US10886039B2 - Low-smoke flame reduced cable - Google Patents
Low-smoke flame reduced cable Download PDFInfo
- Publication number
- US10886039B2 US10886039B2 US16/630,518 US201816630518A US10886039B2 US 10886039 B2 US10886039 B2 US 10886039B2 US 201816630518 A US201816630518 A US 201816630518A US 10886039 B2 US10886039 B2 US 10886039B2
- Authority
- US
- United States
- Prior art keywords
- copolyetherester
- insulating layer
- cable
- jacket
- hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000779 smoke Substances 0.000 title abstract description 19
- ZQKXQUJXLSSJCH-UHFFFAOYSA-N melamine cyanurate Chemical compound NC1=NC(N)=NC(N)=N1.O=C1NC(=O)NC(=O)N1 ZQKXQUJXLSSJCH-UHFFFAOYSA-N 0.000 claims description 58
- YSRVJVDFHZYRPA-UHFFFAOYSA-N melem Chemical compound NC1=NC(N23)=NC(N)=NC2=NC(N)=NC3=N1 YSRVJVDFHZYRPA-UHFFFAOYSA-N 0.000 claims description 42
- XSAOTYCWGCRGCP-UHFFFAOYSA-K aluminum;diethylphosphinate Chemical compound [Al+3].CCP([O-])(=O)CC.CCP([O-])(=O)CC.CCP([O-])(=O)CC XSAOTYCWGCRGCP-UHFFFAOYSA-K 0.000 claims description 30
- 239000000347 magnesium hydroxide Substances 0.000 claims description 29
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 29
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 28
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 26
- 229910021502 aluminium hydroxide Inorganic materials 0.000 claims description 25
- YZEZMSPGIPTEBA-UHFFFAOYSA-N 2-n-(4,6-diamino-1,3,5-triazin-2-yl)-1,3,5-triazine-2,4,6-triamine Chemical compound NC1=NC(N)=NC(NC=2N=C(N)N=C(N)N=2)=N1 YZEZMSPGIPTEBA-UHFFFAOYSA-N 0.000 claims description 21
- 229910001853 inorganic hydroxide Inorganic materials 0.000 claims description 20
- 229920000877 Melamine resin Polymers 0.000 claims description 18
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 18
- 229920000515 polycarbonate Polymers 0.000 claims description 11
- 239000004417 polycarbonate Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 95
- -1 poly(tetramethylene oxide) Polymers 0.000 description 71
- 239000000463 material Substances 0.000 description 44
- 150000002148 esters Chemical group 0.000 description 23
- 238000012360 testing method Methods 0.000 description 21
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 20
- 229920001971 elastomer Polymers 0.000 description 20
- 239000000806 elastomer Substances 0.000 description 20
- 239000003063 flame retardant Substances 0.000 description 11
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 10
- 239000004721 Polyphenylene oxide Substances 0.000 description 10
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 10
- 229920001707 polybutylene terephthalate Polymers 0.000 description 10
- 229920000570 polyether Polymers 0.000 description 10
- 238000001125 extrusion Methods 0.000 description 9
- 150000002009 diols Chemical class 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 7
- 239000004593 Epoxy Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 239000003963 antioxidant agent Substances 0.000 description 6
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 150000002334 glycols Chemical class 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000012963 UV stabilizer Substances 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 150000004679 hydroxides Chemical class 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 239000004611 light stabiliser Substances 0.000 description 5
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- 101100028962 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PDR1 gene Proteins 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 0 CCC(=O)*C(C)=O Chemical compound CCC(=O)*C(C)=O 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- 239000004411 aluminium Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 229920003319 Araldite® Polymers 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 239000006057 Non-nutritive feed additive Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 2
- 229910001679 gibbsite Inorganic materials 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 125000005402 stannate group Chemical group 0.000 description 2
- GTOWTBKGCUDSNY-UHFFFAOYSA-K tris[[ethyl(methyl)phosphoryl]oxy]alumane Chemical compound [Al+3].CCP(C)([O-])=O.CCP(C)([O-])=O.CCP(C)([O-])=O GTOWTBKGCUDSNY-UHFFFAOYSA-K 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- DXZMANYCMVCPIM-UHFFFAOYSA-L zinc;diethylphosphinate Chemical compound [Zn+2].CCP([O-])(=O)CC.CCP([O-])(=O)CC DXZMANYCMVCPIM-UHFFFAOYSA-L 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- 125000006832 (C1-C10) alkylene group Chemical group 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-dioxonaphthalene Natural products C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 1
- BOKGTLAJQHTOKE-UHFFFAOYSA-N 1,5-dihydroxynaphthalene Chemical compound C1=CC=C2C(O)=CC=CC2=C1O BOKGTLAJQHTOKE-UHFFFAOYSA-N 0.000 description 1
- ODJQKYXPKWQWNK-UHFFFAOYSA-L 3-(2-carboxylatoethylsulfanyl)propanoate Chemical compound [O-]C(=O)CCSCCC([O-])=O ODJQKYXPKWQWNK-UHFFFAOYSA-L 0.000 description 1
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- GHKOFFNLGXMVNJ-UHFFFAOYSA-N Didodecyl thiobispropanoate Chemical compound CCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCC GHKOFFNLGXMVNJ-UHFFFAOYSA-N 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical class CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004609 Impact Modifier Substances 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 235000009781 Myrtillocactus geometrizans Nutrition 0.000 description 1
- 240000009125 Myrtillocactus geometrizans Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910000329 aluminium sulfate Inorganic materials 0.000 description 1
- 229910001439 antimony ion Inorganic materials 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910001451 bismuth ion Inorganic materials 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- ARTGXHJAOOHUMW-UHFFFAOYSA-N boric acid hydrate Chemical class O.OB(O)O ARTGXHJAOOHUMW-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920006147 copolyamide elastomer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- PDXRQENMIVHKPI-UHFFFAOYSA-N cyclohexane-1,1-diol Chemical compound OC1(O)CCCCC1 PDXRQENMIVHKPI-UHFFFAOYSA-N 0.000 description 1
- VEIOBOXBGYWJIT-UHFFFAOYSA-N cyclohexane;methanol Chemical compound OC.OC.C1CCCCC1 VEIOBOXBGYWJIT-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical class OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- KTLIMPGQZDZPSB-UHFFFAOYSA-M diethylphosphinate Chemical compound CCP([O-])(=O)CC KTLIMPGQZDZPSB-UHFFFAOYSA-M 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229920000163 poly(trimethylene ether) Polymers 0.000 description 1
- 229920003224 poly(trimethylene oxide) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- NGHMEZWZOZEZOH-UHFFFAOYSA-N silicic acid;hydrate Chemical class O.O[Si](O)(O)O NGHMEZWZOZEZOH-UHFFFAOYSA-N 0.000 description 1
- 150000003384 small molecules Chemical group 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229910001427 strontium ion Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229920006344 thermoplastic copolyester Polymers 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229910001432 tin ion Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/42—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
- H01B3/421—Polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34922—Melamine; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34924—Triazines containing cyanurate groups; Tautomers thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/53—Phosphorus bound to oxygen bound to oxygen and to carbon only
- C08K5/5313—Phosphinic compounds, e.g. R2=P(:O)OR'
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/53—Phosphorus bound to oxygen bound to oxygen and to carbon only
- C08K5/5317—Phosphonic compounds, e.g. R—P(:O)(OR')2
- C08K5/5333—Esters of phosphonic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08L67/025—Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L85/00—Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
- C08L85/02—Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers containing phosphorus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/06—Insulating conductors or cables
- H01B13/14—Insulating conductors or cables by extrusion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/42—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
- H01B3/427—Polyethers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/29—Protection against damage caused by extremes of temperature or by flame
- H01B7/295—Protection against damage caused by extremes of temperature or by flame using material resistant to flame
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2217—Oxides; Hydroxides of metals of magnesium
- C08K2003/2224—Magnesium hydroxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/202—Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
Definitions
- the present invention relates to the field of low-smoke flame retarded cables.
- Cables for conducting electricity or signals are a part of everyday life and are essentially ubiquitous.
- a common construction for cables is a central electrically or optically conducting element or wire, surrounded by an insulating material, which in turn is surrounded by a jacket material.
- the insulating material should be chosen to have a high volume resistivity, particularly when the central element is electrically conductive.
- the jacket material can be chosen to have various characteristics desired by the end-user, such as low abrasion, or a pleasant feel and appearance.
- Thermoplastic elastomers such as copolyetheresters are popular coating materials because of their versatility and generally high resistivity.
- U.S. Pat. No. 8,536,449 describes insulated wires for electronic equipment in which the jacket is made from a flame-retardant composition that includes (A) a thermoplastic copolyester elastomer and/or a copolyamide elastomer, (B) a metal salt of a phosphinic acid and/or a diphosphinic acid and/or a polymer thereof, (C) a nitrogen-containing flame retardant synergist and/or a phosphor/nitrogen containing flame retardant as a flame retardant component, and (D) an inorganic compound chosen from basic and amphoteric oxides, hydroxides, carbonates, silicates, borates, stannates, mixed oxide-hydroxides, oxide-hydroxide-carbonates, hydroxide-silicates and hydroxide-borates, and mixtures thereof.
- the cables are said to have good flammability performance.
- a cable comprising:
- the insulating layer comprising a copolyetherester and melamine cyanurate, and/or melamine, and/or melem and/or melam;
- a jacket surrounding the insulating layer comprising a copolyetherester and melamine cyanurate, and/or melamine, and/or melem and/or melam, and at least one inorganic hydroxide.
- a method for manufacturing a cable comprising the step of extruding the insulating layer and the jacket around the conducting element.
- connection cable comprising:
- a piece of electronic equipment comprising the cable described herein.
- the inventors have surprisingly found that a cable having good flammability performance and low-smoke emission, as well as good insulating performance, can be obtained using the following construction:
- the insulating layer comprising a copolyetherester and melamine cyanurate, and/or melamine, and/or melem and/or melam;
- a jacket surrounding the insulating layer comprising a copolyetherester and melamine cyanurate, and/or melamine, and/or melem and/or melam, and at least one inorganic hydroxide.
- the cable comprises a centrally running electrically conducting element (wire), surrounded by an insulating layer comprising a copolyetherester and melamine cyanurate, or melamine, or melem, or melam; and a jacket surrounding the insulating layer, the jacket comprising a copolyetherester and melamine cyanurate, or melamine, or melem, or melam, and an inorganic hydroxide.
- the wire may be made from any electrically conducting material.
- a typical material is copper.
- the cable comprises a centrally running optical fibre, surrounded by an insulating layer comprising a copolyetherester and melamine cyanurate, or melamine, or melem, or melam; and a jacket surrounding the insulating layer, the jacket comprising a copolyetherester and melamine cyanurate, or melamine, or melem, or melam, and an inorganic hydroxide.
- the wire or optical fibre may be one or more wires or optical fibres. They may additionally be wound or sheathed with other materials fitting between the conducting element and the insulating material. Similarly, the insulating layer may be wound or sheathed with other materials fitting between the insulating layer and the jacket layer. Preferably, the winding and sheathing materials are also resistant to burning and smoking, such as for example glass fibers or asbestos.
- the insulating layer and the jacket both comprise a copolyetherester.
- the copolyetheresters that are used in the insulating layer and the jacket may be the same or different.
- Preferred copolyetheresters are copolymers that have a multiplicity of recurring long-chain ester units and short-chain ester units joined head-to-tail through ester linkages, said long-chain ester units being represented by formula (A):
- G is a divalent radical remaining after the removal of terminal hydroxyl groups from poly(alkylene oxide)glycols having preferably a number average molecular weight of between about 400 and about 6000;
- R is a divalent radical remaining after removal of carboxyl groups from a dicarboxylic acid having a molecular weight of less than about 300;
- D is a divalent radical remaining after removal of hydroxyl groups from a diol having a molecular weight preferably less than about 250; and wherein said copolyetherester(s) preferably contain from about 15 to about 99 wt. % short-chain ester units and about 1 to about 85 wt. % long-chain ester units.
- long-chain ester units as applied to units in a polymer chain refers to the reaction product of a long-chain glycol with a dicarboxylic acid.
- Suitable long-chain glycols are poly(alkylene oxide) glycols having terminal (or as nearly terminal as possible) hydroxy groups and having a number average molecular weight of from about 400 to about 6000, and preferably from about 600 to about 3000.
- Preferred poly(alkylene oxide) glycols include poly(tetramethylene oxide) glycol, poly(trimethylene oxide) glycol, poly(propylene oxide) glycol, poly(ethylene oxide) glycol, copolymer glycols of these alkylene oxides, and block copolymers such as ethylene oxide-capped poly(propylene oxide) glycol. Mixtures of two or more of these glycols can be used.
- short-chain ester units as applied to units in a polymer chain of the copolyetheresters refers to low molecular weight compounds or polymer chain units. They are made by reacting a low molecular weight diol or a mixture of diols with a dicarboxylic acid to form ester units represented by Formula (B) above. Included among the low molecular weight diols which react to form short-chain ester units suitable for use for preparing copolyetheresters are acyclic, alicyclic and aromatic dihydroxy compounds.
- Preferred compounds are diols with about 2 to 15 carbon atoms such as ethylene, propylene, isobutylene, tetramethylene, 1,4-pentamethylene, 2,2-dimethyltrimethylene, hexamethylene and decamethylene glycols, dihydroxycyclohexane, cyclohexane dimethanol, resorcinol, hydroquinone, 1,5-dihydroxynaphthalene, and the like.
- Especially preferred diols are aliphatic diols containing 2-8 carbon atoms, and a more preferred diol is 1,4-butanediol.
- the copolyetherester that is used in both the insulating layer and the jacket layer is made from:
- the weight percent of short-chain ester units in the particularly preferred copolyetherester elastomers is preferably from 15 to 99 wt %, more preferably from 20 to 95 wt %, based on the total weight of the copolyetherester elastomer.
- weight percentages are based on the total weight of the copolymer. As used herein, weight percentages are complementary, for example, the sum of the weight percentages of the copolymerized repeat units of a given copolymer is 100 wt %.
- the material used for the insulating layer comprises, in addition to the copolyetherester component, melamine cyanurate, and/or melamine, and/or melem (cyamelurotriamide) and/or melam [(N2-(4,6-diamino-1,3,5-triazin-2-yl)-1,3,5-triazine-2,4,6-triamine)].
- the total content of melamine cyanurate, melamine, melem and melam in the insulating layer is preferably between 10 and 25 wt %, based on the total weight of the material or of the insulating layer.
- the total content of melamine cyanurate, melamine, melem and melam in the insulating layer is 20 wt %, based on the total weight of the material or of the insulating layer.
- a preferred insulating layer comprises copolyetherester and melamine cyanurate.
- the insulating layer may additionally comprise other additives.
- a particularly preferred insulating layer additionally comprises a non-halogenated flame-retardant selected from the group consisting of phosphinates of the formula (III), disphosphinates of the formula (IV), and combinations or polymers thereof
- R 1 and R 2 being identical or different and each of R 1 and R 2 being hydrogen, a linear, branched, or cyclic C 1 -C 6 alkyl group, or a C 6 -C 10 aryl;
- R 3 being a linear or branched C 1 -C 10 alkylene group, a C 6 -C 10 arylene group, a C 6 -C 12 alkyl-arylene group, or a C 6 -C 12 aryl-alkylene group;
- M being selected from calcium ions, aluminium ions, magnesium ions, zinc ions, antimony ions, tin ions, germanium ions, titanium ions, iron ions, zirconium ions, cerium ions, bismuth ions, strontium ions, manganese ions, lithium ions, sodium ions, potassium ions and combinations thereof; and m, n, and x each being a same or different integer from 1 to 4, inclusive.
- the halogen-free flame retardant is selected from the group consisting of aluminium methylethylphosphinate, aluminium diethylphosphinate, aluminium hypophosphite, and combinations or two or more thereof, or the at least one halogen-free flame retardant is aluminium methylethylphosphinate or aluminium diethylphosphinate. Particularly preferred is aluminium diethyl phosphinate.
- Preferred insulating layers include, without limitation, those listed below:
- More preferred insulating layers include, without limitation, those listed below:
- More particularly preferred insulating layers include, without limitation, those listed below:
- Particularly preferred insulating layers include, without limitation, the following:
- weight percentages are based on the total weight of the insulating layer or of the jacketing layer. Alternatively, the weight percentages are based on the total weight of the composition of the insulating layer or the composition of the jacketing layer. As used herein, weight percentages are complementary, for example, the sum of the weight percentages of the components of a given layer or composition is 100 wt %.
- the material used for the jacket layer comprises melamine cyanurate, and/or melamine, and/or melem (cyamelurotriamide) and/or melam [(N2-(4,6-diamino-1,3,5-triazin-2-yl)-1,3,5-triazine-2,4,6-triamine)], and at least one inorganic hydroxide.
- the total content of melamine cyanurate, melamine, melem and melam in the jacket layer is preferably between 10 and 25 wt %, based on the total weight of the material or of the jacket layer.
- the total content of melamine cyanurate, melamine, melem and melam in the jacket layer is 20 wt % or about 20 wt %, based on the total weight of the material or of the jacket layer.
- the jacket layer comprises copolyetherester and melamine cyanurate and additionally comprises an inorganic hydroxide.
- Hydroxides of divalent and trivalent cations are preferred.
- hydroxides of divalent metals include magnesium hydroxide and calcium hydroxide, with magnesium hydroxide being particularly preferred.
- hydroxides of trivalent metals include aluminum hydroxide.
- other carbonates, basic and amphoteric oxides, stannates and mixtures of those can be used in the flame retardant mixture for the jacket layer.
- Two or more inorganic hydroxides may be used in the jacket layer, a combination of magnesium hydroxide and aluminum hydroxide being particularly preferred.
- the inorganic hydroxide is preferably used in the jacket layer at a concentration of from 4 to 25 wt %, more preferably 8 to 22 wt %, based on the total weight of the jacket layer.
- the jacket layer comprises from 4 to 10 wt % magnesium hydroxide, more preferably 5 to 8 wt % magnesium hydroxide, based on the total weight of the jacket layer.
- the jacket layer comprises from 8 to 20 wt % aluminium hydroxide, more preferably from 10 to 15 wt % aluminium hydroxide, based on the total weight of the jacket layer.
- the jacket layer comprises a mixture of aluminium hydroxide and magnesium hydroxide, preferably 4 to 10 wt % magnesium hydroxide, more preferably 5 to 8 wt % magnesium hydroxide and 8 to 20 wt % aluminium hydroxide, more preferably from 10 to 15 wt % aluminium hydroxide. Particularly preferred is 6 to 7 wt % magnesium hydroxide and 12 to 14 wt % aluminium hydroxide. These preferred and more preferred weight percentages are based on the total weight of the jacket layer.
- Preferred jacket layers include, without limitation, those listed below:
- More preferred jacket layers include, without limitation, those listed below:
- More preferred jacket layers include, without limitation, those listed below:
- Particularly preferred insulating layers include, without limitation, the following:
- Particularly preferred jacket layers include, without limitation, the following:
- jacket and insulating layer include, without limitation, the following:
- Preferred jacket layer 1 with any one of preferred insulating layers 1, 2 or 3;
- Preferred jacket layer 2 with any one of preferred insulating layers 1, 2 or 3;
- the insulating layer and the jacket layer may additionally comprise inorganic fillers such as glass fibre and/or carbon fibre, and organic fillers, such as aramid fibres.
- the insulating layer and the jacket may additionally comprise additives such as stabilisers, antioxidants, metal deactivators, processing aids, lubricants, anti-drip agents, modifiers, colorants, fillers and reinforcing agents, impact modifiers, flow enhancing additives, antistatic agents, crystallization promoting agents, viscosity modifiers, nucleating agents, scratch and mar modifiers, adhesion modifiers and other processing aids well known in the polymer compounding art.
- additives such as stabilisers, antioxidants, metal deactivators, processing aids, lubricants, anti-drip agents, modifiers, colorants, fillers and reinforcing agents, impact modifiers, flow enhancing additives, antistatic agents, crystallization promoting agents, viscosity modifiers, nucleating agents, scratch and mar modifiers, adhesion modifiers and other processing aids well known in the polymer compounding art.
- All additives may be in the form of coated particles, for example particles that have a coating and a core, wherein the core comprises the flame-retardant additive.
- the coating can comprise an organosilane, ester, polyol, dianhydride, epoxy, or dicarboxylic acid; or mixtures of two or more of these coating materials; or any particle coating known to those skilled in the art.
- the amount of coating will generally be in the range of from about 0.1 to 6 wt %, based on the total weight of the coated particle.
- an epoxy compound may be added to the insulating layer to improve hydrolysis resistance.
- the invention also provides a method of manufacture of the cable described herein.
- the insulating layer and the jacket are extruded around the conducting element.
- the extrusion may be by co-extrusion, in which case the two layers are extruded simultaneously, or it may be by single layer extrusion, in which case the layers are extruded separately.
- single-layer extrusion is preferred.
- the cables described herein show good flammability performance, having a rating of V2 or better, when measured according to UL 94 test standard, 20 mm vertical burning test, using test specimens having dimensions of 125 mm long by 13 mm wide and a thickness of 1.6 or 0.8 mm.
- the cables show low smoke emission, when measured according to ASTM E662 flaming mode, using test specimens in the shape of rectangular plaques.
- the cables have a “Ds 360 seconds” of less than 50, more preferably less than 30, particularly preferably less than 20.
- the cables have a “Ds max” of less than 250, more preferably less than 220, particularly preferably less than 200.
- TPE1 See below
- TPE2 See below
- Melapur Melapur MC15 Melamine cyanurate
- EXOLIT Exolit OP935 Diethylphosphinate aluminium salt
- Nofia HM Nofia HM1100 Polyphosphonate Nofia CO Nofia CO6000 Copolyphosphonate- polycarbonate
- Mg(OH) 2 Magnesium hydroxide
- Al(OH) 3 Aluminium hydroxide Melem Delflam 20 Cyamelurotriamide Genioplast Genioplast S Polydimethylsiloxane with vinyl groups Irganox Irganox PS800 FL Diodecyl 3,3′-thiodipropionate Claytone Claytone PS Bis(hydrogenated Tallow Alkyl) dimethylammonium salt with bentonite
- Epoxy 1 CHS-Epoxy 171 Low molecular weight Type 1,5- type solid epoxy resin with ep
- TPE1 A copolyetherester elastomer comprising about 44.9 weight percent of poly(tetramethylene oxide) having an average molecular weight of about 1000 g/mol as polyether block segments, the weight percentage being based on the total weight of the copolyetherester elastomer, the short chain ester units of the copolyetherester being polybutylene terephthalate and polybutylene isophthalate segments.
- TPE2 A copolyetherester elastomer comprising about 72.5 weight percent of poly(tetramethylene oxide) having an average molecular weight of about 2000 g/mol as polyether block segments, the weight percentage being based on the total weight of the copolyetherester elastomer, the short chain ester units of the copolyetherester being polybutylene terephthalate segments.
- Flame retardant polymer compositions of the invention and comparative compositions were prepared as follows: The above described materials, in the amounts listed in Tables 2 and 3, were melt-blended in a twin-screw extruder. The compounded melt-blended mixtures were extruded in the form of laces or strands, cooled in a water bath, chopped into granules and placed in sealed aluminum lined bags in order to prevent moisture pick-up.
- Flammability testing was performed according to UL 94 test standard, 20 mm vertical burning test.
- Test specimens were formed by injection molding the compositions in the form of test bars having dimensions of 125 mm long by 13 mm wide and a thickness of 1.6 or 0.8 mm.
- the granules of the flame retardant compositions prepared according to the above-described method were dried to provide granulated compositions having a moisture level below 0.08 percent.
- the test specimens were conditioned for 48 hours at 23° C. and 50% relative humidity. Test specimens were clamped with the longitudinal axis of the specimen in the vertical direction, so that the lower end of the specimen was 300 mm above a horizontal layer of dry absorbent surgical cotton.
- a burner producing a blue flame 20 mm high was placed so that the flame was applied centrally to the mid-point of the bottom edge of the specimen for 10 seconds. After the application of the flame to the specimen for 10 seconds, the burner was withdrawn from the sample and the after-flame time, t1, was measured. When after-flaming of the test specimen ceased, the burner was again placed beneath the specimen for an additional 10 seconds. The flame was then withdrawn from the test specimen and the second after-flame time, t2, was measured. Materials are classified according to the test specifications as V-0, V-1 or V-2, based on the behavior of the material during burning. V-0 is the best flame-retardance performance, V-1 is intermediate and V-2 is the least demanding specification. When the composition failed to meet the criteria for the least demanding classification (V-2), it is reported as “failed” in the tables.
- Smoke emission from the compositions described in Table 2 was measured according to the standard method ASTM E662 flaming mode. Test specimens, in the shape of rectangular plaques of dimension 75 mm long ⁇ 75 mm wide, and having a thickness of 2 or 1 mm, were molded from the as-obtained extruded materials. The test was carried out in an NBS smoke chamber. For testing the smoke performance of the material composition alone, a 2-mm thickness plaque was used. For testing the smoke performance of the combination of the jacket and insulation materials, a 1-mm thick plaque of the insulation material was placed behind a 2-mm plaque of the jacket material. The results are expressed as specific optical density, Ds. The higher the value of Ds, the more smoke produced in a given time.
- the smoke chamber test results in a curve of specific optical density versus time. “Ds 360 seconds” is the specific optical density after 360 seconds. “Ds max” is the maximum specific optical density measured over an experiment duration of up to 40 minutes.
- the smoke emission performance for the materials alone and in combination are listed in Table 3.
- the volume resistivity of the molded plaques was measured as follows: Test specimens were formed from the compositions by injection molding the compositions in the form of plaques having dimensions of 100 mm long by 100 mm wide, with a thickness of 2.0 mm.
- volume resistivity in air at 23° C. The plaques were allowed to rest at least 16 hours at room temperature after molding. Volume resistivity from such plaques was measured in air at room temperature according to IEC 60093 by applying a DC potential of 500 V for 60 seconds prior to each reading. The duration of each reading was 60 seconds. The volume resistivity measurements are listed in Table 3.
- Flammability smoke density for jacket material, insulating layer alone and combination of jacket and insulating material, volume resistivity for materials alone Parameter Jacket E1 (insulating layer) CE1 (insulating layer) E2 (insulating layer) E3 (insulating layer) Smoke density alone Ds 360 seconds 21 48.6 30 184.3 277.3 Ds max 70 Material drops Material drops Material drops Material drops Material drops Material drops Smoke density jacket and insulating layer Ds 360 seconds 20 19.5 61.4 11.5 29.62 Ds max 98 211 287 130 177 Flammability (alone) V2 V2 V2 V2 V2 V2 Volume resistivity 6 66 [NOT MEASURED?] 34 48 (GOhm ⁇ m) (alone)
- a material or a combination of materials with a Ds 360 seconds below 50 is acceptable.
- a material or a combination of materials with a Ds max below 250 is acceptable.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Insulated Conductors (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/630,518 US10886039B2 (en) | 2017-07-14 | 2018-07-12 | Low-smoke flame reduced cable |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762532507P | 2017-07-14 | 2017-07-14 | |
| PCT/US2018/041776 WO2019014423A1 (en) | 2017-07-14 | 2018-07-12 | LOW REDUCED FLAME SMOKE EMISSION CABLE |
| US16/630,518 US10886039B2 (en) | 2017-07-14 | 2018-07-12 | Low-smoke flame reduced cable |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20200168362A1 US20200168362A1 (en) | 2020-05-28 |
| US10886039B2 true US10886039B2 (en) | 2021-01-05 |
Family
ID=63294414
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/630,518 Active US10886039B2 (en) | 2017-07-14 | 2018-07-12 | Low-smoke flame reduced cable |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US10886039B2 (enExample) |
| EP (1) | EP3652756B1 (enExample) |
| JP (2) | JP7406481B2 (enExample) |
| KR (1) | KR20200032118A (enExample) |
| CN (1) | CN111201579B (enExample) |
| WO (1) | WO2019014423A1 (enExample) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20230025383A (ko) * | 2020-06-15 | 2023-02-21 | 듀폰 폴리머스, 인크. | 개선된 코폴리에테르에스테르 |
| DE102022004484A1 (de) | 2022-11-30 | 2024-06-06 | Voss Automotive Gmbh | Isoliermaterial, Litze mit einem solchen, Kabel mit einem solchen, beheizbare Medienleitung mit zumindest einer solchen Litze oder einem solchen Kabel sowie Verfahren zum Herstellen eines solchen Isoliermaterials |
| CN117423502B (zh) * | 2023-12-18 | 2024-02-23 | 湖南华菱线缆股份有限公司 | 一种防火变频电缆 |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6415415B1 (en) * | 1999-09-03 | 2002-07-02 | Infineon Technologies North America Corp. | Survival selection rule |
| EP1883081A1 (en) | 2006-07-28 | 2008-01-30 | DSMIP Assets B.V. | Insulated wires and its use in electronic equipment |
| US8076581B2 (en) * | 2007-10-11 | 2011-12-13 | Dsm Ip Assets B.V. | Flexible flame retardant insulated wires for use in electronic equipment |
| US8781278B2 (en) * | 2011-03-02 | 2014-07-15 | E I Du Pont De Nemours And Company | Low smoke halogen free flame retardant thermoplastic elastomer compositions containing zeolites |
| WO2014135376A1 (en) | 2013-03-06 | 2014-09-12 | Dsm Ip Assets B.V. | Flame retardant composition comprising a thermoplastic copolyetherester elastomer |
| US8841373B2 (en) * | 2009-07-02 | 2014-09-23 | Basf Se | Borophosphate, borate phosphate, and metal borophosphate as novel flame proofing additives for plastics |
| US20170247529A1 (en) * | 2014-10-01 | 2017-08-31 | E. I. Du Pont De Nemours And Company | Low smoke halogen free flame retardant thermoplastic elastomer compositions |
| EP3228661A1 (en) | 2015-12-03 | 2017-10-11 | LG Chem, Ltd. | Non-halogenated thermoplastic resin composition and cable comprising same |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110237695A1 (en) | 2010-03-23 | 2011-09-29 | Clariant International Ltd. | Flame Retardant Combinations For Polyester Elastomers And Flame Retarded Extrusion Or Molding Compositions Therefrom |
| CN102807739A (zh) * | 2011-05-30 | 2012-12-05 | 杜邦公司 | 阻燃共聚醚酯组合物和包含该阻燃共聚醚酯组合物的制品 |
| CN102807738A (zh) * | 2011-05-30 | 2012-12-05 | 杜邦公司 | 阻燃共聚醚酯组合物和包含该阻燃共聚醚酯组合物的制品 |
| CN103146152A (zh) * | 2011-12-07 | 2013-06-12 | 杜邦公司 | 阻燃的共聚醚酯组合物及包含其的制品 |
| JP2015501866A (ja) | 2011-12-07 | 2015-01-19 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | 難燃性コポリエーテルエステル組成物、及びこれを含む物品 |
| CN103146153A (zh) * | 2011-12-07 | 2013-06-12 | 杜邦公司 | 阻燃的共聚醚酯组合物及包含其的制品 |
| US9842672B2 (en) * | 2012-02-16 | 2017-12-12 | Nexans | LAN cable with PVC cross-filler |
| CN103665776A (zh) * | 2012-09-06 | 2014-03-26 | 杜邦公司 | 阻燃剂共聚醚酯组合物和包含其的物品 |
| US9156978B1 (en) | 2014-06-06 | 2015-10-13 | Teknor Apex Company | Low softener halogen free flame retardant styrenic block copolymer-based thermoplastic elastomer compositions |
-
2018
- 2018-07-12 EP EP18758759.7A patent/EP3652756B1/en active Active
- 2018-07-12 WO PCT/US2018/041776 patent/WO2019014423A1/en not_active Ceased
- 2018-07-12 KR KR1020207003577A patent/KR20200032118A/ko not_active Ceased
- 2018-07-12 US US16/630,518 patent/US10886039B2/en active Active
- 2018-07-12 CN CN201880046897.8A patent/CN111201579B/zh active Active
- 2018-07-12 JP JP2020500805A patent/JP7406481B2/ja active Active
-
2023
- 2023-03-08 JP JP2023035635A patent/JP2023067990A/ja not_active Withdrawn
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6415415B1 (en) * | 1999-09-03 | 2002-07-02 | Infineon Technologies North America Corp. | Survival selection rule |
| EP1883081A1 (en) | 2006-07-28 | 2008-01-30 | DSMIP Assets B.V. | Insulated wires and its use in electronic equipment |
| US8536449B2 (en) * | 2006-07-28 | 2013-09-17 | Dsm Ip Assets B.V. | Insulated wires for use in electronic equipment |
| US8076581B2 (en) * | 2007-10-11 | 2011-12-13 | Dsm Ip Assets B.V. | Flexible flame retardant insulated wires for use in electronic equipment |
| US8841373B2 (en) * | 2009-07-02 | 2014-09-23 | Basf Se | Borophosphate, borate phosphate, and metal borophosphate as novel flame proofing additives for plastics |
| US8781278B2 (en) * | 2011-03-02 | 2014-07-15 | E I Du Pont De Nemours And Company | Low smoke halogen free flame retardant thermoplastic elastomer compositions containing zeolites |
| WO2014135376A1 (en) | 2013-03-06 | 2014-09-12 | Dsm Ip Assets B.V. | Flame retardant composition comprising a thermoplastic copolyetherester elastomer |
| US20170247529A1 (en) * | 2014-10-01 | 2017-08-31 | E. I. Du Pont De Nemours And Company | Low smoke halogen free flame retardant thermoplastic elastomer compositions |
| EP3228661A1 (en) | 2015-12-03 | 2017-10-11 | LG Chem, Ltd. | Non-halogenated thermoplastic resin composition and cable comprising same |
Non-Patent Citations (1)
| Title |
|---|
| International Search Report and Written Opinion in International Application No. PCT/US2018/041776, dated Oct. 24, 2018. |
Also Published As
| Publication number | Publication date |
|---|---|
| JP7406481B2 (ja) | 2023-12-27 |
| WO2019014423A1 (en) | 2019-01-17 |
| US20200168362A1 (en) | 2020-05-28 |
| KR20200032118A (ko) | 2020-03-25 |
| CN111201579B (zh) | 2022-07-19 |
| EP3652756A1 (en) | 2020-05-20 |
| EP3652756B1 (en) | 2021-08-25 |
| CN111201579A (zh) | 2020-05-26 |
| JP2020526886A (ja) | 2020-08-31 |
| JP2023067990A (ja) | 2023-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2480601B1 (en) | Thermoplastic polyester compositions, methods of manufacture, and articles thereof | |
| JP5440781B2 (ja) | 絶縁電線および電子機器でのその使用 | |
| JP2023067990A (ja) | 低煙火炎低減ケーブル | |
| JP2015507029A (ja) | 難燃性コポリエーテルエステル組成物、及びこれを含む物品 | |
| EP3057108A1 (en) | Halogen-free flame-retardant insulated wire and halogen-free flame-retardant insulated tube | |
| US20120308819A1 (en) | Fire-retardant copolyetherester composition and articles comprising the same | |
| EP4165121B1 (en) | Improved copolyetherester | |
| EP3228661B1 (en) | Non-halogenated thermoplastic resin composition and cable comprising same | |
| US20130149533A1 (en) | Flame-retardant copolyetherester composition and articles comprising the same | |
| CN103146152A (zh) | 阻燃的共聚醚酯组合物及包含其的制品 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| AS | Assignment |
Owner name: DUPONT POLYMERS, INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KARAYIANNI, ELENI;REEL/FRAME:053657/0496 Effective date: 20200831 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |