 antigen Proteins 0.000 description 1
- 101001064451 Homo sapiens Ephrin type-B receptor 6 Proteins 0.000 description 1
- 101000984200 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily A member 3 Proteins 0.000 description 1
- 101000984199 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily A member 4 Proteins 0.000 description 1
- 101000984196 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily A member 5 Proteins 0.000 description 1
- 101000984190 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily B member 1 Proteins 0.000 description 1
- 101000984189 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily B member 2 Proteins 0.000 description 1
- 101000984192 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily B member 3 Proteins 0.000 description 1
- 101000984186 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily B member 4 Proteins 0.000 description 1
- 101000851176 Homo sapiens Pro-epidermal growth factor Proteins 0.000 description 1
- 101000734646 Homo sapiens Programmed cell death protein 6 Proteins 0.000 description 1
- 101000684208 Homo sapiens Prolyl endopeptidase FAP Proteins 0.000 description 1
- 101000633778 Homo sapiens SLAM family member 5 Proteins 0.000 description 1
- 101000633786 Homo sapiens SLAM family member 6 Proteins 0.000 description 1
- 101000633784 Homo sapiens SLAM family member 7 Proteins 0.000 description 1
- 101000633782 Homo sapiens SLAM family member 8 Proteins 0.000 description 1
- 101000633792 Homo sapiens SLAM family member 9 Proteins 0.000 description 1
- 101000934346 Homo sapiens T-cell surface antigen CD2 Proteins 0.000 description 1
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 description 1
- 101000596234 Homo sapiens T-cell surface protein tactile Proteins 0.000 description 1
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 1
- 101001018021 Homo sapiens T-lymphocyte surface antigen Ly-9 Proteins 0.000 description 1
- 101000809875 Homo sapiens TYRO protein tyrosine kinase-binding protein Proteins 0.000 description 1
- 101000845170 Homo sapiens Thymic stromal lymphopoietin Proteins 0.000 description 1
- 101500027527 Homo sapiens Transforming growth factor alpha Proteins 0.000 description 1
- 101000795167 Homo sapiens Tumor necrosis factor receptor superfamily member 13B Proteins 0.000 description 1
- 102100034980 ICOS ligand Human genes 0.000 description 1
- 108010008212 Integrin alpha4beta1 Proteins 0.000 description 1
- 102000018682 Interleukin Receptor Common gamma Subunit Human genes 0.000 description 1
- 108010066719 Interleukin Receptor Common gamma Subunit Proteins 0.000 description 1
- 108010038486 Interleukin-4 Receptors Proteins 0.000 description 1
- 102000010787 Interleukin-4 Receptors Human genes 0.000 description 1
- 101150030213 Lag3 gene Proteins 0.000 description 1
- 108010017736 Leukocyte Immunoglobulin-like Receptor B1 Proteins 0.000 description 1
- 102100025556 Leukocyte immunoglobulin-like receptor subfamily A member 3 Human genes 0.000 description 1
- 102100025555 Leukocyte immunoglobulin-like receptor subfamily A member 4 Human genes 0.000 description 1
- 102100025583 Leukocyte immunoglobulin-like receptor subfamily B member 2 Human genes 0.000 description 1
- 102100025582 Leukocyte immunoglobulin-like receptor subfamily B member 3 Human genes 0.000 description 1
- 102100025578 Leukocyte immunoglobulin-like receptor subfamily B member 4 Human genes 0.000 description 1
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 1
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101100508818 Mus musculus Inpp5k gene Proteins 0.000 description 1
- 101100407308 Mus musculus Pdcd1lg2 gene Proteins 0.000 description 1
- 102100029527 Natural cytotoxicity triggering receptor 3 ligand 1 Human genes 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 102100037589 OX-2 membrane glycoprotein Human genes 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 1
- 101710098940 Pro-epidermal growth factor Proteins 0.000 description 1
- 108700030875 Programmed Cell Death 1 Ligand 2 Proteins 0.000 description 1
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 1
- 102100024213 Programmed cell death 1 ligand 2 Human genes 0.000 description 1
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 1
- 102100034785 Programmed cell death protein 6 Human genes 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102300062201 Protransforming growth factor alpha isoform 1 Human genes 0.000 description 1
- 102000018795 RELT Human genes 0.000 description 1
- 108010052562 RELT Proteins 0.000 description 1
- 101100366438 Rattus norvegicus Sphkap gene Proteins 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 208000007660 Residual Neoplasm Diseases 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 102100029216 SLAM family member 5 Human genes 0.000 description 1
- 102100029197 SLAM family member 6 Human genes 0.000 description 1
- 102100029198 SLAM family member 7 Human genes 0.000 description 1
- 102100029214 SLAM family member 8 Human genes 0.000 description 1
- 102100029196 SLAM family member 9 Human genes 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 102000008115 Signaling Lymphocytic Activation Molecule Family Member 1 Human genes 0.000 description 1
- 108010074687 Signaling Lymphocytic Activation Molecule Family Member 1 Proteins 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 108700015968 Slam family Proteins 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 102100027208 T-cell antigen CD7 Human genes 0.000 description 1
- 102100039367 T-cell immunoglobulin and mucin domain-containing protein 4 Human genes 0.000 description 1
- 101710174757 T-cell immunoglobulin and mucin domain-containing protein 4 Proteins 0.000 description 1
- 229940126547 T-cell immunoglobulin mucin-3 Drugs 0.000 description 1
- 102100025237 T-cell surface antigen CD2 Human genes 0.000 description 1
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 1
- 102100035268 T-cell surface protein tactile Human genes 0.000 description 1
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 1
- 102100033447 T-lymphocyte surface antigen Ly-9 Human genes 0.000 description 1
- 102000043124 TIM family Human genes 0.000 description 1
- 108091054435 TIM family Proteins 0.000 description 1
- 102100038717 TYRO protein tyrosine kinase-binding protein Human genes 0.000 description 1
- 102100031294 Thymic stromal lymphopoietin Human genes 0.000 description 1
- 208000003721 Triple Negative Breast Neoplasms Diseases 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 108090000138 Tumor necrosis factor ligand superfamily member 15 Proteins 0.000 description 1
- 102100024587 Tumor necrosis factor ligand superfamily member 15 Human genes 0.000 description 1
- 102100029675 Tumor necrosis factor receptor superfamily member 13B Human genes 0.000 description 1
- 102100033733 Tumor necrosis factor receptor superfamily member 1B Human genes 0.000 description 1
- 101710187830 Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 description 1
- 102100038929 V-set domain-containing T-cell activation inhibitor 1 Human genes 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 108010072917 class-I restricted T cell-associated molecule Proteins 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 108010025838 dectin 1 Proteins 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- BIPRZBFRCFOBDQ-KAGUSELOSA-N dnc008567 Chemical compound NC(=N)NCCC[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(N)=O)C(C)C BIPRZBFRCFOBDQ-KAGUSELOSA-N 0.000 description 1
- 230000007783 downstream signaling Effects 0.000 description 1
- 108700004025 env Genes Proteins 0.000 description 1
- 101150030339 env gene Proteins 0.000 description 1
- 238000011124 ex vivo culture Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 239000012642 immune effector Substances 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 108010043603 integrin alpha4beta7 Proteins 0.000 description 1
- 230000004073 interleukin-2 production Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 230000021633 leukocyte mediated immunity Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 210000004986 primary T-cell Anatomy 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 210000003289 regulatory T cell Anatomy 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 208000022679 triple-negative breast carcinoma Diseases 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/27—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by targeting or presenting multiple antigens
- A61K2239/29—Multispecific CARs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/31—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/38—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/46—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
- A61K2239/48—Blood cells, e.g. leukemia or lymphoma
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/463—Cellular immunotherapy characterised by recombinant expression
- A61K39/4631—Chimeric Antigen Receptors [CAR]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464402—Receptors, cell surface antigens or cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464402—Receptors, cell surface antigens or cell surface determinants
- A61K39/464403—Receptors for growth factors
- A61K39/464406—Her-2/neu/ErbB2, Her-3/ErbB3 or Her 4/ ErbB4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464402—Receptors, cell surface antigens or cell surface determinants
- A61K39/464416—Receptors for cytokines
- A61K39/464417—Receptors for tumor necrosis factors [TNF], e.g. lymphotoxin receptor [LTR], CD30
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464402—Receptors, cell surface antigens or cell surface determinants
- A61K39/464416—Receptors for cytokines
- A61K39/464418—Receptors for colony stimulating factors [CSF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464436—Cytokines
- A61K39/46444—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/53—Colony-stimulating factor [CSF]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70517—CD8
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70521—CD28, CD152
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70578—NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2121/00—Preparations for use in therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/03—Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/33—Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
Definitions
- the present invention relates to nucleic acids encoding novel chimeric antigen receptors (CARs), as well as to the CARs themselves, cells incorporating the nucleic acids and their use in therapy, in particular to methods in which they are used to facilitate a T-cell response to a selected target.
- CARs chimeric antigen receptors
- Chimeric antigen receptors which may also be referred to as artificial T cell receptors, chimeric T cell receptors (TCR) or chimeric immunoreceptors are engineered receptors, are well known in the art. They are used primarily to transform immune effector cells, in particular T-cells, so as to provide those cells with a particular specificity. They are particularly under investigation in the field of cancer immunotherapy where they may be used in techniques such as adoptive cell transfer. In these therapies, T-cells are removed from a patient and modified so that they express receptors specific to the antigens found in a particular form of cancer. The T cells, which can then recognize and kill the cancer cells, are reintroduced into the patient.
- CARs which may also be referred to as artificial T cell receptors
- TCR chimeric T cell receptors
- immunoreceptors are engineered receptors
- First generation CARs provide a TCR-like signal, most commonly using CD3 zeta (z) and thereby elicit tumouricidal functions.
- CD3z-chain fusion receptors may not suffice to elicit substantial IL-2 secretion and/or proliferation in the absence of a concomitant co-stimulatory signal.
- optimal lymphocyte activation requires the engagement of one or more co-stimulatory receptors (signal 2) such as CD28 or 4-1BB. Consequently, T cells have also been engineered so that they receive a co-stimulatory signal in a tumour antigen-dependent manner.
- Second generation CARs that transduce a functional antigen-dependent co-stimulatory signal in human primary T cells, permitting T-cell proliferation in addition to tumouricidal activity.
- Second generation CARs most commonly provide co-stimulation using modules derived from CD28 or 4-1BB.
- the combined delivery of co-stimulation plus a CD3 zeta signal renders second generation CARs clearly superior in terms of function, when compared to their first generation counterparts (CD3z signal alone).
- An example of a second generation CAR is found in U.S. Pat. No. 7,446,190.
- third generation CARs have been prepared. These combine multiple signalling domains, such as CD28+4-1BB+CD3z or CD28+OX40+CD3z, to further augment potency.
- the signalling domains are aligned in series in the CAR endodomain and placed upstream of CD3z.
- T-cells can be maintained in a state that they can grow, produce cytokines and deliver a kill signal through several repeated rounds of stimulation by antigen-expressing tumour target cells.
- Provision of sub-optimal co-stimulation causes T-cells to lose these effector functions rapidly upon re-stimulation, entering a state known as “anergy”.
- CAR T-cells are sequentially re-stimulated in vitro, they progressively lose effector properties (e.g. IL-2 production, ability to proliferate) and differentiate to become more effector-like—in other words, less likely to manifest the effects of co-stimulation. This is undesirable for a cancer immunotherapy since more differentiated cells tend to have less longevity and reduced ability to undergo further growth/activation when they are stimulated repeatedly in the tumour microenvironment.
- T-cell responses may be generated using a combination of constructs in which multiple co-stimulatory regions are arranged in distinct constructs.
- an immuno-responsive cell expressing
- Constructs of the type of the invention may be called ‘parallel chimeric activating receptors’ or ‘pCAR’.
- the arrangement of the elements in the pCARs may be facilitating activity.
- one of the co-stimulatory modules in a 3rd generation CAR must be placed away from its natural location close to the inner leaflet of the plasma membrane. This may cause it not to signal normally owing to impaired access to obligate membrane-associated partner molecules.
- close proximity of 2 co-stimulatory signalling modules in a 3rd generation CAR might lead to steric issues, preventing full engagement of one or more downstream signalling pathways. Both of these issues are avoided in the arrangement of the invention.
- Both the signalling moieties (b) and (e) may be fused directly to a transmembrane domain, ensuring that they are both adjacent to the plasma membrane within the cell. Furthermore, they may be spaced at distinct sites within the cell so that will not interact sterically with each other.
- Suitable immuno-responsive cells for use in the first aspect of the invention include T-cells such as cytotoxic T-cells, helper T-cells or regulatory T-cells and Natural Killer (NK) cells.
- T-cells such as cytotoxic T-cells, helper T-cells or regulatory T-cells and Natural Killer (NK) cells.
- NK Natural Killer
- the immuno-responsive cell is a T-cell.
- Suitable elements (a) above may include any suitable signalling region, including any region comprising an Immune-receptor-Tyrosine-based-Activation-Motif (ITAM), as reviewed for example by Love et al. Cold Spring Harbor Perspect. Biol 2010 2(6)
- the signalling region comprises the intracellular domain of human CD3 [zeta] chain as described for example in U.S. Pat. No. 7,446,190, or a variant thereof.
- this comprises the domain, which spans amino acid residues 52-163 of the full-length human CD3 zeta chain. It has a number of polymorphic forms (e.g. Sequence ID: gb
- RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT YDALHMQALPPR SEQ ID NO 1
- the term ‘variant’ refers to a polypeptide sequence which is a naturally occurring polymorphic form of the basic sequence as well as synthetic variants, in which one or more amino acids within the chain are inserted, removed or replaced.
- the variant produces a biological effect which is similar to that of the basic sequence.
- the variant mentioned above will act in a manner similar to that of the intracellular domain of human CD3 [zeta] chain.
- Amino acid substitutions may be regarded as “conservative” where an amino acid is replaced with a different amino acid in the same class with broadly similar properties.
- Non-conservative substitutions are where amino acids are replaced with amino acids of a different type or class.
- Amino acid classes are defined as follows:
- Nonpolar A, V, L, I, P, M, F, W Uncharged polar: G, S, T, C, Y, N, Q Acidic: D, E Basic: K, R, H.
- altering the primary structure of a peptide by a conservative substitution may not significantly alter the activity of that peptide because the side-chain of the amino acid which is inserted into the sequence may be able to form similar bonds and contacts as the side chain of the amino acid which has been substituted out. This is so even when the substitution is in a region which is critical in determining the peptide's conformation.
- Non-conservative substitutions may also be possible provided that these do not interrupt the function of the polypeptide as described above. Broadly speaking, fewer non-conservative substitutions will be possible without altering the biological activity of the polypeptides.
- variants will have amino acid sequences that will be at least 70%, for instance at least 71%, 75%, 79%, 81%, 84%, 87%, 90%, 93%, 95%, 96% or 98% Identical to the basic sequence, for example SEQ ID NO 1 or SEQ ID NO 2. Identity in this context may be determined using the BLASTP computer program with SEQ ID NO 2 or a fragment, in particular a fragment as described below, as the base sequence.
- the BLAST software is publicly available.
- the co-stimulatory signal sequence (b) is suitably located between the transmembrane domain (c) and the signalling region (a) and remote from the binding element (d).
- the co-stimulatory signal sequence (e) is suitably located adjacent the transmembrane domain (f) and remote from the binding element (g).
- Suitable co-stimulatory signalling regions for use as elements (b) and (e) above are also well known in the art, and include members of the B7/CD28 family such as B7-1, B7-2, B7-H1, B7-H2, B7-H3, B7-H4, B7-H6, B7-H7, BTLA, CD28, CTLA-4, Gi24, ICOS, PD-1, PD-L2 or PDCD6; or ILT/CD85 family proteins such as LILRA3, LILRA4, LILRB1, LILRB2, LILRB3 or LILRB4; or tumour necrosis factor (TNF) superfamily members such as 4-1BB, BAFF, BAFF R, CD27, CD30, CD40, DR3, GITR, HVEM, LIGHT, Lymphotoxin-alpha, OX40, RELT, TACI, TL1A, TNF-alpha or TNF RII; or members of the SLAM family such as 2B4, BLAME,
- co-stimulatory signalling regions may be selected depending upon the particular use intended for the transformed cells.
- the co-stimulatory signalling regions selected for (b) and (e) above are those which may work co-operatively or synergistically together.
- the co-stimulatory signalling regions for (b) and (e) may be selected from CD28, CD27, ICOS, 4-1BB, OX40, CD30, GITR, HVEM, DR3 or CD40.
- one of (b) or (e) is CD28 and the other is 4-1BB or OX40.
- (b) is CD28.
- (e) is 4-1BB or OX40 and in particular, is 4-1BB.
- (e) is CD27.
- transmembrane domains of (c) and (f) above may be the same or different but in particular are different to ensure separation of the constructs on the surface of the cell. Selection of different transmembrane domains may also enhance stability of the vector since inclusion of a direct repeat nucleic acid sequence in the viral vector renders it prone to rearrangement, with deletion of sequences between the direct repeats. Where the transmembrane domains of (c) and (f) are the same however, this risk can be reduced by modifying or “wobbling” the codons selected to encode the same protein sequence.
- Suitable transmembrane domains are known in the art and include for example, CD8a, CD28, CD4 or CD3z transmembrane domains.
- the co-stimulatory signalling region comprises CD28 as described above
- the CD28 transmembrane domain represents a suitable option.
- the full length CD28 protein is a 220 amino acid protein of SEQ ID NO 3.
- one of the co-stimulatory signalling regions is based upon the hinge region and suitably also the transmembrane domain and endodomain of CD28.
- CD28 which comprises amino acids 114-220 of SEQ ID NO 3, shown below as SEQ ID NO 4.
- one of the co-stimulatory signalling regions (b) or (e) above is a modified form of SEQ ID NO 4 which includes a c-myc tag of SEQ ID No 5.
- the c-myc tag is well known and is of SEQ ID NO 5.
- the c-myc tag may be added to the co-stimulatory signalling region (b) or (e) by insertion into the ectodomain or by replacement of a region in the ectodomain, which is therefore within the region of amino acids 1-152 of SEQ ID NO 3.
- the c-myc tag replaces MYPPPY motif in the CD28 sequence.
- This motif represents a potentially hazardous sequence. It is responsible for interactions between CD28 and its natural ligands, CD80 and CD86, so that it provides potential for off-target toxicity when CAR T-cells encounter a target cell that expresses either of these ligands.
- replacement of this motif with a tag sequence as described above the potential for unwanted side effects is reduced.
- the co-stimulatory signalling region (b) of the construct is of SEQ ID NO 6.
- a c-myc epitope means that detection of the CAR T-cells using a monoclonal antibody is facilitated. This is very useful since flow cytometric detection had proven unreliable when using some available antibodies.
- a c-myc epitope tag could facilitate the antigen independent expansion of targeted CAR T-cells, for example by cross-linking of the CAR using the appropriate monoclonal antibody, either in solution or immobilised onto a solid phase (e.g. a bag).
- epitope for the anti-human c-myc antibody, 9e10 within the variable region of a TCR has previously been shown to be sufficient to enable antibody-mediated and complement mediated cytotoxicity both in vitro and in vivo (Kieback et al. (2008) Proc. Natl. Acad. Sci. USA, 105(2) 623-8).
- the provision of such epitope tags could also be used as a “suicide system”, whereby an antibody could be used to deplete CAR T-cells in vivo, in the event of toxicity.
- the binding elements (d) and (g) will be different and will bind the same, overlapping or different epitopes.
- the first and second epitopes are associated with the same receptor or antigen.
- the first and second epitopes as described above may, in some cases, be the same, or overlapping so that the binding elements (d) and (g) will compete in their binding.
- the first and second epitopes may be different and associated with the same or different antigens depending upon the particular therapy being envisaged.
- the antigens are different but may be associated with the same disease such as the same specific cancer.
- the term ‘antigen’ refers to any member of a specific binding pair that will bind to the binding elements. Thus the term includes receptors on target cells.
- binding elements (d) and (g) may be any element which provides the pCAR with the ability to recognize a target of interest.
- the target to which the pCARs of the invention are directed can be any target of clinical interest to which it would be desirable to induce a T cell response.
- markers associated with cancers of various types including for example, one or more ErbB receptors or the ⁇ v ⁇ 6 integrin, markers associated with prostate cancer (for example using a binding element that binds to prostate-specific membrane antigen (PSMA)), breast cancer (for example using a binding element that targets Her-2 (also known as ErbB2)) and neuroblastomas (for example using a binding element that targets GD2), melanomas, small cell or non-small cell lung carcinoma, sarcomas and brain tumours.
- the target is one or more ErbB dimers as described above or the receptor for colony stimulating factor-1 (CSF-1R) or the ⁇ v ⁇ 6 integrin, all of which have been implicated in several solid tumours.
- the binding elements used in the pCARs of the invention may comprise antibodies that recognize a selected target.
- the antibody used as the binding element is preferably a single chain antibody (scFv) or single domain antibody, from a camelid, human or other species.
- Single chain antibodies may be cloned from the V region genes of a hybridoma specific for a desired target. The production of such hybridomas has become routine, and the procedure will not be repeated here.
- a technique which can be used for cloning the variable region heavy chain (VH) and variable region light chain (VL) has been described in Orlandi et al., Proc. Natl Acad. Sci. (USA) 86: 3833-3837 (1989).
- mRNA is isolated from the hybridoma cell line, and reverse transcribed into complementary DNA (cDNA), for example using a reverse transcriptase polymerase chain reaction (RT-PCR) kit.
- RT-PCR reverse transcriptase polymerase chain reaction
- Sequence-specific primers corresponding to the sequence of the VH and VL genes are used. Sequence analysis of the cloned products and comparison to the known sequence for the VH and VL genes can be used to show that the cloned VH gene matched expectations.
- the VH and VL genes are then attached together, for example using an oligonucleotide encoding a (gly4-ser)3 linker.
- a binding element of a pCAR may comprise ligands such as the TIE peptide (binds ErbB homo- and heterodimers), colony-stimulating factor-1 (CSF-1) or IL-34 (both bind to the CSF-1 receptor).
- the T1E peptide is a chimeric fusion protein composed of the entire mature human EGF protein, excluding the five most N-terminal amino acids (amino acids 971-975 of pro-epidermal growth factor precursor (NP_001954.2)), which have been replaced by the seven most N-terminal amino acids of the mature human TGF- ⁇ protein (amino acids 40-46 of pro-transforming growth factor alpha isoform 1 (NP_003227.1)).
- a binding element of a pCAR comprises an ⁇ v ⁇ 6 integrin-specific binding agent.
- the integrin ⁇ v ⁇ 6 is now regarded as a target in cancer as it has been found to be strongly upregulated in many types of cancer.
- ⁇ v ⁇ 6 has been identified as a receptor for foot-and-mouth disease virus (FMDV) in vitro by binding through an RGD motif in the viral capsid protein, VP1.
- FMDV foot-and-mouth disease virus
- sequences include SEQ ID Nos 9-11 or variants thereof:
- These peptides may form a particular group of binding elements for the CARs of the present application.
- binding element (d) and (g) two natural ligands are CSF-1 and IL-34 and these form particularly suitable binding elements for (d) and (g). They do however bind with different affinities. The affinity of binding can impact on the activity observed. It may be beneficial in this case to ensure that the binding element with the lower binding affinity is used as binding element (d) and that with the higher binding affinity is used as binding element (g). In particular, in an embodiment, the relative affinity of the second generation CAR (i) for its cognate target is lower than that of the partnering TNFR-based chimeric co-stimulatory receptor (ii).
- binding element (d) is CSF-1 which has a relatively low binding affinity
- binding element (g) comprises IL-34 which has a higher binding affinity
- the binding element is associated with a leader sequence which facilitates expression on the cell surface.
- leader sequences are known in the art, and these include the macrophage colony stimulating factor receptor (FMS) leader sequence or CD124 leader sequence.
- the cells expressing the pCAR are engineered to co-express a chimeric cytokine receptor, in particular the 4 ⁇ chimeric cytokine receptor.
- a chimeric cytokine receptor in particular the 4 ⁇ chimeric cytokine receptor.
- the ectodomain of the IL-4 receptor- ⁇ chain is joined to the transmembrane and endodomains of IL-2/15 receptor- ⁇ .
- the system can be used with a chimeric cytokine receptor in which the ectodomain of the IL-4 receptor- ⁇ chain is joined to the transmembrane and endodomains of another receptor that is naturally bound by a cytokine that also binds to the common ⁇ chain.
- a second aspect of the invention provides a method for stimulating a T cell mediated immune response to a target cell population in a patient in need thereof, said method comprising administering to the patient a population of immuno-responsive cells as described above, wherein the binding elements (d) and (g) are specific for the target cell.
- a method for preparing an immuno-responsive cell comprising transducing a cell with a first nucleic acid encoding a CAR of structure (i) as defined above; and also a second nucleic acid encoding a CAR of structure (ii) as defined above.
- lymphocytes from a patient are transduced with the nucleic acids encoding the CARs of (i) and (ii).
- T-cells are subjected to genetic modification, for example by retroviral mediated transduction, to introduce CAR coding nucleic acids into the host T-cell genome, thereby permitting stable CAR expression. They may then be reintroduced into the patient, optionally after expansion, to provide a beneficial therapeutic effect.
- the expansion step may include an ex vivo culture step in a medium which comprises the cytokine, such as a medium comprising IL-4 as the sole cytokine support in the case of 4 ⁇ .
- the chimeric cytokine receptor may comprise the ectodomain of the IL-4 receptor- ⁇ chain joined to the endodomain used by a common ⁇ cytokine with distinct properties, such as IL-7.
- expansion of the cells in IL-4 may result in less cell differentiation, capitalizing on the natural ability of IL-7 to achieve this effect. In this way, selective expansion and enrichment of genetically engineered T-cells with the desired state of differentiation can be ensured.
- a combination of a first nucleic acid encoding a CAR of (i) above and a second nucleic acid encoding a CCR of (ii) above is referred to as a pCAR.
- Suitable sequences for the nucleic acids will be apparent to a skilled person. The sequences may be optimized for use in the required immuno-responsive cell. However, in some cases, as discussed above, codons may be varied from the optimum or ‘wobbled’ in order to avoid repeat sequences. Particular examples of such nucleic acids will encode the preferred embodiments described above.
- nucleic acids of the fourth aspect of the invention are suitably introduced into a vector, such as a plasmid or a retroviral vector.
- a vector such as a plasmid or a retroviral vector.
- vectors including plasmid vectors, or cell lines containing them form a further aspect of the invention.
- the first and second nucleic acids or vectors containing them may be combined in a kit, which is supplied with a view to generating immuno-responsive cells of the first aspect of the invention in situ.
- Parallel chimeric activating receptors encoded by the nucleic acids described above form a further aspect of the invention.
- FIG. 1A ,B is a schematic diagram showing a panel of CARs and pCARs (named C34B and 34CB) embodying the invention. All CARs and pCARs were co-expressed in the SFG retroviral vector with 4 ⁇ , a chimeric cytokine receptor in which the IL-4 receptor- ⁇ ectodomain has been fused to the transmembrane and endodomain of IL-2 receptor- ⁇ .
- 4 ⁇ allows selective enrichment and expansion of gene-modified T-cells by culture in IL-4, since it recruits the gamma c ( ⁇ c) chain.
- FIG. 2A ,B shows the results of an experiment using CARs shown in FIG. 1A ,B.
- T-cells (1 ⁇ 10 6 cells) expressing these CARs and pCARs (or untransduced (UT) as control) were co-cultivated in vitro for 24 hours with T47D tumour cells that express (T47D-FMS) or lack (T47D) the cognate target antigen (Colony-stimulating factor-1 receptor (CSF-1R), encoded by c-fms). Residual viable tumour cells were then quantified by MTT assay.
- CSF-1R Coldy-stimulating factor-1 receptor
- FIG. 3 shows a representative experiment in which T-cells that express CARs and pCARs of FIG. 1A ,B (or untransduced) T-cells as control) were subjected to successive rounds of Ag stimulation in the absence of exogenous cytokine. Stimulation was provided by weekly culture on T47D FMS monolayers and T-cell numbers were enumerated at the indicated intervals.
- FIG. 4 shows pooled data from 7 similar replicate experiments to that shown in FIG. 3 , indicating the fold expansion of CAR T-cells that occurred in the week after each cycle of stimulation.
- FIG. 5 shows illustrative cytotoxicity assays performed at the time of stimulation cycles 2, 6, 9 and 12 in the experiment shown in FIG. 3 . This follows from the testing of T-cells for their ability to kill T47D FMS and unmodified T47D monolayers (MTT assay), twenty four hours after the time of each re-stimulation cycle.
- FIG. 6 shows the results of testing of supernatant, removed from cultures one day after each cycle of stimulation, for IL-2 and IFN- ⁇ content by ELISA.
- FIG. 7A-D demonstrates the establishment of an in vivo xenograft model of CSF-1R-expressing anaplastic large cell lymphoma, which allowed subsequent testing of anti-tumour activity of CAR and pCAR-engineered T-cells.
- the model was established using K299 cells, engineered to express firefly luciferase (luc) and red fluorescent protein (RFP).
- FIG. 7A shows tumour formation following the intravenous injection of the indicated doses of K299 luc cells, quantified by bioluminescence imaging (BLI). Representative BLI images are shown in FIG. 7B in mice that received 2 million tumour cells. Expression of RFP + tumour cells ( FIG. 7C ) in the indicated tissues are shown, demonstrating that tumours only formed in lymph nodes in this model. Expression of the CSF-1R on five representative lymph node tumours is shown in FIG. 7D .
- FIG. 9 shows the weights of animals used in the therapeutic study over time.
- FIGS. 10-13 show the results of analysis of the expression of ‘exhaustion markers’ from dual CAR (C34B) expressing T-cells of the invention where FIG. 10 shows the results for PD1 analysis, FIG. 11 shows the results for TIM3 analysis, FIG. 12 shows the results of LAG3 analysis and FIG. 13 shows the results for 2B4 analysis.
- FIG. 14 is a schematic diagram of a panel of CARs and constructs targeted to the integrin ⁇ v ⁇ 6 which have been prepared including a pCAR (named SFG TIE-41BB/A20-28z) embodying the invention.
- A20-28z is a second generation CAR that is targeted using the A20 peptide derived from foot and mouth disease virus.
- A20 binds with high affinity to ⁇ v ⁇ 6 and with 85-1000 fold lower affinity to other RGD-binding integrins.
- C20-28z is a matched control in which key elements of A20 have been mutated to abrogate integrin binding activity. All CARs have been co-expressed with 4 ⁇ as described in FIG. 1A ,B.
- FIG. 15A ,B is a series of histograms obtained by flow cytometry illustrating integrin expression in A375 puro and Panc1 cells.
- Cells were stained with anti- ⁇ 6 (Biogen Idec) followed by secondary anti-mouse PE, anti- ⁇ v ⁇ 3 or anti- ⁇ v ⁇ 5 (both APC conjugated, Bio-Techne). Gates were set based on secondary antibody alone or isotype controls.
- FIG. 16A ,B is a series of graphs illustrating the cytotoxicity of CARs Including the pCARs of the invention targeted to ⁇ v ⁇ 6.
- T-cells expressing the indicated CARs and pCARs were co-cultivated with ⁇ v ⁇ 6-negative (Panc1 and A375 puro) or ⁇ v ⁇ 6-positive (Bxpc3 and A375 puro 06) tumour cells.
- Data show the mean ⁇ SEM of 2-7 independent experiments, each performed in triplicate. *p ⁇ 0.05; **p ⁇ 0.01;***p ⁇ 0.001.
- FIG. 17A ,B is a series of graphs showing production of IFN- ⁇ by CARs including pCARs of the invention, targeted to ⁇ v ⁇ 6.
- T-cells expressing the indicated CARs and pCARs were co-cultivated with ⁇ v ⁇ 6-negative (Panc1 and A375 puro) or ⁇ v ⁇ 6-positive (Bxpc3 and A375 puro 06) tumour cells.
- Data show the mean t SEM of 5-6 Independent experiments, each performed in duplicate. *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001; ns—not significant.
- FIG. 18A ,B shows the results of re-stimulation experiments using the CAR and pCAR-engineered T-cells described above and indicating the ability of A20-28z/T1E-41BB pCAR T-cells to undergo repeated antigen stimulation, accompanied by expansion of T-cells and destruction of target cells that do (Bxpc3) or do not (Panc1) express the ⁇ v ⁇ 6 integrin.
- FIG. 19A ,B shows the results of re-stimulation experiments using pCAR-engineered T-cells in which A20-28z was co-expressed with TIE-41BB, T1E-CD27 or T1E-CD40, allowing the comparative evaluation of co-stimulation by additional members of the TNF receptor family.
- Control T-cells were non-transduced (NT) while CARs contained truncated (tr) endodomains.
- T-cells were re-stimulated on target cells that do (Bxpc3) or do not (Panc1) express the ⁇ v ⁇ 6 integrin, making comparison with unstimulated T-cells. In the case of Bxpc3 cells, superior expansion ( FIG.
- FIG. 19A accompanied by sustained cytotoxic activity
- FIG. 19B was observed with A20-28z/T1E-CD27 T-cells.
- FIG. 19A superior expansion
- FIG. 19B sustained cytotoxic activity
- a panel of CARs targeted against the CSF-1 receptor (encoded by c-FMS), which is over-expressed in Hodgkin's lymphoma, anaplastic large cell lymphoma and some solid tumours such as triple negative breast cancer were prepared and are illustrated schematically in FIG. 1A ,B.
- the panel of CARs included both second and third generation CARs with either of the two natural ligands, CSF-1 or IL-34, as the targeting moieties. Although both CSF-1 and IL-34 bind to CSF-1 receptor, IL-34 binds with much higher affinity (34-fold higher than CSF-1).
- the constructs SFG C284 and SFG CTr were cloned in the SFG retroviral vector as NcoI/XhoI fragments, ensuring that their start codons are at the site of the naturally occurring NcoI site, previously occupied by the deleted env gene.
- Gene expression is achieved from the Moloney murine leukaemia virus (MoMLV) long terminal repeat (LTR), which has promoter activity and virus packaging of the RNA is ensured by the MoMLV tp packaging signal, which is flanked by splice donor and acceptor sites.
- MoMLV Moloney murine leukaemia virus
- LTR long terminal repeat
- PIPE cloning method is a PCR-based alternative to conventional restriction enzyme- and ligation-dependent cloning methods. It eliminates the need to incorporate restriction sites, which could encode additional unwanted residues into expressed proteins.
- the PIPE method relies on the inefficiency of the amplification process in the final cycles of a PCR reaction, possibly due to the decreasing availability of dNTPs, which results in the generation of partially single-stranded (PIPE) PCR products with overhanging 5′ends.
- a set of vector-specific primers was used for PCR vector linearization and another set of primers with 5′-vector-end overlapping sequences then used for insert amplification, generating incomplete extension products by PIPE.
- the PIPE products were mixed and the single-stranded overlapping sequences annealed and assembled as a complete SFG CAR construct. Successful cloning was confirmed by diagnostic restriction digestion. DNA sequencing was performed on all constructs to confirm that the predicted coding sequence was present, without any PCR-induced mutations (Source Bioscience, UK).
- the panel included two “dual targeted” Chimeric Activating Receptors (pCARS) In which CSF-1 or IL-34 are coupled to 28z and 4-1BB, or vice versa.
- the dual targeted pCAR combinations were then stochiometrically co-expressed in the same T-cell population using a Thosea Asigna (T)2A-containing retroviral vector.
- T Thosea Asigna
- One of these CARs was designated ‘C34B’ (CSF1-28z plus IL34-41BB) and the other was named ‘34CB’ (IL34-28z plus CSF1-41BB).
- both co-stimulatory motifs (CD28/4-1BB) are placed in their natural location, close to the membrane, physically separated from each other and co-expressed in the same T-cell.
- the main focus of the experiments was to test the behaviour of the T-cells on repeated re-stimulation with tumour target cells that either express or lack the FMS/CSF-1 receptor target.
- 1 million of the indicated IL-4 expanded CAR T-cells were suspended in RPMI+ human AB serum and cultured with a confluent monolayer (24 well dish) of the antigen-expressing target (T47D FMS) or antigen null target (T47D).
- T-cells were cultured in the absence of any exogenous cytokine such as IL-2 or IL-4—so they had to make their own cytokines in order to persist and expand.
- Cytokine (IFN- ⁇ and IL-2) production was measured by ELISA in supernatants harvested from T-cell/tumour cell co-cultures, providing a second marker of effective co-stimulation.
- FIG. 3 A representative re-stimulation experiment is shown in FIG. 3 . Pooled re-stimulation data from 7 experiments is shown in FIG. 4 .
- proliferation on the first cycle was similar for most of the constructs, although the IL-34 targeted second and third generation constructs were poorer. This may be because the affinity of the IL-34 targeting moiety is too high.
- exhaust markers on these T-cells (PD1, TIM3, 2B4 and LAG3) were also measured by flow cytometry. The results are shown in FIGS. 10-13 . As expected, the percentage of T cells that expressed various exhaustion markers progressively increased on the re-stimulated T-cells, but this did not retard the proliferation, tumour cell destruction or cytokine release by the C34B cells, upon antigen stimulation. This suggests that the superior function of C34B is not the result of delayed upregulation of exhaustion markers.
- the pCAR approach of the invention seems to maintain the cells in a state whereby they retain responsiveness to antigen through more cycles of re-stimulation. There are indications that it may retard differentiation beyond controlled memory state and it appears to delay the onset of anergy while retaining the ability of the cells to make IL-2 upon activation.
- a panel of CARs used in Example 1 above were tested for anti-tumour activity using a highly aggressive in vivo xenograft model in which the CSF-1 receptor target is expressed at low levels and in which disease is disseminated throughout lymph nodes ( FIG. 7A-D ).
- Tumour cells were tagged with firefly luciferase, allowing the non-invasive monitoring of disease burden.
- SCID/Beige mice were randomised into 6 groups (9 animals per group combined over two independent experiments) and were inoculated intravenously (IV) with 2 ⁇ 10 6 K299 tumour cells, re-suspended in 200 ⁇ L PBS. On day 5, the groups were treated with one of the therapeutic regimens indicated below:
- FIG. 8A ,B The results are shown in FIG. 8A ,B. Again, the best performing system was that of the pCAR, C34B, indicated by lower average BLI emission ( FIG. 8A-B ), delayed tumour progression or tumour regression, leading to prolonged survival of mice ( FIG. 8A ).
- a panel of CARs that target ⁇ v ⁇ 6 integrin alone or together with the extended ErbB family were prepared and are shown schematically in FIG. 14 .
- the binding element used in this case was A20 peptide (SEQ ID NO 11) derived from the GH-loop of the capsid protein VP1 from Foot and Mouth Disease Virus (serotype 01 BFS) (U.S. Pat. No. 8,927,501). This was placed downstream of a CD124 signal peptide and fused to CD28 and CD3 endodomains to form A20-28, a 2nd generation CAR.
- a control (C20-28 ⁇ ) was prepared comprising a similar construct but with a scrambled targeting peptide (named C20) in which the key RGDL motif was replaced with AAAA.
- a second control comprised A20 fused to a CD28 truncated endodomain (A20-Tr).
- A20-28z was co-expressed with a chimeric co-stimulatory receptor comprising a pan-ErbB targeted peptide (T1E) fused to a CD8 ⁇ transmembrane and a 41BB endodomain.
- T1E pan-ErbB targeted peptide
- CARs were co-expressed with the 4 ⁇ chimeric cytokine receptor to allow for IL-4-mediated enrichment in vitro.
- T Thosea Asigna
- the integrin expression pattern of cancer cell lines A375 was assessed using flow cytometry ( FIG. 15A ,B), and these were separated into ⁇ v ⁇ 6-negative (Panc1 and A375 puro) or ⁇ v ⁇ 6-positive (Bxpc3 and A375 puro 06) tumour cells.
- A20-28z CAR T-cells kill all target cells that express ⁇ v ⁇ 6 Integrin (Bxpc3 and A375 ⁇ 6 puro), but spare targets that lack this integrin (Panc1 and A375 puro).
- the control CARs C20-28z and A20-Tr are inactive in these assays.
- T-cells that express the T1E-41BB/A20-28z pCAR cause efficient killing of target cells that express ⁇ v ⁇ 6 integrin (Bxpc3 and A375 ⁇ 6 puro). All of these results are as expected.
- T-cells that express the T1E-41BB/A20-28z pCAR also cause the killing of target cells that lack ⁇ v ⁇ 6 (Panc1 and A375 puro). This indicates that, within a pCAR configuration, the ability of the A20 peptide to bind non- ⁇ v ⁇ 6 integrins with low affinity is sufficient to trigger the activation of these engineered T-cells.
- T-cells that express the pCAR of the invention TIE-41BB/A20z, produce more IFN- ⁇ than A20-28z T-cells when cultured with ⁇ v ⁇ 6-positive (Bxpc3) tumour cells.
- TIE-41BB/A20z + T-cells produced IFN- ⁇ when cultured with ⁇ v ⁇ 6-negative (Panc1 and A375 puro) tumour cells.
- CAR T-cell populations were re-stimulated bi-weekly in the absence of IL-2 support on Panc1 ( ⁇ v ⁇ 6 negative) or Bxpc3 tumour cells ( ⁇ v ⁇ 6 positive).
- Tumour cells were co-cultured with CAR T-cells derived from a patient with pancreatic ductal adenocarcinoma (PDAC) at an effector:target ratio of 1:1 ( FIG. 18A ,B).
- PDAC pancreatic ductal adenocarcinoma
- T-cells were initially added at 2 ⁇ 10 5 cells/well and were counted 72 hrs after co-culture to assess expansion (top panels). Cytotoxicity was assessed at 72 hrs post-addition of T-cells by MTT assay (bottom panels). If there were a sufficient number of T-cells (2 ⁇ 10 5 ), T-cells were re-stimulated on a fresh tumour monolayer and the process repeated a further 72 hrs later.
- Results are shown in FIG. 18A ,B. These illustrate that A20-28z/T1E-41BB + T-cells undergo a number of rounds of expansion accompanied by IL-2 release (data not shown) and destruction of ⁇ v ⁇ 6 + Bxpc3 cells. Once again, they also underwent a number of rounds of expansion accompanied by IL-2 release and destruction of Panc1 tumour cells.
- additional pCARs were engineered in which the 41BB module was replaced by alternative members of the TNF receptor family, namely CD27 or CD40.
- Control pCARs were engineered in which endodomains were truncated (tr).
- Target cells that express (Bxpc3) or lack (Panc1) ⁇ v ⁇ 6 were plated at a density of 5 ⁇ 10 4 cells per well of a 24 well plate. After 24 hours, 5 ⁇ 10 pCAR T-cells were added to target cells or empty wells (“unstimulated”), without exogenous cytokine support.
- T-cells were harvested from the wells and were counted ( FIG. 19A ).
- An MTT assay was performed to determine the percentage viability of the residual target cells, making comparison with control target cells that had been plated without addition of T-cells ( FIG. 19B ). If T-cells proliferated after each cycle of stimulation, they were re-stimulated on fresh target cells, exactly as described above. Proliferation of pCAR T-cells ( FIG. 19A ) and MTT assay ( FIG. 19B ) were performed after 72 hours as before. Iterative re-stimulation of pCAR T-cells and assessment of target cell killing was continued in this manner until T-cells no longer proliferated over the course of each 72 hour cycle.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmacology & Pharmacy (AREA)
- Mycology (AREA)
- Engineering & Computer Science (AREA)
- Oncology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Hematology (AREA)
- General Engineering & Computer Science (AREA)
- Developmental Biology & Embryology (AREA)
- Virology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Hospice & Palliative Care (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
-
- (i) a second generation chimeric antigen receptor comprising:
- (a) a signalling region;
- (b) a co-stimulatory signalling region;
- (c) a transmembrane domain; and
- (d) a binding element that specifically interacts with a first epitope on a target antigen; and
- (ii) a chimeric costimulatory receptor comprising
- (e) a co-stimulatory signalling region which is different to that of (b);
- (f) a transmembrane domain; and
- g) a binding element that specifically interacts with a second epitope on a target antigen.
- (i) a second generation chimeric antigen receptor comprising:
Description
-
- (i) a second generation chimeric antigen receptor comprising:
- (a) a signalling region;
- (b) a co-stimulatory signalling region;
- (c) a transmembrane domain; and
- (d) a binding element that specifically interacts with a first epitope on a target antigen; and
- (ii) a chimeric costimulatory receptor comprising
- (e) a co-stimulatory signalling region which is different to that of (b);
- (f) a transmembrane domain; and
- (g) a binding element that specifically interacts with a second epitope on a target antigen.
- (i) a second generation chimeric antigen receptor comprising:
(SEQ ID NO 1) |
RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR |
RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT |
YDALHMQALPPR |
(SEQ ID NO 2) |
RVKFSRSAEPPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR |
RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT |
YDALHMQALPPR |
Class | Amino acid examples | ||
Nonpolar: | A, V, L, I, P, M, F, W | ||
Uncharged polar: | G, S, T, C, Y, N, Q | ||
Acidic: | D, E | ||
Basic: | K, R, H. | ||
(SEQ ID NO 3) |
MLRLLLALNLFPSIQVTGNKILVKQSPMLVAYDNAVNLSCKYSYNLFSRE |
FRASLHKGLDSAVEVCVVYGNYSQQLQVYSKTGFNCDGKLGNESVTFYLQ |
NLYVNQTDIYFCKIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPS |
KPFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGP |
TRKHYQPYAPPRDFAAYRS |
where the transmembrane domain is shown in bold type.
(SEQ ID NO 4) |
IEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPWVLVVVGGVLA |
CYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRD |
FAAYRS |
(SEQ ID NO 5) | |
EQKLISEEDL |
(SEQ ID NO 6) |
IEVEQKLISEEDLLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVV |
GGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPY |
APPRDFAAYRS |
(SEQ ID NO 7) | |
RGDLX5X6L | |
or | |
(SEQ ID NO 8) | |
RGDLX5X6I, |
wherein LX5X6L or LX5X6I is contained within an alpha helical structure, wherein X5 and X6 are helix promoting residues, which have a conformational preference greater than 1.0 for being found in the middle of an [alpha]-helix (from Creighton, 1993 and Pace C. N. and Scholtz J. M. (1998), Biophysical Journal, Vol. 75, pages 422-427). In particular such residues are independently selected from the group consisting of Glu, Ala, Leu, Met, Gin, Lys, Arg, Val, lie, Trp, Phe and Asp.
(SEQ ID NO 9) | |
YTASARGDLAHLTTTHARHL | |
(SEQ ID NO 10) | |
GFTTGRRGDLATIHGMNRPF | |
or | |
(SEQ ID NO 11) | |
NAVPNLRGDLQVLAQKVART |
-
- C4B group: 20×106 C4B T-cells IV
- C34B group: 20×106 C34B T-cells IV
- 43428Bz: 20×106 43428Bz T-cells IV
- 34CB group: 20×106 34CB T-cells IV
- UT (Untransduced) group: 20×106 untransduced T-cells IV
- NT (Non-treated) group: 200 μL PBS IV
Claims (29)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/877,008 US10899818B2 (en) | 2015-07-31 | 2020-05-18 | Therapeutic agents |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1513540.3 | 2015-07-31 | ||
GBGB1513540.3A GB201513540D0 (en) | 2015-07-31 | 2015-07-31 | Therapeutic agents |
PCT/GB2016/052324 WO2017021701A1 (en) | 2015-07-31 | 2016-07-28 | Therapeutic agents |
US201815749016A | 2018-01-30 | 2018-01-30 | |
US16/877,008 US10899818B2 (en) | 2015-07-31 | 2020-05-18 | Therapeutic agents |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/749,016 Continuation US10703794B2 (en) | 2015-07-31 | 2016-07-28 | Therapeutic agents |
PCT/GB2016/052324 Continuation WO2017021701A1 (en) | 2015-07-31 | 2016-07-28 | Therapeutic agents |
Publications (2)
Publication Number | Publication Date |
---|---|
US20200331981A1 US20200331981A1 (en) | 2020-10-22 |
US10899818B2 true US10899818B2 (en) | 2021-01-26 |
Family
ID=54062973
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/749,016 Active 2037-03-10 US10703794B2 (en) | 2015-07-31 | 2016-07-28 | Therapeutic agents |
US16/877,008 Active US10899818B2 (en) | 2015-07-31 | 2020-05-18 | Therapeutic agents |
US16/877,035 Active US10865231B2 (en) | 2015-07-31 | 2020-05-18 | Therapeutic agents |
US17/118,045 Active 2037-08-16 US11802143B2 (en) | 2015-07-31 | 2020-12-10 | Therapeutic agents |
US18/472,441 Pending US20240076348A1 (en) | 2015-07-31 | 2023-09-22 | Therapeutic agents |
US18/418,864 Pending US20240228576A1 (en) | 2015-07-31 | 2024-01-22 | Therapeutic agents |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/749,016 Active 2037-03-10 US10703794B2 (en) | 2015-07-31 | 2016-07-28 | Therapeutic agents |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/877,035 Active US10865231B2 (en) | 2015-07-31 | 2020-05-18 | Therapeutic agents |
US17/118,045 Active 2037-08-16 US11802143B2 (en) | 2015-07-31 | 2020-12-10 | Therapeutic agents |
US18/472,441 Pending US20240076348A1 (en) | 2015-07-31 | 2023-09-22 | Therapeutic agents |
US18/418,864 Pending US20240228576A1 (en) | 2015-07-31 | 2024-01-22 | Therapeutic agents |
Country Status (16)
Country | Link |
---|---|
US (6) | US10703794B2 (en) |
EP (2) | EP3328880B1 (en) |
JP (2) | JP7053037B2 (en) |
KR (1) | KR102411571B1 (en) |
CN (1) | CN107735407B (en) |
AU (1) | AU2016303355B2 (en) |
CA (1) | CA2993746A1 (en) |
DK (1) | DK3328880T3 (en) |
ES (1) | ES2883633T3 (en) |
GB (1) | GB201513540D0 (en) |
HK (1) | HK1256383A1 (en) |
IL (1) | IL256511B (en) |
MX (1) | MX2018001009A (en) |
RU (1) | RU2747733C1 (en) |
SG (1) | SG10201912416QA (en) |
WO (1) | WO2017021701A1 (en) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11201505858VA (en) | 2013-01-28 | 2015-09-29 | St Jude Childrens Res Hospital | A chimeric receptor with nkg2d specificity for use in cell therapy against cancer and infectious disease |
AU2015259877B2 (en) | 2014-05-15 | 2021-02-25 | National University Of Singapore | Modified natural killer cells and uses thereof |
GB201513540D0 (en) | 2015-07-31 | 2015-09-16 | King S College London | Therapeutic agents |
GB201514874D0 (en) | 2015-08-20 | 2015-10-07 | Autolus Ltd | Cell |
MA46995A (en) | 2016-12-03 | 2019-10-09 | Acerta Pharma Bv | METHODS AND COMPOSITIONS FOR THE USE OF THERAPEUTIC T-LYMPHOCYTES IN COMBINATION WITH KINASE INHIBITORS |
EP3336107A1 (en) * | 2016-12-15 | 2018-06-20 | Miltenyi Biotec GmbH | Immune cells expressing an antigen binding receptor and a chimeric costimulatory receptor |
WO2018115485A1 (en) | 2016-12-22 | 2018-06-28 | Pierfrancesco Tassone | A monoclonal antibody targeting a unique sialoglycosilated cancer-associated epitope of cd43 |
WO2018182511A1 (en) | 2017-03-27 | 2018-10-04 | National University Of Singapore | Stimulatory cell lines for ex vivo expansion and activation of natural killer cells |
CN117384929A (en) | 2017-03-27 | 2024-01-12 | 新加坡国立大学 | Polynucleotide encoding chimeric receptor expressed by cell |
EP3630132A1 (en) | 2017-06-02 | 2020-04-08 | Juno Therapeutics, Inc. | Articles of manufacture and methods for treatment using adoptive cell therapy |
EP3658578A1 (en) * | 2017-07-26 | 2020-06-03 | Cellectis | Methods of antigen-dependent chimeric antigen receptor (car) immune cell selection |
CN109971724B (en) * | 2017-12-28 | 2023-10-31 | 上海细胞治疗研究院 | CAR-T cells targeting the ErbB receptor family and self-expressing PD-1 antibodies and uses thereof |
CN110615842B (en) * | 2018-06-20 | 2023-05-09 | 上海隆耀生物科技有限公司 | Chimeric antigen receptor containing co-stimulatory receptor and application thereof |
EP3587454A1 (en) * | 2018-06-27 | 2020-01-01 | Albert-Ludwigs-Universität Freiburg | Chimeric antigen receptors that bind to prostate specific membrane antigen |
GB201900858D0 (en) * | 2019-01-22 | 2019-03-13 | Price Nicola Kaye | Receptors providing targeted costimulation for adoptive cell therapy |
GB201902277D0 (en) | 2019-02-19 | 2019-04-03 | King S College London | Therapeutic agents |
CN113766956B (en) | 2019-03-05 | 2024-05-07 | 恩卡尔塔公司 | CD 19-directed chimeric antigen receptor and use thereof in immunotherapy |
CN113811327A (en) * | 2019-03-11 | 2021-12-17 | 卢西德生物有限公司 | MUC1 PARALLEL CAR (pCAR) THERAPEUTIC AGENTS |
KR20220016083A (en) | 2019-04-30 | 2022-02-08 | 센티 바이오사이언시스, 인코포레이티드 | Chimeric receptors and methods of use thereof |
WO2021038036A1 (en) | 2019-08-28 | 2021-03-04 | King's College London | B CELL TARGETED PARALLEL CAR (pCAR) THERAPEUTIC AGENTS |
GB202003277D0 (en) | 2020-03-06 | 2020-04-22 | King S College London | Therapeutic agents |
WO2022020456A2 (en) * | 2020-07-21 | 2022-01-27 | Allogene Therapeutics, Inc. | Chimeric antigen receptors with enhanced signaling and activities and uses thereof |
WO2022036495A1 (en) | 2020-08-17 | 2022-02-24 | Utc Therapeutics Inc. | Lymphocytes-antigen presenting cells co-stimulators and uses thereof |
WO2022083668A1 (en) * | 2020-10-21 | 2022-04-28 | Nanjing Legend Biotech Co., Ltd. | Use of a chimeric co-stimulatory receptor for cell therapy |
CA3222263A1 (en) * | 2021-08-13 | 2023-02-16 | Adrian GOTTSCHLICH | Anti-csf1r car expressing lymphocytes for targeted tumor therapy |
CA3229493A1 (en) * | 2021-08-18 | 2023-02-23 | Legend Biotech Ireland Limited | Modified immune cells expressing tlr receptors |
JP2023058901A (en) * | 2021-10-14 | 2023-04-26 | 株式会社三共 | game machine |
JP2023058902A (en) * | 2021-10-14 | 2023-04-26 | 株式会社三共 | game machine |
JP2023058900A (en) * | 2021-10-14 | 2023-04-26 | 株式会社三共 | game machine |
JP2023058903A (en) * | 2021-10-14 | 2023-04-26 | 株式会社三共 | game machine |
JP2023058899A (en) * | 2021-10-14 | 2023-04-26 | 株式会社三共 | game machine |
EP4433577A1 (en) | 2021-11-15 | 2024-09-25 | Neogene Therapeutics B.V. | Engineered t cells with reduced tgf-beta receptor signaling |
AU2022423984A1 (en) | 2021-12-30 | 2024-08-15 | Tr1X, Inc. | Cd4+ t cells expressing il-10 and chimeric antigen receptors and uses thereof |
WO2023217062A1 (en) * | 2022-05-10 | 2023-11-16 | 星尘生物科技(上海)有限公司 | Chimeric antigen receptor and use thereof |
WO2024209084A1 (en) | 2023-04-05 | 2024-10-10 | Kings College London | Parallel chimeric antigen receptors (pcars) and adaptor chimeric antigen receptors comprising alternative signalling domains and methods of use thereof |
Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008121420A1 (en) | 2007-03-30 | 2008-10-09 | Memorial Sloan-Kettering Cancer Center | Constitutive expression of costimulatory ligands on adoptively transferred t lymphocytes |
US7446190B2 (en) | 2002-05-28 | 2008-11-04 | Sloan-Kettering Institute For Cancer Research | Nucleic acids encoding chimeric T cell receptors |
WO2010085660A2 (en) | 2009-01-23 | 2010-07-29 | Roger Williams Hospital | Viral vectors encoding multiple highly homologous non-viral polypeptides and the use of same |
WO2011041093A1 (en) | 2009-10-01 | 2011-04-07 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-vascular endothelial growth factor receptor-2 chimeric antigen receptors and use of same for the treatment of cancer |
WO2012129514A1 (en) | 2011-03-23 | 2012-09-27 | Fred Hutchinson Cancer Research Center | Method and compositions for cellular immunotherapy |
WO2013019615A2 (en) | 2011-07-29 | 2013-02-07 | The Trustees Of The University Of Pennsylvania | Switch costimulatory receptors |
US8383593B2 (en) | 2005-10-03 | 2013-02-26 | Cancer Research Technology Limited | αvβ6 peptide ligands and their uses |
WO2013126733A1 (en) | 2012-02-22 | 2013-08-29 | The Trustees Of University Of Pennsylvania | Use of icos-based cars to enhance antitumor activity and car persistence |
WO2013185552A1 (en) | 2012-06-12 | 2013-12-19 | 中国人民解放军第二军医大学东方肝胆外科医院 | Dual-signal independent chimeric antigen receptor and use thereof |
WO2014039523A1 (en) | 2012-09-04 | 2014-03-13 | Cellectis | Multi-chain chimeric antigen receptor and uses thereof |
US20140099309A1 (en) | 2012-10-05 | 2014-04-10 | The Trustees Of The University Of Pennsylvania | Use of a Trans-Signaling Approach in Chimeric Antigen Receptors |
WO2014055442A2 (en) | 2012-10-01 | 2014-04-10 | The Trustees Of The University Of Pennsylvania | Compositions and methods for targeting stromal cells for the treatment of cancer |
WO2014055668A1 (en) | 2012-10-02 | 2014-04-10 | Memorial Sloan-Kettering Cancer Center | Compositions and methods for immunotherapy |
WO2014124143A1 (en) | 2013-02-06 | 2014-08-14 | Anthrogenesis Corporation | Modified t lymphocytes having improved specificity |
WO2014127261A1 (en) | 2013-02-15 | 2014-08-21 | The Regents Of The University Of California | Chimeric antigen receptor and methods of use thereof |
WO2014138348A1 (en) | 2013-03-06 | 2014-09-12 | The Trustees Of The University Of Pennsylvania | Iikaros inhibition to augment adoptive t cell transfer |
US20140286987A1 (en) | 2013-03-14 | 2014-09-25 | Bellicum Pharmaceuticals, Inc. | Methods for controlling t cell proliferation |
WO2014164544A1 (en) | 2013-03-09 | 2014-10-09 | Baylor College Of Medicine | Vascular-targeted t-cell therapy |
WO2014172584A1 (en) | 2013-04-17 | 2014-10-23 | Baylor College Of Medicine | IMMUNOSUPPRESSIVE TGF-β SIGNAL CONVERTER |
WO2015066551A2 (en) | 2013-10-31 | 2015-05-07 | Fred Hutchinson Cancer Research Center | Modified hematopoietic stem/progenitor and non-t effector cells, and uses thereof |
WO2015075468A1 (en) | 2013-11-21 | 2015-05-28 | Ucl Business Plc | Cell |
WO2015090229A1 (en) | 2013-12-20 | 2015-06-25 | Novartis Ag | Regulatable chimeric antigen receptor |
WO2015164627A1 (en) | 2014-04-23 | 2015-10-29 | Discovery Genomics, Inc. | Chimeric antigen receptors specific to avb6 integrin and methods of use thereof to treat cancer |
WO2016011210A2 (en) | 2014-07-15 | 2016-01-21 | Juno Therapeutics, Inc. | Engineered cells for adoptive cell therapy |
WO2016014565A2 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor |
WO2016122738A1 (en) | 2015-01-31 | 2016-08-04 | The Trustees Of The University Of Pennsylvania | Compositions and methods for t cell delivery of therapeutic molecules |
WO2016196388A1 (en) | 2015-05-29 | 2016-12-08 | Juno Therapeutics, Inc. | Composition and methods for regulating inhibitory interactions in genetically engineered cells |
WO2017021701A1 (en) | 2015-07-31 | 2017-02-09 | King's College London | Therapeutic agents |
US9783591B2 (en) | 2012-02-22 | 2017-10-10 | The Trustees Of The University Of Pennsylvania | Use of the CD2 signaling domain in second-generation chimeric antigen receptors |
US9833476B2 (en) | 2011-08-31 | 2017-12-05 | The Trustees Of Dartmouth College | NKP30 receptor targeted therapeutics |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4170390B2 (en) * | 1995-02-24 | 2008-10-22 | ザ ジェネラル ホスピタル コーポレーション | Redirection of cellular immunity by receptor chimeras |
SG11201605236QA (en) * | 2013-12-26 | 2016-07-28 | Avichal Agrawal | A fluid handling device and a method of heating or cooling a fluid flow |
-
2015
- 2015-07-31 GB GBGB1513540.3A patent/GB201513540D0/en not_active Ceased
-
2016
- 2016-07-28 KR KR1020187005607A patent/KR102411571B1/en active IP Right Grant
- 2016-07-28 EP EP16750211.1A patent/EP3328880B1/en active Active
- 2016-07-28 US US15/749,016 patent/US10703794B2/en active Active
- 2016-07-28 DK DK16750211.1T patent/DK3328880T3/en active
- 2016-07-28 SG SG10201912416QA patent/SG10201912416QA/en unknown
- 2016-07-28 CA CA2993746A patent/CA2993746A1/en active Pending
- 2016-07-28 EP EP21177321.3A patent/EP3939992A1/en not_active Withdrawn
- 2016-07-28 RU RU2018105137A patent/RU2747733C1/en active
- 2016-07-28 AU AU2016303355A patent/AU2016303355B2/en active Active
- 2016-07-28 WO PCT/GB2016/052324 patent/WO2017021701A1/en active Application Filing
- 2016-07-28 ES ES16750211T patent/ES2883633T3/en active Active
- 2016-07-28 JP JP2018503642A patent/JP7053037B2/en active Active
- 2016-07-28 CN CN201680039617.1A patent/CN107735407B/en active Active
- 2016-07-28 MX MX2018001009A patent/MX2018001009A/en unknown
-
2017
- 2017-12-24 IL IL256511A patent/IL256511B/en unknown
-
2018
- 2018-12-04 HK HK18115486.9A patent/HK1256383A1/en unknown
-
2020
- 2020-05-18 US US16/877,008 patent/US10899818B2/en active Active
- 2020-05-18 US US16/877,035 patent/US10865231B2/en active Active
- 2020-12-10 US US17/118,045 patent/US11802143B2/en active Active
-
2021
- 2021-07-09 JP JP2021114022A patent/JP2021168675A/en active Pending
-
2023
- 2023-09-22 US US18/472,441 patent/US20240076348A1/en active Pending
-
2024
- 2024-01-22 US US18/418,864 patent/US20240228576A1/en active Pending
Patent Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7446190B2 (en) | 2002-05-28 | 2008-11-04 | Sloan-Kettering Institute For Cancer Research | Nucleic acids encoding chimeric T cell receptors |
US8383593B2 (en) | 2005-10-03 | 2013-02-26 | Cancer Research Technology Limited | αvβ6 peptide ligands and their uses |
US8927501B2 (en) | 2005-10-03 | 2015-01-06 | Cancer Research Technology Limited | αvβ6 peptide ligands and their uses |
WO2008121420A1 (en) | 2007-03-30 | 2008-10-09 | Memorial Sloan-Kettering Cancer Center | Constitutive expression of costimulatory ligands on adoptively transferred t lymphocytes |
US8389282B2 (en) | 2007-03-30 | 2013-03-05 | Memorial Sloan-Kettering Cancer Center | Constitutive expression of costimulatory ligands on adoptively transferred T lymphocytes |
WO2010085660A2 (en) | 2009-01-23 | 2010-07-29 | Roger Williams Hospital | Viral vectors encoding multiple highly homologous non-viral polypeptides and the use of same |
WO2011041093A1 (en) | 2009-10-01 | 2011-04-07 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-vascular endothelial growth factor receptor-2 chimeric antigen receptors and use of same for the treatment of cancer |
WO2012129514A1 (en) | 2011-03-23 | 2012-09-27 | Fred Hutchinson Cancer Research Center | Method and compositions for cellular immunotherapy |
WO2013019615A2 (en) | 2011-07-29 | 2013-02-07 | The Trustees Of The University Of Pennsylvania | Switch costimulatory receptors |
US9833476B2 (en) | 2011-08-31 | 2017-12-05 | The Trustees Of Dartmouth College | NKP30 receptor targeted therapeutics |
WO2013126733A1 (en) | 2012-02-22 | 2013-08-29 | The Trustees Of University Of Pennsylvania | Use of icos-based cars to enhance antitumor activity and car persistence |
US9783591B2 (en) | 2012-02-22 | 2017-10-10 | The Trustees Of The University Of Pennsylvania | Use of the CD2 signaling domain in second-generation chimeric antigen receptors |
WO2013185552A1 (en) | 2012-06-12 | 2013-12-19 | 中国人民解放军第二军医大学东方肝胆外科医院 | Dual-signal independent chimeric antigen receptor and use thereof |
WO2014039523A1 (en) | 2012-09-04 | 2014-03-13 | Cellectis | Multi-chain chimeric antigen receptor and uses thereof |
WO2014055442A2 (en) | 2012-10-01 | 2014-04-10 | The Trustees Of The University Of Pennsylvania | Compositions and methods for targeting stromal cells for the treatment of cancer |
WO2014055668A1 (en) | 2012-10-02 | 2014-04-10 | Memorial Sloan-Kettering Cancer Center | Compositions and methods for immunotherapy |
US20140099309A1 (en) | 2012-10-05 | 2014-04-10 | The Trustees Of The University Of Pennsylvania | Use of a Trans-Signaling Approach in Chimeric Antigen Receptors |
WO2014055657A1 (en) | 2012-10-05 | 2014-04-10 | The Trustees Of The University Of Pennsylvania | Use of a trans-signaling approach in chimeric antigen receptors |
WO2014124143A1 (en) | 2013-02-06 | 2014-08-14 | Anthrogenesis Corporation | Modified t lymphocytes having improved specificity |
WO2014127261A1 (en) | 2013-02-15 | 2014-08-21 | The Regents Of The University Of California | Chimeric antigen receptor and methods of use thereof |
WO2014138348A1 (en) | 2013-03-06 | 2014-09-12 | The Trustees Of The University Of Pennsylvania | Iikaros inhibition to augment adoptive t cell transfer |
WO2014164544A1 (en) | 2013-03-09 | 2014-10-09 | Baylor College Of Medicine | Vascular-targeted t-cell therapy |
US20140286987A1 (en) | 2013-03-14 | 2014-09-25 | Bellicum Pharmaceuticals, Inc. | Methods for controlling t cell proliferation |
WO2014172584A1 (en) | 2013-04-17 | 2014-10-23 | Baylor College Of Medicine | IMMUNOSUPPRESSIVE TGF-β SIGNAL CONVERTER |
WO2015066551A2 (en) | 2013-10-31 | 2015-05-07 | Fred Hutchinson Cancer Research Center | Modified hematopoietic stem/progenitor and non-t effector cells, and uses thereof |
WO2015075468A1 (en) | 2013-11-21 | 2015-05-28 | Ucl Business Plc | Cell |
WO2015090229A1 (en) | 2013-12-20 | 2015-06-25 | Novartis Ag | Regulatable chimeric antigen receptor |
WO2015164627A1 (en) | 2014-04-23 | 2015-10-29 | Discovery Genomics, Inc. | Chimeric antigen receptors specific to avb6 integrin and methods of use thereof to treat cancer |
WO2016011210A2 (en) | 2014-07-15 | 2016-01-21 | Juno Therapeutics, Inc. | Engineered cells for adoptive cell therapy |
WO2016014565A2 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor |
WO2016122738A1 (en) | 2015-01-31 | 2016-08-04 | The Trustees Of The University Of Pennsylvania | Compositions and methods for t cell delivery of therapeutic molecules |
US20170360913A1 (en) | 2015-01-31 | 2017-12-21 | The Trustees Of The University Of Pennsylania | Compositions and methods for t cell delivery of therapeutic molecules |
WO2016196388A1 (en) | 2015-05-29 | 2016-12-08 | Juno Therapeutics, Inc. | Composition and methods for regulating inhibitory interactions in genetically engineered cells |
WO2017021701A1 (en) | 2015-07-31 | 2017-02-09 | King's College London | Therapeutic agents |
Non-Patent Citations (77)
Also Published As
Publication number | Publication date |
---|---|
US20190002521A1 (en) | 2019-01-03 |
HK1256383A1 (en) | 2019-09-20 |
AU2016303355B2 (en) | 2020-08-06 |
CA2993746A1 (en) | 2017-02-09 |
WO2017021701A1 (en) | 2017-02-09 |
US10703794B2 (en) | 2020-07-07 |
US20210095000A1 (en) | 2021-04-01 |
US20200277353A1 (en) | 2020-09-03 |
CN107735407B (en) | 2022-08-16 |
JP2018521663A (en) | 2018-08-09 |
EP3939992A1 (en) | 2022-01-19 |
AU2016303355A1 (en) | 2018-01-04 |
EP3328880A1 (en) | 2018-06-06 |
RU2747733C1 (en) | 2021-05-13 |
MX2018001009A (en) | 2018-06-07 |
IL256511B (en) | 2021-09-30 |
US20240228576A1 (en) | 2024-07-11 |
US20240076348A1 (en) | 2024-03-07 |
EP3328880B1 (en) | 2021-07-07 |
US20200331981A1 (en) | 2020-10-22 |
US10865231B2 (en) | 2020-12-15 |
JP2021168675A (en) | 2021-10-28 |
US11802143B2 (en) | 2023-10-31 |
KR20180028528A (en) | 2018-03-16 |
DK3328880T3 (en) | 2021-08-30 |
IL256511A (en) | 2018-02-28 |
JP7053037B2 (en) | 2022-04-12 |
CN107735407A (en) | 2018-02-23 |
GB201513540D0 (en) | 2015-09-16 |
KR102411571B1 (en) | 2022-06-21 |
ES2883633T3 (en) | 2021-12-09 |
SG10201912416QA (en) | 2020-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10899818B2 (en) | Therapeutic agents | |
US20240141041A1 (en) | CHIMERIC ANTIGEN RECEPTORS (CARs), COMPOSITIONS AND METHODS THEREOF | |
US11708401B2 (en) | Chimeric transmembrane proteins and uses thereof | |
JP7253020B2 (en) | Chimeric antigen receptor and uses thereof | |
BR112020007319A2 (en) | cell | |
US20220152103A1 (en) | MUC1 PARALLEL CAR (pCAR) THERAPEUTIC AGENTS | |
JP2021501587A (en) | CD38 directional chimeric antigen receptor construct | |
CN111479918A (en) | Cells | |
US20220298223A1 (en) | B CELL TARGETED PARALLEL CAR (pCAR) THERAPEUTIC AGENTS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
AS | Assignment |
Owner name: KING'S COLLEGE LONDON, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAHER, JOHN;ACHKOVA, DANIELA YORDANOVA;WHILDING, LYNSEY MAY;AND OTHERS;SIGNING DATES FROM 20180213 TO 20180323;REEL/FRAME:053522/0478 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |