US10854161B2 - Display device and method of detecting defect of the same - Google Patents

Display device and method of detecting defect of the same Download PDF

Info

Publication number
US10854161B2
US10854161B2 US16/186,944 US201816186944A US10854161B2 US 10854161 B2 US10854161 B2 US 10854161B2 US 201816186944 A US201816186944 A US 201816186944A US 10854161 B2 US10854161 B2 US 10854161B2
Authority
US
United States
Prior art keywords
defect
data
display area
data driver
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/186,944
Other versions
US20190156783A1 (en
Inventor
Yunmi KIM
Kihyun PYUN
Sung-In Kang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Display Co Ltd filed Critical Samsung Display Co Ltd
Assigned to SAMSUNG DISPLAY CO., LTD. reassignment SAMSUNG DISPLAY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANG, SUNG-IN, KIM, YUNMI, PYUN, KIHYUN
Publication of US20190156783A1 publication Critical patent/US20190156783A1/en
Application granted granted Critical
Publication of US10854161B2 publication Critical patent/US10854161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/14Display of multiple viewports
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0814Several active elements per pixel in active matrix panels used for selection purposes, e.g. logical AND for partial update
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0297Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof

Definitions

  • Exemplary embodiments relate generally to a display device. More particularly, exemplary embodiments of the inventive concept relate to a display device and a method of detecting defect of the same.
  • a liquid crystal display panel of a liquid crystal display device includes a lower substrate, an upper substrate, and a liquid crystal layer interposed between the lower substrate and the upper substrate.
  • the lower substrate includes a first base substrate, a gate and a data line disposed on the first based substrate, a switching element electrically coupled to the gate line and the data line, and a pixel electrode electrically coupled to the switching element.
  • the upper substrate includes a second base substrate facing the first substrate, a color filter disposed on the second base substrate, and a common electrode formed on the color filter.
  • the liquid crystal layer includes a liquid crystal of which an arrangement is changed according to an electric field due to a pixel voltage applied to the pixel electrode and a common voltage applied to the common electrode.
  • Some exemplary embodiments provide a display device capable of detecting defect of a data driver.
  • Some exemplary embodiments provide a method of detecting a defect of the display device capable of detecting defect of a data driver.
  • a display device includes a display panel divided into a first display area and a second display area in a first direction, a first data driver which provides a first data signal to the first display area through data lines arranged in a second direction crossing the first direction, a second data driver which provides a second data signal to the second display area through the data lines arranged in the second direction, a gate driver which provides a gate signal to the display panel through gate lines arranged in the first direction, a timing controller which generates control signals that control the first data driver, the second data driver, and the gate driver, and a defect detector which controls to display a defect detecting image and a reference image on the first display area and the second display area alternately based on an enable signal.
  • the timing controller may provide defect detecting image data corresponding to the defect detecting image to the defect detector, and the defect detector may provide the defect detecting image data or reference image data corresponding to the reference image to the first data driver or the second data driver based on the enable signal.
  • the defect detector may include a first defect detector which provides defect detecting image data corresponding to the defect detecting image or reference image data corresponding to the reference image to the first data driver based on a first enable signal, and a second defect detector which provides the defect image data or the reference image data to the second data driver based on a second enable signal.
  • the first defect detector may control to display the defect detecting image on the first display area for detecting the defect of the first data driver
  • the second defect detector may control to display the defect detecting image on the second display area for detecting the defect of the second data driver.
  • the first defect detector may provide the defect detecting image data to the first data driver when the first enable signal having a first level is provided, and provide the reference image data to the first data driver when the first enable signal having a second level is provided.
  • the second defect detector may provide the defect detecting image data to the second data driver when the second enable signal having a first level is provided, and may provide the reference image data to the second data driver when the second enable signal having a second level is provided.
  • the defect detecting image may be displayed on the first display area when the first enable signal having a first level is provided to the first defect detector, and the reference image may be displayed on the first display area when the first enable signal having a second level is provided to the first defect detector.
  • the defect detecting image may be displayed on the second display area when the second enable signal having a first level is provided to the second defect detector, and the reference image may be displayed on the second display area when the second enable signal having a second level is provided to the second defect detector.
  • the first enable signal having a first level may be provided to the first defect detector and the second enable signal having a second level may be provided to the second defect detector in order to detect the defect of the first data driver.
  • the first enable signal having a second level may be provided to the first defect detector and the second enable signal having a first level may be provided to the second defect detector in order to detect the defect of the second data driver.
  • the defect detecting image data may be a differential signal that includes a positive signal and a negative signal.
  • each of the first defect detector and the second defect detector may include a first AND gate which performs a logical conjunction of the positive signal and a corresponding enable signal of the first and second enable signals, a second AND gate which performs a logical conjunction of the negative signal and the corresponding enable signal of the first and second enable signals, and a NOT gate which inverses an output of the second AND gate.
  • each of the first defect detector and the second defect detector may include a first multiplexer which outputs one of the positive signal and a first voltage based on a corresponding enable signal of the first and second enable signals and a second multiplexer which outputs one of the negative signal and a second voltage.
  • the reference image may be a black color image.
  • a method of detecting defect of a display device includes displaying a defect detecting image on a first display area of a display panel and a reference image on a second display area of the display panel, wherein the display panel is divided into the first display area and the second display area in a first direction, detecting a defect of a first data driver coupled to the first display area, displaying the reference image on the first display area and the defect detecting image on the second display area, and detecting a defect of a second data driver coupled to the second display area.
  • displaying the defect detecting image on the first display area and the reference image on the second display area may include providing a first enable signal having a first level to a first defect detector coupled to the first data driver that provides a data signal to the first display area, and providing a second enable signal having a second level to a second defect detector coupled to the second data driver that provides a data signal to the second display area.
  • displaying the reference image on the first display area and the defect detecting image on the second display area may include providing a first enable signal having a second level to a first defect detector coupled to the first data driver that provides a data signal to the first display area and providing a second enable signal having a first level to a second defect detector coupled to the second data driver that provides a data signal to the second display area.
  • a display device includes a display panel which includes a first display area and a second display area, and a defect detector which controls to display a defect detecting image or a reference image on the first display area based on a first enable signal and display a defect detecting image or a reference image on the second display area based on a second enable signal.
  • the reference image is displayed on the second display area when the defect detecting image is displayed on the first display area, and the defect detecting image may be displayed on the second display area when the reference image is displayed on the first display area.
  • the defect detector may include a first defect detector which provides defect detecting image data corresponding to the defect detecting image or reference image data corresponding to the reference image to a first data driver that provides a data signal to the first display area, and a second defect detector which provides the defect detecting image data or the reference image data to a second data driver that provides a data signal to the second display area.
  • the first defect detector may provide the defect detecting image data to the first data driver when the first enable signal having a first level is provided and provide the reference image data to the first data driver when the first enable signal having a second level is provided
  • the second defect detector may provide the defect detecting image data to the second data driver when the second enable signal having the first level is provided and provide the reference image data to the second data driver when the second enable signal having the second level is provided.
  • a display device and a method of detecting defect of the same may detect defects of the first data driver coupled to the first display area and the second data driver coupled to the second display area respectively by alternately displaying the defect detecting image and the reference image on the first display area and the second display area of the display panel.
  • FIG. 1 is a block diagram illustrating an exemplary embodiment of a display device according to the invention.
  • FIGS. 2A and 2B are diagrams illustrating an exemplary embodiment of a display device of FIG. 1 .
  • FIGS. 3A and 3B are diagrams illustrating exemplary embodiments of a source driving integrated circuit included in the display device of FIGS. 2A and 2B .
  • FIG. 4 is a block diagram illustrating an exemplary embodiment of a defect detector included in the display device of FIG. 1 .
  • FIG. 5A is a diagram illustrating an exemplary embodiment of the defect detector of FIG. 4 .
  • FIG. 5B is a diagram illustrating another exemplary embodiment of the defect detector of FIG. 4 .
  • FIG. 5C is a table for describing an operation of the defect detector of FIG. 4 .
  • FIG. 6 is a block diagram illustrating an electronic device that includes the display device of FIG. 1 .
  • FIG. 7 is a diagram illustrating an exemplary embodiment in which the electronic device of FIG. 6 is implemented as a smart phone.
  • FIG. 8 is a flowchart illustrating an exemplary embodiment of a method of detecting defect of a display device according to the invention.
  • FIGS. 9 and 10 are flowcharts illustrating an exemplary embodiment of a method of displaying a defect detecting image included in the method of detecting defect of the display device of FIG. 8 .
  • FIGS. 11A and 11B are diagrams for describing the method of detecting defect of the display device of FIG. 8 .
  • FIG. 12 is a block diagram illustrating another exemplary embodiment of a display device according to the invention.
  • FIG. 1 is a block diagram illustrating an exemplary embodiment of a display device according to the invention.
  • a display device 100 may include a display panel 110 , a first data driver 120 , a second data driver 130 , a gate driver 140 , a timing controller 150 , and a defect detector 160 .
  • the display panel 110 may include data lines DL, gate lines GL, and a plurality of pixels.
  • the gate lines GL may extend in a first direction D 1 and be arranged in a second direction D 2 substantially perpendicular to the first direction D 1 .
  • the data lines DL may extend to the second direction D 2 and be arranged in the first direction D 1 .
  • the first direction D 1 may be parallel with a long side of the display panel 110
  • the second direction D 2 may be parallel with a short side of the display panel 110 .
  • Each of the pixels may be arranged in an intersection region of the data line DL and the gate line GL.
  • Each of the pixels may include a thin film transistor electrically coupled to one of the gate lines GL and one of the data lines DL, a liquid crystal capacitor and a storage capacitor coupled to the thin film transistor.
  • the display panel 110 may be a liquid crystal panel
  • the display device 100 may be a liquid crystal display device.
  • a dual driving method that includes first and second data drivers 120 and 130 in both ends (up and down, or left side and right side) of the display panel 110 provides a data signal to both ends of the data line DL in order to obtain a charging rate of the pixel.
  • the display panel 110 of the display device 100 may include a first display area 112 and a second display area 114 .
  • the display panel 110 may be divided into the first display area 112 and the second display area 114 in the first direction D 1 . That is the display panel 110 may be divided into the first display area 112 and the second display area 114 by a line therebetween extending in the first direction D 1 as shown in FIG. 1 .
  • a first data signal DS 1 from the first data driver 120 may be provided to the first display area 112 through the data lines DL.
  • a second data signal DS 2 from the second data driver 130 may be provided to the second display area 114 through the data lines DL.
  • the data lines DL in the first area 112 and the data lines DL in the second display area 114 may be coupled.
  • the first data driver 120 may provide the first data signal DS 1 to the first display area 112 through the data lines DL arranged in the second direction D 2 .
  • the first data driver 120 may receive a first control signal CON 1 from the timing controller 150 .
  • the first control signal CON 1 may include a horizontal start signal and a first clock signal.
  • the first data driver 120 may convert the image data provided from the defect detector 160 to the first data signals DS 1 that are analog signals.
  • the first data driver 120 may output the first data signals DS 1 to the data lines DL.
  • the second data driver 130 may provide the second data signal DS 2 to the second display area 114 through the data lines DL arranged in the second direction D 2 .
  • the second data driver 130 may receive the first control signal CON 1 from the timing controller 150 .
  • the first control signal CON 1 may include the horizontal start signal and the first clock signal.
  • the second data driver 130 may convert the image data provided from the defect detector 160 to the second data signals DS 2 that are the analog signals.
  • the second data driver 130 may output the second data signals DS 2 to the data lines DL.
  • the first data driver 120 and the second data driver 130 may be directly mounted on the display panel 110 or coupled to the display panel 110 by being implemented as a tape carrier package (“TCP”).
  • TCP tape carrier package
  • the gate driver 140 may provide gate signals GS to the display panel 110 through the gate lines GL arranged in the first direction D 1 .
  • the gate driver 140 may receive a second control signal CON 2 from the timing controller 150 .
  • the second control signal CON 2 may include a vertical start signal and a second clock signal.
  • the gate driver 140 may generate the gate signals GS in order to drive the pixels based on the second control signal CON 2 .
  • the gate driver 140 may output the gate signals GS to the gate lines GL.
  • the gate driver 140 may be directly mounted on the display panel 110 or coupled to the display panel 110 by being implemented as the TCP. Alternatively, the gate driver 140 may be directly integrated on a peripheral area of the display panel 110 .
  • the timing controller 150 may generate the first control signal CON 1 and the second control signal CON 2 that control the first data driver 120 , the second data driver 130 , and the gate driver 140 .
  • the timing controller 150 may receive a first image data DATA 1 and an input control signal CON from an external device.
  • the first image data DATA 1 may be RGB data (i.e., red data, green data, and blue data).
  • the timing controller 150 may provide the second image data DATA 2 to the defect detector 160 .
  • the second image data DATA 2 may be substantially the same with the first image data DATA 1 or may be an image data compensated from the first image data DATA 1 .
  • the timing controller 150 may generate the second image data DATA 2 by selectively performing a display quality compensation, an adaptive color correction (“ACC”), a dynamic capacitance compensation (“DCC”), etc. to the first image data DATA 1 .
  • the timing controller 150 may provide the second image data DATA 2 corresponding to a display image that will be displayed on the display panel 110 to the defect detector 160 .
  • the timing controller 150 may provide the second image data DATA 2 corresponding to a defect detecting image to the defect detector 160 .
  • the defect detecting image may be a predetermined test image for detecting defects in the first display area 112 or the second display area 114 .
  • the defect detecting image may be a RGB image (i.e., a red image, a green image, and a blue image).
  • the defects of the first data driver 120 or the second data driver 130 may be detected using each of the defect detecting images.
  • the control signal CON may include a horizontal sync signal, a vertical sync signal, and a clock signal.
  • the timing controller 150 may generate the horizontal start signal based on the horizontal sync signal, and the first clock signal based on the clock signal.
  • the timing controller 150 may provide the horizontal start signal and the first clock signal to the first data driver 120 and the second data driver 130 as the first control signal CON 1 .
  • the timing controller 150 may generate the vertical start signal based on the vertical sync signal, and the second clock signal based on the clock signal.
  • the timing controller 150 may provide the vertical start signal and the second clock signal to the gate driver 140 as the second control signal CON 2 .
  • the defect detector 160 may provide the image data such that the image is displayed on the first display area 112 and the second display area 114 based on an enable signal EN.
  • the defect detector 160 may provide the second image data DATA 2 received from the timing controller 150 to the first data driver 120 and the second data driver 130 when the enable signal EN having a first level is provided to the defect detector 160 .
  • the defect detector 160 may provide a reference image data DATA_R corresponding to a reference image to the first data driver 120 and the second data driver 130 when the enable signal EN having a second level is provided to the defect detector 160 .
  • the first level may be a voltage lower than the second level.
  • defect detecting image data DATA_D corresponding to the defect detecting image may be provided to the defect detector 160 as the second image data DATA 2 from the timing controller 150 .
  • the defect detector 160 may provide image data such that the defect detecting image and the reference image are displayed alternately on the first display area 112 and the second display area 114 based on the enable signal EN and detect the defect of the first data driver 120 or the second data driver 130 based on the defect detecting image.
  • both the first data signal DS 1 provided from the first data driver 120 and the second data signal DS 2 provided from the second data driver 130 are provided through the data line DL of the display panel 110 and the defect occurs to one of the first data driver 120 and the second data driver 130 , it is difficult to detect existence of the defect because the data driver to which the defect doesn't occur still provide the data signal to the data line DL.
  • the display device 100 may detect the defects of the first data driver 120 and the second data driver respectively by alternately displaying the defect detecting image and the reference image on each of the first display area 112 that receives the first data signal DS 1 from the first data driver 120 and the second display area 114 that receives the second data signal DS 2 from the second data driver 130 .
  • the reference image may be an image that allows the defect to be easily detected on the defect detecting image.
  • the reference image may be a black color image.
  • the defect detecting image data DATA_D corresponding to the defect detecting image from the timing controller 150 may be provided to the defect detector 160 as the second image data DATA 2 . Further, the defect detector 160 may receive the enable signal EN form the timing controller 150 . The defect detector 160 may provide the defect detecting image data DATA_D or the reference image data DATA_R to the first data driver 120 or the second data driver 130 based on the enable signal EN. Specifically, the defect detector 160 may provide the defect detecting image data DATA_D to the first data driver 120 and provide the reference image data DATA_R to the second data driver 130 . In this case, the defect detecting image may be displayed on the first display area 112 and the reference image may be displayed on the second display area 114 .
  • the defect on the first display area 112 may be detected.
  • the defect detector 160 may provide the reference image data DATA_R to the first data driver 120 and provide the defect detecting image DATA_D to the second data driver 130 .
  • the reference image may be displayed on the first display area 112 and the defect detecting image may be displayed on the second display area 114 .
  • the defect on the second display area 114 may be detected.
  • the defect detector 160 coupled to the timing controller 150 is described in FIG. 1 , the defect detector 160 may be located in the timing controller 150 in another exemplary embodiment. Further, the enable signal EN provided from the timing controller 150 is described in FIG. 1 . However, the enable signal EN may be provided to the defect detector 160 from an external device in another exemplary embodiment.
  • the display device 110 of FIG. 1 may detect the defects of the first data driver 120 coupled to the first display area 112 and the second data driver 130 coupled to the second display area 114 respectively by the defect detector 160 that alternately display the defect detecting image and the reference image on the first display area 112 and the second display area 114 .
  • FIGS. 2A and 2B are diagrams illustrating an exemplary embodiment of a display device of FIG. 1
  • FIGS. 3A and 3B are diagrams illustrating exemplary embodiments of a source driving integrated circuit included in the display device of FIGS. 2A and 2B .
  • FIG. 2A is a diagram illustrating a front of the display device.
  • FIG. 2B is a diagram illustrating a back of the display device.
  • the display device 100 may include the display panel 110 , a first data driver 120 , a second data driver 130 , a gate driver 140 , a control driver 170 , and a connecting member 175 .
  • a plurality of data lines DL may be disposed on the display panel 110 .
  • the display panel 110 may include the first display area 112 and the second display area 114 .
  • the data lines DL of the first display area 112 may receive the data signal from upper side of the display panel 110 and the data lines DL of the second display area 114 may receive the data signal from lower side of the display panel 110 .
  • the first data driver 120 may include a plurality of first source driving integrated circuits 122 and first source connecting circuits 124 .
  • the first data driver 120 of FIGS. 2A and 2B may correspond to the first data driver 120 of FIG. 1 .
  • the first source driving integrated circuits 122 may be implemented as a package that an integrated circuit (“IC”) is mounted on the tape and be coupled to the display panel 110 .
  • Each of the first source driving integrated circuits 122 may be coupled to some of the data lines DL of the display panel 110 and may provide the data signal to the first display area 112 through the data lines DL.
  • the first source connecting circuits 124 may transfer the first control signal and the second image data provided from the timing controller or the defect detector to the first source driving integrated circuits 122 .
  • the first source connecting circuits 124 may be implemented as a printed circuit board (“PCB”).
  • the second data driver 130 may include a plurality of second source driving integrated circuits 132 and second source connecting circuits 134 .
  • the second data driver 130 of FIGS. 2A and 2B may correspond to the second data driver 130 of FIG. 1 .
  • the second source driving integrated circuit 132 may be implemented as a package that an IC is mounted on the tape and be coupled to the display panel 110 .
  • Each of the second source driving integrated circuits 132 may be coupled to some of the data lines DL of the display panel 110 and may provide the data signals to the second display area 114 through the data lines DL.
  • the second source connecting circuits 134 may transfer the first control signal and the second image data provided from the timing controller or the defect detector to the second source driving integrated circuits 132 .
  • the second source connecting circuits 134 may be implemented as the PCB.
  • each of the first source driving integrated circuit 122 and the second source driving integrated circuit 132 may include a plurality of channels CH. Each of the channels CH may output the data signal to the data line DL.
  • the first source driving integrated circuit 122 may provide the data signal to the first display area 112 through the data line DL and the second source driving integrated circuit 132 may provide the data signal to the second display area 114 through the data line DL when the first source driving integrated circuit 122 and the second source driving integrated circuit 132 are normally driven as described in FIG. 3A .
  • the second source driving integrated circuit 132 may provide the data signal to the first display area 112 when one of the channels CH in the first source driving integrated circuit 122 is abnormally driven (i.e., the defect occurs) as described in FIG. 3B .
  • load of the second source driving integrated circuit 132 may increase, and problems such as lifetime reduction and heat of the second source driving integrated circuit 132 may occur.
  • the first source driving integrated circuit 122 may provide the data signal to the second display area when one of the channels CH in the second source driving integrated circuit 132 is abnormally driven (i.e., the defect occurs). In this case, load of the first source driving integrated circuit 122 may increase, and the problems such as the lifetime reduction and the heat of the first source driving integrated circuit 122 may occur.
  • the gate driver 140 may be implemented as the tape carrier package and be coupled to the display panel 110 .
  • the gate driver 140 may be mounted on the display panel 110 .
  • the control driver 170 may be disposed on the back of the display device 100 .
  • the control driver 170 may include the timing controller 150 and the defect detector 160 of FIG. 1 .
  • the timing controller 150 and the defect detector 160 are implemented as chips mounted on the PCB.
  • the control driver 170 may be coupled to the first data driver 120 and the second data driver 130 through the connecting member 175 .
  • the connecting member 175 may be implemented as a flexible circuit film.
  • FIG. 4 is a block diagram illustrating an exemplary embodiment of a defect detector included in the display device of FIG. 1 .
  • the defect detector 160 may include a first defect detector 162 and a second defect detector 164 .
  • the first defect detector 162 may provide the defect detecting image data DATA_D corresponding to the defect detecting image or the reference image data DATA_R corresponding to the reference image to the first data driver 120 based on the first enable signal EN 1 .
  • the first defect detector 162 may receive the first enable signal EN 1 and the second image data DATA 2 from the timing controller 150 .
  • the second image data DATA 2 may be the defect detecting data DATA_D in the defect detecting mode.
  • the first defect detector 162 may provide the defect detecting image data DATA_D to the first data driver 120 when the first enable signal EN 1 having the first level is provided to the first defect detector 162 . In this case, the defect detecting image may be displayed on the first display area 112 .
  • the first defect detector 162 may provide the reference image data DATA_R to the first data driver 120 when the first enable signal EN 1 having the second level is provided to the first defect detector 162 . In this case, the reference image may be displayed on the first display area 112 .
  • the second defect detector 164 may provide the defect detecting image data DATA_D corresponding to the defect detecting image or the reference image data DATA_R corresponding to the reference image to the second data driver 130 based on the second enable signal EN 2 .
  • the second defect detector 164 may receive the second enable signal EN 2 and the second image data DATA 2 from the timing controller 150 .
  • the second image data DATA 2 may be the defect detecting data DATA_D in the defect detecting mode.
  • the second defect detector 164 may provide the defect detecting image data DATA_D to the second data driver 130 when the second enable signal EN 2 having the first level is provided to the second defect detector 164 .
  • the defect detecting image may be displayed on the second display area 114 .
  • the second defect detector 164 may provide the reference image data DATA_R to the second data driver 130 when the second enable signal EN 2 having the second level is provided to the second defect detector 164 .
  • the reference image may be displayed on the second display area 114 .
  • the first enable signal EN 1 having the first level may be provided to the first defect detector 162 and the second enable signal EN 2 having the second level may be provided to the second defect detector 164 in the defect detecting mode of the first display area 112 .
  • the first enable signal EN 1 having the second level may be provided to the first defect detector 162 and the second enable signal EN 2 having the first level may be provided to the second defect detector 164 in the defect detecting mode of the second display area 114 .
  • FIG. 5A is a diagram illustrating an exemplary embodiment of the defect detector of FIG. 4
  • FIG. 5B is a diagram illustrating another exemplary embodiment of the defect detector of FIG. 4
  • FIG. 5C is a table for describing an operation of the defect detector of FIG. 4 .
  • the defect detecting image data provided to the defect detector from the timing controller may be a differential signal that includes a positive signal and a negative signal since the display device uses a differential interface such as mini-LVDS, RSDS, AiPi, USI-T, etc. in a signal process between the timing controller and the data driver.
  • the timing controller 200 may provide the differential signal that includes the positive signal S_P and the negative signal N_P to a circuit unit 250 .
  • the circuit unit 250 of FIG. 5A may correspond to the first defect detector 162 or the second defect detector 164 of FIG. 4 .
  • the circuit unit 250 may include a first AND gate 252 , a second AND gate 254 , and a NOT gate 255 .
  • the first AND gate 252 may perform a logical conjunction of the positive signal S_P and the enable signal EN.
  • the second AND gate 254 may perform the logical conjunction of the negative signal S_N and the enable signal EN.
  • the NOT gate 255 may inverse an output signal of the second AND gate 254 . Referring to FIG.
  • the circuit unit 250 may output the positive signal S_P and the negative signal S_N provided from the timing controller 200 as a positive output signal Out_P and a negative output signal Out_N, respectively, when the enable signal EN having the first level is provided to the circuit unit 250 .
  • the positive output signal Out_P and the negative output signal Out_N may be provided to the data driver.
  • the defect detecting image may be displayed on the display panel.
  • the defect detecting image may be a predetermined test image for detecting the defect of the data driver.
  • the defect detecting image may be a white color image.
  • the circuit unit 250 may output the positive signal S_P provided from the timing controller 200 as the positive output signal Out_P having the second level and output the negative signal S_N provided from the timing controller 200 as the negative output signal Out_N having the first level when the enable signal EN having the second level is provided to the circuit unit 250 .
  • the positive output signal Out_P having the second level and the negative signal S_N having the first level may be provided to the data driver.
  • the display may display a black color image on the display panel.
  • the black color image may be the reference image that allows the defect on the defect detecting image to be easily detected by contrasting color difference from the color of the defect detecting image, for example.
  • a timing controller 300 may provide the differential signal that includes the positive signal S_P and the negative signal S_N to the circuit unit 350 .
  • the circuit unit 350 of FIG. 5B may correspond to the first defect detector or the second defect detector of FIG. 4 .
  • the circuit unit 350 may include a first multiplexer 352 and the second multiplexer 354 .
  • the first multiplexer 352 may output one of the positive signal and a first voltage Vss based on the enable signal EN.
  • the first voltage Vss may be the voltage having the second level.
  • the second multiplexer 354 may output one of the negative signal S_N and a second voltage Vdd based on the enable signal EN.
  • the second voltage Vdd may be the voltage having the first level.
  • the circuit unit 350 may output the positive signal S_P and the negative signal S_N provided from the timing controller 300 as the positive output signal Out_P and the negative output signal Out_N, respectively, when the enable signal EN having the first level is provided to the circuit unit 350 . That is, the first multiplexer 352 may output the positive signal S_P as the positive output signal Out_P among the positive signal S_P and the first voltage Vss, and the second multiplexer 354 may output the negative signal S_N as the negative output signal Out-N among the negative signal S_N and the second voltage Vdd when the enable signal having the first level is provided to the circuit unit 350 .
  • the positive output signal Out_P and the negative output signal Out_N may be provided to the data driver.
  • the defect detecting image may be displayed on the display panel.
  • the defect detecting image may be a predetermined test image for detecting the defect of the data driver.
  • the defect detecting image may be a white color image.
  • the circuit unit 350 may output the positive output signal Out_P having the second level and the negative output signal Out_N having the first level when the enable signal EN having the second level is provided to the circuit unit 350 . That is, the first multiplexer 352 may output the first voltage Vss having the second level among the positive signal S_P and the first voltage Vss, and the second multiplexer 354 may output the second voltage Vdd having the first level among the negative signal S_N and the second voltage Vdd.
  • the positive output signal Out_P having the second level and the negative output signal Out_N having the first level may be provided to the data driver.
  • the display may display the black color image on the display panel.
  • the black color image may be the reference image that allows the defect on the defect detecting image to be easily detected.
  • FIG. 6 is a block diagram illustrating an exemplary embodiment of an electronic device that includes the display device of FIG. 1
  • FIG. 7 is a diagram illustrating an exemplary embodiment in which the electronic device of FIG. 6 is implemented as a smart phone.
  • an electronic device 400 may include a processor 410 , a memory device 420 , a storage device 430 , an input/output (“I/O”) device 440 , a power device 450 , and a display device 460 .
  • the display device 460 may correspond to the display device 100 of FIG. 1 .
  • the electronic device 400 may further include a plurality of ports for communicating a video card, a sound card, a memory card, a universal serial bus (“USB”) device, other electronic device, etc.
  • USB universal serial bus
  • the processor 410 may perform various computing functions.
  • the processor 410 may be a micro processor, a central processing unit (“CPU”), etc.
  • the processor 410 may be coupled to other components via an address bus, a control bus, a data bus, etc. Further, the processor 410 may be coupled to an extended bus such as surrounded component interconnect (“PCI”) bus.
  • the memory device 420 may store data for operations of the electronic device 400 .
  • the memory device 420 may include at least one non-volatile memory device such as an erasable programmable read-only memory (“EPROM”) device, an electrically erasable programmable read-only memory (“EEPROM”) device, a flash memory device, a phase change random access memory (“PRAM”) device, a resistance random access memory (“RRAM”) device, a nano floating gate memory (“NFGM”) device, a polymer random access memory (PoRAM) device, a magnetic random access memory (“MRAM”) device, a ferroelectric random access memory (“FRAM”) device, etc, and/or at least one volatile memory device such as a dynamic random access memory (“DRAM”) device, a static random access memory (“SRAM”) device, a mobile DRAM device, etc.
  • the storage device 430 may be a solid stage drive (“SSD”) device, a hard disk drive (“HDD”) device, a CD-ROM device, etc.
  • the I/O device 440 may be an input device such as a keyboard, a keypad, a touchpad, a touch-screen, a mouse, etc, and an output device such as a printer, a speaker, etc.
  • the display device 460 may be included in the I/O device 440 .
  • the power device 450 may provide a power for operations of the electronic device 400 .
  • the display device 460 may communicate with other components via the buses or other communication links.
  • the display device 460 may include a display panel, a first data driver, a second data driver, a gate driver, a timing controller, and a defect detector.
  • the display panel may include data lines, gate lines, and a plurality of pixels.
  • the display panel may include a first display area and a second display area.
  • a first data signal from the first data driver may be provided to the first display area through the data line.
  • a second data signal from the second data driver may be provided to the second display area through the data line.
  • the first data driver may provide the first data signal through the data lines in the first display area.
  • the second data driver may provide the second data signal through the data line in the second display area.
  • the first data driver and the second data driver may be directly mounted on the display panel or be coupled to the display panel as a TCP.
  • the gate driver may provide a gate signal to the display panel through the gate lines.
  • the timing controller may generate control signals that control the first data driver, the second data driver, and the gate driver.
  • the timing controller may receive a first image data and an input control signal from an external device.
  • the timing controller may provide the second image data to the defect detector.
  • the timing controller may provide the second image data corresponding to the defect detecting image that will be displayed on the display panel in a defect detecting mode of the display device.
  • the defect detecting image may be predetermined to detect the defect on the first display area or the second display area.
  • the defect detector may display an image on the first display area and the second display area based on an enable signal.
  • the defect detector may alternatively display the defect detecting image and a reference image on the first display area and the second display area based on the enable signal and detect the defect of each of the first data driver and the second data driver based on the defect detecting image.
  • the electronic device 400 of FIG. 6 may respectively detect the defect of the first data driver coupled to the first display area and the second data driver coupled to the second display area by the display device 460 that alternately display the defect detecting image and the reference image on the first display area and the second display area.
  • FIG. 8 is a flowchart illustrating an exemplary embodiment of a method of detecting defect of a display device according to the invention.
  • FIGS. 9 and 10 are flowcharts illustrating an exemplary embodiment of a method of displaying a defect detecting image included in the method of detecting defect of the display device of FIG. 8 .
  • FIGS. 11A and 11B are diagrams for describing the method of detecting defect of the display device of FIG. 8 .
  • a method of detecting defect of a display device may include displaying a defect detecting image on a first display area and a reference image on a second display area (S 100 ), detecting a defect on the first data driver (S 200 ), displaying the reference image on the first display area and the defect detecting image on the second display area (S 300 ), and detecting a defect on the second data driver (S 400 ).
  • the method of detecting defect of the display device may display the defect detecting image on the first display area and display the reference image on the second display area (S 100 ).
  • displaying the defect detecting image on the first display area and the reference image on the second display area (S 100 ) may include providing a first enable signal having a first level to a first defect detector (S 120 ) and providing a second enable signal having a second level to a second defect detector (S 140 ).
  • a first data driver 650 may include first source driving integrated circuits 652 and first source connecting circuits 654 .
  • the first defect detector (not illustrated) may be coupled to the first data driver 650 including the first source driving integrated circuits 652 and the first source connecting circuits 654 that provides the data signal.
  • the defect detecting image data provided from the timing controller may be provided to the first data driver 650 when the first enable signal having the first level is provided to the first defect detector.
  • the defect detecting image for detecting the defect may be displayed on the first display area 620 of the display panel 600 .
  • the defect detecting image may be an image for detecting the defect of the first source driving integrated circuit 652 .
  • the defect detecting image may be a white color image, a red color image, a green color image, a blue color image, etc.
  • the second data driver 660 may include second source driving integrated circuit 662 and second source connecting circuits 664 .
  • the second defect detector (not illustrated) may be coupled to the second data driver 660 including the second source driving integrated circuit 662 and the second source connecting circuits 664 that provides the data signal.
  • the reference image data may be provided to the second data driver 660 when the second enable signal having the second level is provided to the second defect detector.
  • the second defect detector may convert the defect detecting image data provided from the timing controller to the reference image data.
  • the second defect detector may store the reference image data.
  • the reference image that allows the defect of the first display area 620 to be easily detected may be displayed on the second display area 640 of the display panel 600 .
  • the reference image may be the black color image.
  • the method of detecting defect of the display device may detect the defect of the first data driver (S 200 ).
  • the defect detecting image may be displayed on the first display area and the reference image may be displayed on the second display area.
  • An inspector or a user may detect the defect on the first display area and may detect at least one of the source driving integrated circuits on which the defect occurs.
  • the method of detecting defect of the display device may display the reference image on the first display area and the defect detecting image on the second display area (S 300 ).
  • displaying the reference image on the first display area and the defect detecting image on second display area (S 300 ) may include providing the first enable signal having the second level to the first defect detector (S 320 ), and providing the second enable signal having the first level to the second defect detector (S 340 ).
  • the first defect detector may be coupled to the first data driver 650 including the first source driving integrated circuits 652 and the first source connecting circuits 654 , that provides the data signal.
  • the reference image data may be provided to the data driver 650 when the first enable signal having the second level is provided to the first defect detector.
  • the second defect detector may convert the defect detecting image data provided from the timing controller to the reference image data.
  • the second defect detector may store the reference image data.
  • the reference image that allows the defect of the second display area 640 to be easily detected may be displayed on the first display area 620 of the display panel 600 .
  • the reference image may be the black color image.
  • the second defect detector may be coupled to the second data driver 660 including the second source driving integrated circuits 662 and the second source connecting circuits 664 , that provides the data signal.
  • the defect detecting image data provided from the timing controller may be provided to the second data driver 660 when the second enable signal having the first level is provided to the second defect detector.
  • the defect detecting image for detecting the defect may be displayed on the second display area 640 of the display panel 600 .
  • the defect detecting image may be an image for detecting the defect of the second source driving integrated circuit 662 .
  • the defect detecting image may be a white color image, a red color image, a green color image, a blue color image, etc.
  • the method of detecting defect of the display device may detect the defect of the second data driver (S 400 ).
  • the reference image may be displayed on the first display area and the defect detecting image may be displayed on the second display area.
  • An inspector or a user may detect the defect of the second display area and may detect at least one of the second source driving integrated circuits on which the defect occurs.
  • the method of detecting adefect of the display device may detect a defect of the first data driver coupled to the first display area and the second data driver coupled to the second display area respectively by alternately displaying the defect detecting image and the reference image on the first display area and the second display area.
  • FIG. 12 is a block diagram illustrating another exemplary embodiment of a display device according to the invention.
  • a display device 700 may include a display panel 710 , a first data driver 720 , a second data driver 730 , a gate driver 740 , a timing controller 750 , and a defect detector.
  • the display panel 710 may include a first display area 712 and a second display area 714 .
  • the first data driver 720 may provide a first data signal DS 1 to the first display area 712 through data lines DL of the display panel 710 .
  • the second data driver 730 may provide a second data signal DS 2 to the second display area 714 through the data lines DL of the display panel 710 .
  • the gate driver 740 may provide gate signal GS to the first display area 712 and the second display area 714 through gate lines of the display panel 710 .
  • the timing controller 750 may generate control signals CON 1 and CON 2 that control the first data driver 720 , the second data driver 730 , and the gate driver 740 .
  • the timing controller 750 may receive a first image data DATA 1 from an external device and provide a second image data DATA 2 that is substantially the same as the first image data DATA 1 or that is generated by compensating the first image data DATA 1 to the defect detector.
  • the timing controller 750 may provide a defect detecting image data DATA_D corresponding to the defect detecting image to the defect detector as the second image data DATA 2 in a defect detecting mode.
  • the defect detector may include a first defect detector 760 and a second defect detector 770 .
  • the first defect detector 760 may provide the defect detecting image data DATA_D or a reference image data DATA_R to the first data driver 720 that provides the data signal to the first display area 712 .
  • the first defect detector 760 may provide the defect detecting image data DATA_D or the reference image data DATA_R to the first data driver 720 based on a first enable signal EN 1 provided from the timing controller 750 .
  • the first defect detector 760 may provide the defect detecting image data DATA_D to the first data driver 720 coupled to the first display area 712 when the first enable signal EN having a first level is provided to the first defect detector 760 .
  • the first defect detector 760 may provide reference image data DATA_R to the first data driver 720 coupled to the first display area 712 when the first enable signal EN having a second level is provided to the first defect detector 760 .
  • the first defect detector 760 may generate the reference image data DATA_R by converting the defect detecting image data DATA_D provided from the timing controller 750 when the first enable signal EN 1 having the second level is provided to the first defect detector 760 .
  • the first defect detector 760 may store the reference image data DATA_R.
  • the second defect detector 770 may provide the defect detecting image data DATA_D or the reference image data DATA_R to the second data driver 730 that provides the data signal to the second display area 714 .
  • the second defect detector 770 may provide the defect detecting image data DATA_D or the reference data DATA_R to the second data driver 730 based on a second enable signal EN 2 provided from the timing controller 750 .
  • the second defect detector 770 may provide the defect detecting image data DATA_D to the second data driver 730 coupled to the second display area 714 when the second enable signal EN 2 having the first level is provided to the second defect detector 770 .
  • the second defect detector 770 may provide the reference image data DATA_R to the second data driver 730 coupled to the second display area 714 when the second enable signal EN 2 having the second level is provided to the second defect detector 770 .
  • the second defect detector 770 may generate the reference image data DATA_R by converting the defect detecting image data DATA_D provided from the timing controller 750 when the second enable signal EN 2 having the second level is provided to the second defect detector 770 .
  • the second defect detector 770 may store the reference image data DATA_R.
  • the timing controller 750 may provide the first enable signal EN 1 having the first level to the first defect detector 760 and the second enable signal EN 2 having the second level to the second defect detector 770 .
  • the first defect detector 760 may provide the defect detecting image data DATA_D to the first data driver 720 and the second defect detector 770 may provide the reference image data DATA_R to the second data driver 730 .
  • the defect detecting image may be displayed on the first display area 712 and the reference image may be displayed on the second display area 714 .
  • the defect detecting image may be predetermined for detecting the defect on the first display area 712
  • the reference image may be predetermined for easily detecting the defect on the first display area 712 .
  • the defect detecting image may be one of a white color image, a red color image, a green color image, and a blue color image
  • the reference image may be a black color image.
  • the timing controller 750 may provide the first enable signal EN 1 having the second level to the first defect detector 760 and the second enable signal EN 2 having the first level to the second defect detector 770 .
  • the first defect detector 760 may provide the reference image data DATA_R to the first data driver 720
  • the second defect detector 770 may provide the defect detecting image data DATA_D to the second data driver 730 .
  • the reference image may be displayed on the first display area 712 and the defect detecting image may be displayed on the second display area 714 . Therefore, the defect on the second display 714 and the defect of the second data driver 730 may be detected.
  • the display device 700 may detect defects of the first data driver 720 coupled to the first display area 712 and the second data driver 740 coupled to the second display area 714 respectively by including a first defect detector 760 and the second defect detector 770 that control to display the defect detecting image and the reference image alternately on the first display area 712 and the second display area 714 of the display panel 710 .
  • the inventive concept may be applied to a display device and an electronic device having the display device.
  • the inventive concept may be applied to a computer monitor, a laptop, a digital camera, a cellular phone, a smart phone, a smart pad, a television, a personal digital assistant (“PDA”), a portable multimedia player (“PMP”), a MP3 player, a navigation system, a game console, a video phone, etc.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • MP3 player MP3 player

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A display device includes a display panel divided into a first display area and a second display area in a first direction, a first data driver which provides a first data signal to the first display area through data lines arranged in a second direction crossing the first direction, a second data driver which provides a second data signal to the second display area through the data lines arranged in the second direction, a gate driver which provides a gate signal to the display panel through gate lines arranged in the first direction, a timing controller which generates control signals that control the first data driver, the second data driver, and the gate driver, and a defect detector which controls to display a defect detecting image and a reference image on the first display area and the second display area alternately based on an enable signal.

Description

This application claims priority to Korean Patent Application No. 10-2017-0154323, filed on Nov. 17, 2017, and all the benefits accruing therefrom under 35 U.S.C. § 119, the content of which in its entirety is herein incorporated by reference.
BACKGROUND 1. Technical Field
Exemplary embodiments relate generally to a display device. More particularly, exemplary embodiments of the inventive concept relate to a display device and a method of detecting defect of the same.
2. Description of the Related Art
A liquid crystal display panel of a liquid crystal display device includes a lower substrate, an upper substrate, and a liquid crystal layer interposed between the lower substrate and the upper substrate.
The lower substrate includes a first base substrate, a gate and a data line disposed on the first based substrate, a switching element electrically coupled to the gate line and the data line, and a pixel electrode electrically coupled to the switching element.
The upper substrate includes a second base substrate facing the first substrate, a color filter disposed on the second base substrate, and a common electrode formed on the color filter.
The liquid crystal layer includes a liquid crystal of which an arrangement is changed according to an electric field due to a pixel voltage applied to the pixel electrode and a common voltage applied to the common electrode.
Recently, a dual driving method that provides data signals from both ends of data line as a size of the liquid crystal display device increases.
SUMMARY
Some exemplary embodiments provide a display device capable of detecting defect of a data driver.
Some exemplary embodiments provide a method of detecting a defect of the display device capable of detecting defect of a data driver.
According to an aspect of exemplary embodiments, a display device includes a display panel divided into a first display area and a second display area in a first direction, a first data driver which provides a first data signal to the first display area through data lines arranged in a second direction crossing the first direction, a second data driver which provides a second data signal to the second display area through the data lines arranged in the second direction, a gate driver which provides a gate signal to the display panel through gate lines arranged in the first direction, a timing controller which generates control signals that control the first data driver, the second data driver, and the gate driver, and a defect detector which controls to display a defect detecting image and a reference image on the first display area and the second display area alternately based on an enable signal.
In some exemplary embodiments, the timing controller may provide defect detecting image data corresponding to the defect detecting image to the defect detector, and the defect detector may provide the defect detecting image data or reference image data corresponding to the reference image to the first data driver or the second data driver based on the enable signal.
In some exemplary embodiments, the defect detector may include a first defect detector which provides defect detecting image data corresponding to the defect detecting image or reference image data corresponding to the reference image to the first data driver based on a first enable signal, and a second defect detector which provides the defect image data or the reference image data to the second data driver based on a second enable signal.
In some exemplary embodiments, the first defect detector may control to display the defect detecting image on the first display area for detecting the defect of the first data driver, and the second defect detector may control to display the defect detecting image on the second display area for detecting the defect of the second data driver.
In some exemplary embodiments, the first defect detector may provide the defect detecting image data to the first data driver when the first enable signal having a first level is provided, and provide the reference image data to the first data driver when the first enable signal having a second level is provided.
In some exemplary embodiments, the second defect detector may provide the defect detecting image data to the second data driver when the second enable signal having a first level is provided, and may provide the reference image data to the second data driver when the second enable signal having a second level is provided.
In some exemplary embodiments, the defect detecting image may be displayed on the first display area when the first enable signal having a first level is provided to the first defect detector, and the reference image may be displayed on the first display area when the first enable signal having a second level is provided to the first defect detector.
In some exemplary embodiments, the defect detecting image may be displayed on the second display area when the second enable signal having a first level is provided to the second defect detector, and the reference image may be displayed on the second display area when the second enable signal having a second level is provided to the second defect detector.
In some exemplary embodiments, the first enable signal having a first level may be provided to the first defect detector and the second enable signal having a second level may be provided to the second defect detector in order to detect the defect of the first data driver.
In some exemplary embodiments, the first enable signal having a second level may be provided to the first defect detector and the second enable signal having a first level may be provided to the second defect detector in order to detect the defect of the second data driver.
In some exemplary embodiments, the defect detecting image data may be a differential signal that includes a positive signal and a negative signal.
In some exemplary embodiments, each of the first defect detector and the second defect detector may include a first AND gate which performs a logical conjunction of the positive signal and a corresponding enable signal of the first and second enable signals, a second AND gate which performs a logical conjunction of the negative signal and the corresponding enable signal of the first and second enable signals, and a NOT gate which inverses an output of the second AND gate.
In exemplary embodiments, each of the first defect detector and the second defect detector may include a first multiplexer which outputs one of the positive signal and a first voltage based on a corresponding enable signal of the first and second enable signals and a second multiplexer which outputs one of the negative signal and a second voltage.
In exemplary embodiments, the reference image may be a black color image.
According to an aspect of exemplary embodiments, a method of detecting defect of a display device includes displaying a defect detecting image on a first display area of a display panel and a reference image on a second display area of the display panel, wherein the display panel is divided into the first display area and the second display area in a first direction, detecting a defect of a first data driver coupled to the first display area, displaying the reference image on the first display area and the defect detecting image on the second display area, and detecting a defect of a second data driver coupled to the second display area.
In some exemplary embodiments, displaying the defect detecting image on the first display area and the reference image on the second display area may include providing a first enable signal having a first level to a first defect detector coupled to the first data driver that provides a data signal to the first display area, and providing a second enable signal having a second level to a second defect detector coupled to the second data driver that provides a data signal to the second display area.
In some exemplary embodiments, displaying the reference image on the first display area and the defect detecting image on the second display area may include providing a first enable signal having a second level to a first defect detector coupled to the first data driver that provides a data signal to the first display area and providing a second enable signal having a first level to a second defect detector coupled to the second data driver that provides a data signal to the second display area.
According to an aspect of exemplary embodiments, a display device includes a display panel which includes a first display area and a second display area, and a defect detector which controls to display a defect detecting image or a reference image on the first display area based on a first enable signal and display a defect detecting image or a reference image on the second display area based on a second enable signal. The reference image is displayed on the second display area when the defect detecting image is displayed on the first display area, and the defect detecting image may be displayed on the second display area when the reference image is displayed on the first display area.
In some exemplary embodiments, the defect detector may include a first defect detector which provides defect detecting image data corresponding to the defect detecting image or reference image data corresponding to the reference image to a first data driver that provides a data signal to the first display area, and a second defect detector which provides the defect detecting image data or the reference image data to a second data driver that provides a data signal to the second display area.
In some exemplary embodiments, the first defect detector may provide the defect detecting image data to the first data driver when the first enable signal having a first level is provided and provide the reference image data to the first data driver when the first enable signal having a second level is provided, and the second defect detector may provide the defect detecting image data to the second data driver when the second enable signal having the first level is provided and provide the reference image data to the second data driver when the second enable signal having the second level is provided.
Therefore, a display device and a method of detecting defect of the same may detect defects of the first data driver coupled to the first display area and the second data driver coupled to the second display area respectively by alternately displaying the defect detecting image and the reference image on the first display area and the second display area of the display panel.
BRIEF DESCRIPTION OF THE DRAWINGS
Illustrative, non-limiting exemplary embodiments will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings. It will be understood that, although the terms “first,” “second,” “third” etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, “a first element,” “component,” “region,” “layer” or “section” discussed below could be termed a second element, component, region, layer or section without departing from the teachings herein. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms, including “at least one,” unless the content clearly indicates otherwise. “At least one” is not to be construed as limiting “a” or “an.” “Or” means “and/or.” As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
FIG. 1 is a block diagram illustrating an exemplary embodiment of a display device according to the invention.
FIGS. 2A and 2B are diagrams illustrating an exemplary embodiment of a display device of FIG. 1.
FIGS. 3A and 3B are diagrams illustrating exemplary embodiments of a source driving integrated circuit included in the display device of FIGS. 2A and 2B.
FIG. 4 is a block diagram illustrating an exemplary embodiment of a defect detector included in the display device of FIG. 1.
FIG. 5A is a diagram illustrating an exemplary embodiment of the defect detector of FIG. 4.
FIG. 5B is a diagram illustrating another exemplary embodiment of the defect detector of FIG. 4.
FIG. 5C is a table for describing an operation of the defect detector of FIG. 4.
FIG. 6 is a block diagram illustrating an electronic device that includes the display device of FIG. 1.
FIG. 7 is a diagram illustrating an exemplary embodiment in which the electronic device of FIG. 6 is implemented as a smart phone.
FIG. 8 is a flowchart illustrating an exemplary embodiment of a method of detecting defect of a display device according to the invention.
FIGS. 9 and 10 are flowcharts illustrating an exemplary embodiment of a method of displaying a defect detecting image included in the method of detecting defect of the display device of FIG. 8.
FIGS. 11A and 11B are diagrams for describing the method of detecting defect of the display device of FIG. 8.
FIG. 12 is a block diagram illustrating another exemplary embodiment of a display device according to the invention.
DETAILED DESCRIPTION
Hereinafter, the inventive concept will be explained in detail with reference to the accompanying drawings.
FIG. 1 is a block diagram illustrating an exemplary embodiment of a display device according to the invention.
Referring to FIG. 1, a display device 100 may include a display panel 110, a first data driver 120, a second data driver 130, a gate driver 140, a timing controller 150, and a defect detector 160.
The display panel 110 may include data lines DL, gate lines GL, and a plurality of pixels. The gate lines GL may extend in a first direction D1 and be arranged in a second direction D2 substantially perpendicular to the first direction D1. The data lines DL may extend to the second direction D2 and be arranged in the first direction D1. The first direction D1 may be parallel with a long side of the display panel 110, and the second direction D2 may be parallel with a short side of the display panel 110. Each of the pixels may be arranged in an intersection region of the data line DL and the gate line GL. Each of the pixels may include a thin film transistor electrically coupled to one of the gate lines GL and one of the data lines DL, a liquid crystal capacitor and a storage capacitor coupled to the thin film transistor. Thus, the display panel 110 may be a liquid crystal panel, and the display device 100 may be a liquid crystal display device.
A dual driving method that includes first and second data drivers 120 and 130 in both ends (up and down, or left side and right side) of the display panel 110 provides a data signal to both ends of the data line DL in order to obtain a charging rate of the pixel.
The display panel 110 of the display device 100 according to exemplary embodiments may include a first display area 112 and a second display area 114. The display panel 110 may be divided into the first display area 112 and the second display area 114 in the first direction D1. That is the display panel 110 may be divided into the first display area 112 and the second display area 114 by a line therebetween extending in the first direction D1 as shown in FIG. 1. A first data signal DS1 from the first data driver 120 may be provided to the first display area 112 through the data lines DL. A second data signal DS2 from the second data driver 130 may be provided to the second display area 114 through the data lines DL. Here, the data lines DL in the first area 112 and the data lines DL in the second display area 114 may be coupled.
The first data driver 120 may provide the first data signal DS1 to the first display area 112 through the data lines DL arranged in the second direction D2. The first data driver 120 may receive a first control signal CON1 from the timing controller 150. In an exemplary embodiment, for example, the first control signal CON1 may include a horizontal start signal and a first clock signal. The first data driver 120 may convert the image data provided from the defect detector 160 to the first data signals DS1 that are analog signals. The first data driver 120 may output the first data signals DS1 to the data lines DL.
The second data driver 130 may provide the second data signal DS2 to the second display area 114 through the data lines DL arranged in the second direction D2. The second data driver 130 may receive the first control signal CON1 from the timing controller 150. In an exemplary embodiment, for example, the first control signal CON1 may include the horizontal start signal and the first clock signal. The second data driver 130 may convert the image data provided from the defect detector 160 to the second data signals DS2 that are the analog signals. The second data driver 130 may output the second data signals DS2 to the data lines DL.
The first data driver 120 and the second data driver 130 may be directly mounted on the display panel 110 or coupled to the display panel 110 by being implemented as a tape carrier package (“TCP”).
The gate driver 140 may provide gate signals GS to the display panel 110 through the gate lines GL arranged in the first direction D1. The gate driver 140 may receive a second control signal CON2 from the timing controller 150. In an exemplary embodiment, for example, the second control signal CON2 may include a vertical start signal and a second clock signal. The gate driver 140 may generate the gate signals GS in order to drive the pixels based on the second control signal CON2. The gate driver 140 may output the gate signals GS to the gate lines GL.
The gate driver 140 may be directly mounted on the display panel 110 or coupled to the display panel 110 by being implemented as the TCP. Alternatively, the gate driver 140 may be directly integrated on a peripheral area of the display panel 110.
The timing controller 150 may generate the first control signal CON1 and the second control signal CON2 that control the first data driver 120, the second data driver 130, and the gate driver 140. The timing controller 150 may receive a first image data DATA1 and an input control signal CON from an external device. The first image data DATA1 may be RGB data (i.e., red data, green data, and blue data). The timing controller 150 may provide the second image data DATA2 to the defect detector 160. Here, the second image data DATA2 may be substantially the same with the first image data DATA1 or may be an image data compensated from the first image data DATA1. In an exemplary embodiment, for example, the timing controller 150 may generate the second image data DATA2 by selectively performing a display quality compensation, an adaptive color correction (“ACC”), a dynamic capacitance compensation (“DCC”), etc. to the first image data DATA1. The timing controller 150 may provide the second image data DATA2 corresponding to a display image that will be displayed on the display panel 110 to the defect detector 160. In a defect detecting mode, the timing controller 150 may provide the second image data DATA2 corresponding to a defect detecting image to the defect detector 160. Here, the defect detecting image may be a predetermined test image for detecting defects in the first display area 112 or the second display area 114. In an exemplary embodiment, for example, the defect detecting image may be a RGB image (i.e., a red image, a green image, and a blue image). The defects of the first data driver 120 or the second data driver 130 may be detected using each of the defect detecting images.
The control signal CON may include a horizontal sync signal, a vertical sync signal, and a clock signal. The timing controller 150 may generate the horizontal start signal based on the horizontal sync signal, and the first clock signal based on the clock signal. The timing controller 150 may provide the horizontal start signal and the first clock signal to the first data driver 120 and the second data driver 130 as the first control signal CON1. Further, the timing controller 150 may generate the vertical start signal based on the vertical sync signal, and the second clock signal based on the clock signal. The timing controller 150 may provide the vertical start signal and the second clock signal to the gate driver 140 as the second control signal CON2.
The defect detector 160 may provide the image data such that the image is displayed on the first display area 112 and the second display area 114 based on an enable signal EN. The defect detector 160 may provide the second image data DATA2 received from the timing controller 150 to the first data driver 120 and the second data driver 130 when the enable signal EN having a first level is provided to the defect detector 160. The defect detector 160 may provide a reference image data DATA_R corresponding to a reference image to the first data driver 120 and the second data driver 130 when the enable signal EN having a second level is provided to the defect detector 160. In an exemplary embodiment, for example, the first level may be a voltage lower than the second level. In the defect detecting mode, defect detecting image data DATA_D corresponding to the defect detecting image may be provided to the defect detector 160 as the second image data DATA2 from the timing controller 150.
The defect detector 160 may provide image data such that the defect detecting image and the reference image are displayed alternately on the first display area 112 and the second display area 114 based on the enable signal EN and detect the defect of the first data driver 120 or the second data driver 130 based on the defect detecting image. In the case that both the first data signal DS1 provided from the first data driver 120 and the second data signal DS2 provided from the second data driver 130 are provided through the data line DL of the display panel 110 and the defect occurs to one of the first data driver 120 and the second data driver 130, it is difficult to detect existence of the defect because the data driver to which the defect doesn't occur still provide the data signal to the data line DL. On the other hand, the display device 100 according to exemplary embodiments may detect the defects of the first data driver 120 and the second data driver respectively by alternately displaying the defect detecting image and the reference image on each of the first display area 112 that receives the first data signal DS1 from the first data driver 120 and the second display area 114 that receives the second data signal DS2 from the second data driver 130. Here, the reference image may be an image that allows the defect to be easily detected on the defect detecting image. In some exemplary embodiments, the reference image may be a black color image.
The defect detecting image data DATA_D corresponding to the defect detecting image from the timing controller 150 may be provided to the defect detector 160 as the second image data DATA2. Further, the defect detector 160 may receive the enable signal EN form the timing controller 150. The defect detector 160 may provide the defect detecting image data DATA_D or the reference image data DATA_R to the first data driver 120 or the second data driver 130 based on the enable signal EN. Specifically, the defect detector 160 may provide the defect detecting image data DATA_D to the first data driver 120 and provide the reference image data DATA_R to the second data driver 130. In this case, the defect detecting image may be displayed on the first display area 112 and the reference image may be displayed on the second display area 114. Thus, the defect on the first display area 112 may be detected. Further, the defect detector 160 may provide the reference image data DATA_R to the first data driver 120 and provide the defect detecting image DATA_D to the second data driver 130. In this case, the reference image may be displayed on the first display area 112 and the defect detecting image may be displayed on the second display area 114. Thus, the defect on the second display area 114 may be detected.
Although the defect detector 160 coupled to the timing controller 150 is described in FIG. 1, the defect detector 160 may be located in the timing controller 150 in another exemplary embodiment. Further, the enable signal EN provided from the timing controller 150 is described in FIG. 1. However, the enable signal EN may be provided to the defect detector 160 from an external device in another exemplary embodiment.
As described above, the display device 110 of FIG. 1 may detect the defects of the first data driver 120 coupled to the first display area 112 and the second data driver 130 coupled to the second display area 114 respectively by the defect detector 160 that alternately display the defect detecting image and the reference image on the first display area 112 and the second display area 114.
FIGS. 2A and 2B are diagrams illustrating an exemplary embodiment of a display device of FIG. 1, and FIGS. 3A and 3B are diagrams illustrating exemplary embodiments of a source driving integrated circuit included in the display device of FIGS. 2A and 2B.
FIG. 2A is a diagram illustrating a front of the display device. FIG. 2B is a diagram illustrating a back of the display device. Referring to FIGS. 2A and 2B, the display device 100 may include the display panel 110, a first data driver 120, a second data driver 130, a gate driver 140, a control driver 170, and a connecting member 175.
A plurality of data lines DL may be disposed on the display panel 110. The display panel 110 may include the first display area 112 and the second display area 114. The data lines DL of the first display area 112 may receive the data signal from upper side of the display panel 110 and the data lines DL of the second display area 114 may receive the data signal from lower side of the display panel 110.
The first data driver 120 may include a plurality of first source driving integrated circuits 122 and first source connecting circuits 124. The first data driver 120 of FIGS. 2A and 2B may correspond to the first data driver 120 of FIG. 1. The first source driving integrated circuits 122 may be implemented as a package that an integrated circuit (“IC”) is mounted on the tape and be coupled to the display panel 110. Each of the first source driving integrated circuits 122 may be coupled to some of the data lines DL of the display panel 110 and may provide the data signal to the first display area 112 through the data lines DL. The first source connecting circuits 124 may transfer the first control signal and the second image data provided from the timing controller or the defect detector to the first source driving integrated circuits 122. The first source connecting circuits 124 may be implemented as a printed circuit board (“PCB”).
The second data driver 130 may include a plurality of second source driving integrated circuits 132 and second source connecting circuits 134. The second data driver 130 of FIGS. 2A and 2B may correspond to the second data driver 130 of FIG. 1. The second source driving integrated circuit 132 may be implemented as a package that an IC is mounted on the tape and be coupled to the display panel 110. Each of the second source driving integrated circuits 132 may be coupled to some of the data lines DL of the display panel 110 and may provide the data signals to the second display area 114 through the data lines DL. The second source connecting circuits 134 may transfer the first control signal and the second image data provided from the timing controller or the defect detector to the second source driving integrated circuits 132. The second source connecting circuits 134 may be implemented as the PCB.
Referring to FIGS. 3A and 3B, each of the first source driving integrated circuit 122 and the second source driving integrated circuit 132 may include a plurality of channels CH. Each of the channels CH may output the data signal to the data line DL. The first source driving integrated circuit 122 may provide the data signal to the first display area 112 through the data line DL and the second source driving integrated circuit 132 may provide the data signal to the second display area 114 through the data line DL when the first source driving integrated circuit 122 and the second source driving integrated circuit 132 are normally driven as described in FIG. 3A.
The second source driving integrated circuit 132 may provide the data signal to the first display area 112 when one of the channels CH in the first source driving integrated circuit 122 is abnormally driven (i.e., the defect occurs) as described in FIG. 3B. In this case, load of the second source driving integrated circuit 132 may increase, and problems such as lifetime reduction and heat of the second source driving integrated circuit 132 may occur. The first source driving integrated circuit 122 may provide the data signal to the second display area when one of the channels CH in the second source driving integrated circuit 132 is abnormally driven (i.e., the defect occurs). In this case, load of the first source driving integrated circuit 122 may increase, and the problems such as the lifetime reduction and the heat of the first source driving integrated circuit 122 may occur.
The gate driver 140 may be implemented as the tape carrier package and be coupled to the display panel 110. Alternatively, the gate driver 140 may be mounted on the display panel 110.
The control driver 170 may be disposed on the back of the display device 100. The control driver 170 may include the timing controller 150 and the defect detector 160 of FIG. 1. In an exemplary embodiment, for example, the timing controller 150 and the defect detector 160 are implemented as chips mounted on the PCB.
The control driver 170 may be coupled to the first data driver 120 and the second data driver 130 through the connecting member 175. The connecting member 175 may be implemented as a flexible circuit film.
FIG. 4 is a block diagram illustrating an exemplary embodiment of a defect detector included in the display device of FIG. 1.
Referring to FIG. 4, the defect detector 160 may include a first defect detector 162 and a second defect detector 164.
The first defect detector 162 may provide the defect detecting image data DATA_D corresponding to the defect detecting image or the reference image data DATA_R corresponding to the reference image to the first data driver 120 based on the first enable signal EN1. The first defect detector 162 may receive the first enable signal EN1 and the second image data DATA2 from the timing controller 150. The second image data DATA2 may be the defect detecting data DATA_D in the defect detecting mode. The first defect detector 162 may provide the defect detecting image data DATA_D to the first data driver 120 when the first enable signal EN1 having the first level is provided to the first defect detector 162. In this case, the defect detecting image may be displayed on the first display area 112. The first defect detector 162 may provide the reference image data DATA_R to the first data driver 120 when the first enable signal EN1 having the second level is provided to the first defect detector 162. In this case, the reference image may be displayed on the first display area 112.
The second defect detector 164 may provide the defect detecting image data DATA_D corresponding to the defect detecting image or the reference image data DATA_R corresponding to the reference image to the second data driver 130 based on the second enable signal EN2. The second defect detector 164 may receive the second enable signal EN2 and the second image data DATA2 from the timing controller 150. The second image data DATA2 may be the defect detecting data DATA_D in the defect detecting mode. The second defect detector 164 may provide the defect detecting image data DATA_D to the second data driver 130 when the second enable signal EN2 having the first level is provided to the second defect detector 164. In this case, the defect detecting image may be displayed on the second display area 114. The second defect detector 164 may provide the reference image data DATA_R to the second data driver 130 when the second enable signal EN2 having the second level is provided to the second defect detector 164. In this case, the reference image may be displayed on the second display area 114.
The first enable signal EN1 having the first level may be provided to the first defect detector 162 and the second enable signal EN2 having the second level may be provided to the second defect detector 164 in the defect detecting mode of the first display area 112.
The first enable signal EN1 having the second level may be provided to the first defect detector 162 and the second enable signal EN2 having the first level may be provided to the second defect detector 164 in the defect detecting mode of the second display area 114.
FIG. 5A is a diagram illustrating an exemplary embodiment of the defect detector of FIG. 4, FIG. 5B is a diagram illustrating another exemplary embodiment of the defect detector of FIG. 4, and FIG. 5C is a table for describing an operation of the defect detector of FIG. 4.
The defect detecting image data provided to the defect detector from the timing controller may be a differential signal that includes a positive signal and a negative signal since the display device uses a differential interface such as mini-LVDS, RSDS, AiPi, USI-T, etc. in a signal process between the timing controller and the data driver.
Referring to FIG. 5A, the timing controller 200 may provide the differential signal that includes the positive signal S_P and the negative signal N_P to a circuit unit 250. The circuit unit 250 of FIG. 5A may correspond to the first defect detector 162 or the second defect detector 164 of FIG. 4. The circuit unit 250 may include a first AND gate 252, a second AND gate 254, and a NOT gate 255. The first AND gate 252 may perform a logical conjunction of the positive signal S_P and the enable signal EN. The second AND gate 254 may perform the logical conjunction of the negative signal S_N and the enable signal EN. The NOT gate 255 may inverse an output signal of the second AND gate 254. Referring to FIG. 5C, the circuit unit 250 may output the positive signal S_P and the negative signal S_N provided from the timing controller 200 as a positive output signal Out_P and a negative output signal Out_N, respectively, when the enable signal EN having the first level is provided to the circuit unit 250. The positive output signal Out_P and the negative output signal Out_N may be provided to the data driver. The defect detecting image may be displayed on the display panel. Here, the defect detecting image may be a predetermined test image for detecting the defect of the data driver. In an exemplary embodiment, for example, the defect detecting image may be a white color image. On the other hand, the circuit unit 250 may output the positive signal S_P provided from the timing controller 200 as the positive output signal Out_P having the second level and output the negative signal S_N provided from the timing controller 200 as the negative output signal Out_N having the first level when the enable signal EN having the second level is provided to the circuit unit 250. The positive output signal Out_P having the second level and the negative signal S_N having the first level may be provided to the data driver. In this case, the display may display a black color image on the display panel. Here, the black color image may be the reference image that allows the defect on the defect detecting image to be easily detected by contrasting color difference from the color of the defect detecting image, for example.
Referring to FIG. 5B, a timing controller 300 may provide the differential signal that includes the positive signal S_P and the negative signal S_N to the circuit unit 350. The circuit unit 350 of FIG. 5B may correspond to the first defect detector or the second defect detector of FIG. 4. The circuit unit 350 may include a first multiplexer 352 and the second multiplexer 354. The first multiplexer 352 may output one of the positive signal and a first voltage Vss based on the enable signal EN. Here, the first voltage Vss may be the voltage having the second level. The second multiplexer 354 may output one of the negative signal S_N and a second voltage Vdd based on the enable signal EN. Here, the second voltage Vdd may be the voltage having the first level. Referring to FIG. 5C, the circuit unit 350 may output the positive signal S_P and the negative signal S_N provided from the timing controller 300 as the positive output signal Out_P and the negative output signal Out_N, respectively, when the enable signal EN having the first level is provided to the circuit unit 350. That is, the first multiplexer 352 may output the positive signal S_P as the positive output signal Out_P among the positive signal S_P and the first voltage Vss, and the second multiplexer 354 may output the negative signal S_N as the negative output signal Out-N among the negative signal S_N and the second voltage Vdd when the enable signal having the first level is provided to the circuit unit 350. The positive output signal Out_P and the negative output signal Out_N may be provided to the data driver. The defect detecting image may be displayed on the display panel. Here, the defect detecting image may be a predetermined test image for detecting the defect of the data driver. In an exemplary embodiment, for example, the defect detecting image may be a white color image. On the other hand, the circuit unit 350 may output the positive output signal Out_P having the second level and the negative output signal Out_N having the first level when the enable signal EN having the second level is provided to the circuit unit 350. That is, the first multiplexer 352 may output the first voltage Vss having the second level among the positive signal S_P and the first voltage Vss, and the second multiplexer 354 may output the second voltage Vdd having the first level among the negative signal S_N and the second voltage Vdd. The positive output signal Out_P having the second level and the negative output signal Out_N having the first level may be provided to the data driver. In this case, the display may display the black color image on the display panel. Here, the black color image may be the reference image that allows the defect on the defect detecting image to be easily detected.
FIG. 6 is a block diagram illustrating an exemplary embodiment of an electronic device that includes the display device of FIG. 1, and FIG. 7 is a diagram illustrating an exemplary embodiment in which the electronic device of FIG. 6 is implemented as a smart phone.
Referring to FIGS. 6 and 7, an electronic device 400 may include a processor 410, a memory device 420, a storage device 430, an input/output (“I/O”) device 440, a power device 450, and a display device 460. Here, the display device 460 may correspond to the display device 100 of FIG. 1. In addition, the electronic device 400 may further include a plurality of ports for communicating a video card, a sound card, a memory card, a universal serial bus (“USB”) device, other electronic device, etc. Although it is illustrated in FIG. 7 that the electronic device 400 is implemented as a smart phone 500, the kind of the electronic device 400 according to the invention is not limited thereto.
The processor 410 may perform various computing functions. The processor 410 may be a micro processor, a central processing unit (“CPU”), etc. The processor 410 may be coupled to other components via an address bus, a control bus, a data bus, etc. Further, the processor 410 may be coupled to an extended bus such as surrounded component interconnect (“PCI”) bus. The memory device 420 may store data for operations of the electronic device 400. In an exemplary embodiment, for example, the memory device 420 may include at least one non-volatile memory device such as an erasable programmable read-only memory (“EPROM”) device, an electrically erasable programmable read-only memory (“EEPROM”) device, a flash memory device, a phase change random access memory (“PRAM”) device, a resistance random access memory (“RRAM”) device, a nano floating gate memory (“NFGM”) device, a polymer random access memory (PoRAM) device, a magnetic random access memory (“MRAM”) device, a ferroelectric random access memory (“FRAM”) device, etc, and/or at least one volatile memory device such as a dynamic random access memory (“DRAM”) device, a static random access memory (“SRAM”) device, a mobile DRAM device, etc. The storage device 430 may be a solid stage drive (“SSD”) device, a hard disk drive (“HDD”) device, a CD-ROM device, etc.
The I/O device 440 may be an input device such as a keyboard, a keypad, a touchpad, a touch-screen, a mouse, etc, and an output device such as a printer, a speaker, etc. In some exemplary embodiments, the display device 460 may be included in the I/O device 440. The power device 450 may provide a power for operations of the electronic device 400. The display device 460 may communicate with other components via the buses or other communication links. As described above, the display device 460 may include a display panel, a first data driver, a second data driver, a gate driver, a timing controller, and a defect detector. The display panel may include data lines, gate lines, and a plurality of pixels. The display panel may include a first display area and a second display area. A first data signal from the first data driver may be provided to the first display area through the data line. A second data signal from the second data driver may be provided to the second display area through the data line. The first data driver may provide the first data signal through the data lines in the first display area. The second data driver may provide the second data signal through the data line in the second display area. The first data driver and the second data driver may be directly mounted on the display panel or be coupled to the display panel as a TCP. The gate driver may provide a gate signal to the display panel through the gate lines. The timing controller may generate control signals that control the first data driver, the second data driver, and the gate driver. The timing controller may receive a first image data and an input control signal from an external device. The timing controller may provide the second image data to the defect detector. The timing controller may provide the second image data corresponding to the defect detecting image that will be displayed on the display panel in a defect detecting mode of the display device. Here, the defect detecting image may be predetermined to detect the defect on the first display area or the second display area. The defect detector may display an image on the first display area and the second display area based on an enable signal. The defect detector may alternatively display the defect detecting image and a reference image on the first display area and the second display area based on the enable signal and detect the defect of each of the first data driver and the second data driver based on the defect detecting image. As described above, the electronic device 400 of FIG. 6 may respectively detect the defect of the first data driver coupled to the first display area and the second data driver coupled to the second display area by the display device 460 that alternately display the defect detecting image and the reference image on the first display area and the second display area.
FIG. 8 is a flowchart illustrating an exemplary embodiment of a method of detecting defect of a display device according to the invention. FIGS. 9 and 10 are flowcharts illustrating an exemplary embodiment of a method of displaying a defect detecting image included in the method of detecting defect of the display device of FIG. 8. FIGS. 11A and 11B are diagrams for describing the method of detecting defect of the display device of FIG. 8.
Referring to FIG. 8, a method of detecting defect of a display device may include displaying a defect detecting image on a first display area and a reference image on a second display area (S100), detecting a defect on the first data driver (S200), displaying the reference image on the first display area and the defect detecting image on the second display area (S300), and detecting a defect on the second data driver (S400).
The method of detecting defect of the display device may display the defect detecting image on the first display area and display the reference image on the second display area (S100). Referring to FIG. 9, displaying the defect detecting image on the first display area and the reference image on the second display area (S100) may include providing a first enable signal having a first level to a first defect detector (S120) and providing a second enable signal having a second level to a second defect detector (S140).
Referring to FIG. 11A, a first data driver 650 may include first source driving integrated circuits 652 and first source connecting circuits 654. The first defect detector (not illustrated) may be coupled to the first data driver 650 including the first source driving integrated circuits 652 and the first source connecting circuits 654 that provides the data signal. The defect detecting image data provided from the timing controller may be provided to the first data driver 650 when the first enable signal having the first level is provided to the first defect detector. Thus, the defect detecting image for detecting the defect may be displayed on the first display area 620 of the display panel 600. The defect detecting image may be an image for detecting the defect of the first source driving integrated circuit 652. In an exemplary embodiment, for example, the defect detecting image may be a white color image, a red color image, a green color image, a blue color image, etc. The second data driver 660 may include second source driving integrated circuit 662 and second source connecting circuits 664. The second defect detector (not illustrated) may be coupled to the second data driver 660 including the second source driving integrated circuit 662 and the second source connecting circuits 664 that provides the data signal. The reference image data may be provided to the second data driver 660 when the second enable signal having the second level is provided to the second defect detector. In an exemplary embodiment, for example, the second defect detector may convert the defect detecting image data provided from the timing controller to the reference image data. Alternatively, the second defect detector may store the reference image data. Thus, the reference image that allows the defect of the first display area 620 to be easily detected may be displayed on the second display area 640 of the display panel 600. In an exemplary embodiment, for example, the reference image may be the black color image.
The method of detecting defect of the display device may detect the defect of the first data driver (S200). The defect detecting image may be displayed on the first display area and the reference image may be displayed on the second display area. An inspector or a user may detect the defect on the first display area and may detect at least one of the source driving integrated circuits on which the defect occurs.
The method of detecting defect of the display device may display the reference image on the first display area and the defect detecting image on the second display area (S300). Referring to FIG. 10, displaying the reference image on the first display area and the defect detecting image on second display area (S300) may include providing the first enable signal having the second level to the first defect detector (S320), and providing the second enable signal having the first level to the second defect detector (S340).
Referring to FIG. 11B, the first defect detector may be coupled to the first data driver 650 including the first source driving integrated circuits 652 and the first source connecting circuits 654, that provides the data signal. The reference image data may be provided to the data driver 650 when the first enable signal having the second level is provided to the first defect detector. In an exemplary embodiment, for example, the second defect detector may convert the defect detecting image data provided from the timing controller to the reference image data. Alternatively, the second defect detector may store the reference image data. Thus, the reference image that allows the defect of the second display area 640 to be easily detected may be displayed on the first display area 620 of the display panel 600. In an exemplary embodiment, for example, the reference image may be the black color image. The second defect detector may be coupled to the second data driver 660 including the second source driving integrated circuits 662 and the second source connecting circuits 664, that provides the data signal. The defect detecting image data provided from the timing controller may be provided to the second data driver 660 when the second enable signal having the first level is provided to the second defect detector. Thus, the defect detecting image for detecting the defect may be displayed on the second display area 640 of the display panel 600. The defect detecting image may be an image for detecting the defect of the second source driving integrated circuit 662. In an exemplary embodiment, for example, the defect detecting image may be a white color image, a red color image, a green color image, a blue color image, etc.
The method of detecting defect of the display device may detect the defect of the second data driver (S400). The reference image may be displayed on the first display area and the defect detecting image may be displayed on the second display area. An inspector or a user may detect the defect of the second display area and may detect at least one of the second source driving integrated circuits on which the defect occurs.
As described above, the method of detecting adefect of the display device may detect a defect of the first data driver coupled to the first display area and the second data driver coupled to the second display area respectively by alternately displaying the defect detecting image and the reference image on the first display area and the second display area.
FIG. 12 is a block diagram illustrating another exemplary embodiment of a display device according to the invention.
Referring to FIG. 12, a display device 700 may include a display panel 710, a first data driver 720, a second data driver 730, a gate driver 740, a timing controller 750, and a defect detector. The display panel 710 may include a first display area 712 and a second display area 714. The first data driver 720 may provide a first data signal DS1 to the first display area 712 through data lines DL of the display panel 710. The second data driver 730 may provide a second data signal DS2 to the second display area 714 through the data lines DL of the display panel 710. The gate driver 740 may provide gate signal GS to the first display area 712 and the second display area 714 through gate lines of the display panel 710. The timing controller 750 may generate control signals CON1 and CON2 that control the first data driver 720, the second data driver 730, and the gate driver 740. The timing controller 750 may receive a first image data DATA1 from an external device and provide a second image data DATA2 that is substantially the same as the first image data DATA1 or that is generated by compensating the first image data DATA1 to the defect detector. The timing controller 750 may provide a defect detecting image data DATA_D corresponding to the defect detecting image to the defect detector as the second image data DATA2 in a defect detecting mode.
The defect detector may include a first defect detector 760 and a second defect detector 770. The first defect detector 760 may provide the defect detecting image data DATA_D or a reference image data DATA_R to the first data driver 720 that provides the data signal to the first display area 712. The first defect detector 760 may provide the defect detecting image data DATA_D or the reference image data DATA_R to the first data driver 720 based on a first enable signal EN1 provided from the timing controller 750. The first defect detector 760 may provide the defect detecting image data DATA_D to the first data driver 720 coupled to the first display area 712 when the first enable signal EN having a first level is provided to the first defect detector 760. The first defect detector 760 may provide reference image data DATA_R to the first data driver 720 coupled to the first display area 712 when the first enable signal EN having a second level is provided to the first defect detector 760. The first defect detector 760 may generate the reference image data DATA_R by converting the defect detecting image data DATA_D provided from the timing controller 750 when the first enable signal EN1 having the second level is provided to the first defect detector 760. In another exemplary embodiment, the first defect detector 760 may store the reference image data DATA_R. The second defect detector 770 may provide the defect detecting image data DATA_D or the reference image data DATA_R to the second data driver 730 that provides the data signal to the second display area 714. The second defect detector 770 may provide the defect detecting image data DATA_D or the reference data DATA_R to the second data driver 730 based on a second enable signal EN2 provided from the timing controller 750. The second defect detector 770 may provide the defect detecting image data DATA_D to the second data driver 730 coupled to the second display area 714 when the second enable signal EN2 having the first level is provided to the second defect detector 770. The second defect detector 770 may provide the reference image data DATA_R to the second data driver 730 coupled to the second display area 714 when the second enable signal EN2 having the second level is provided to the second defect detector 770. The second defect detector 770 may generate the reference image data DATA_R by converting the defect detecting image data DATA_D provided from the timing controller 750 when the second enable signal EN2 having the second level is provided to the second defect detector 770. In another exemplary embodiment, the second defect detector 770 may store the reference image data DATA_R.
The timing controller 750 may provide the first enable signal EN1 having the first level to the first defect detector 760 and the second enable signal EN2 having the second level to the second defect detector 770. In this case, the first defect detector 760 may provide the defect detecting image data DATA_D to the first data driver 720 and the second defect detector 770 may provide the reference image data DATA_R to the second data driver 730. Thus, the defect detecting image may be displayed on the first display area 712 and the reference image may be displayed on the second display area 714. Here, the defect detecting image may be predetermined for detecting the defect on the first display area 712, and the reference image may be predetermined for easily detecting the defect on the first display area 712. In another exemplary embodiment, for example, the defect detecting image may be one of a white color image, a red color image, a green color image, and a blue color image, and the reference image may be a black color image. Thus, the defect on the first display area 712 and the defect of the first data driver 720 may be detected.
The timing controller 750 may provide the first enable signal EN1 having the second level to the first defect detector 760 and the second enable signal EN2 having the first level to the second defect detector 770. In this case, the first defect detector 760 may provide the reference image data DATA_R to the first data driver 720, and the second defect detector 770 may provide the defect detecting image data DATA_D to the second data driver 730. Thus, the reference image may be displayed on the first display area 712 and the defect detecting image may be displayed on the second display area 714. Therefore, the defect on the second display 714 and the defect of the second data driver 730 may be detected.
As described above, in the display device 700 of which the data signal is provided to both ends of the display panel 710, the display device 700 may detect defects of the first data driver 720 coupled to the first display area 712 and the second data driver 740 coupled to the second display area 714 respectively by including a first defect detector 760 and the second defect detector 770 that control to display the defect detecting image and the reference image alternately on the first display area 712 and the second display area 714 of the display panel 710.
The inventive concept may be applied to a display device and an electronic device having the display device. For example, the inventive concept may be applied to a computer monitor, a laptop, a digital camera, a cellular phone, a smart phone, a smart pad, a television, a personal digital assistant (“PDA”), a portable multimedia player (“PMP”), a MP3 player, a navigation system, a game console, a video phone, etc.
The foregoing is illustrative of exemplary embodiments and is not to be construed as limiting thereof. Although a few exemplary embodiments have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the inventive concept. Accordingly, all such modifications are intended to be included within the scope of the inventive concept as defined in the claims. Therefore, it is to be understood that the foregoing is illustrative of various exemplary embodiments and is not to be construed as limited to the specific exemplary embodiments disclosed, and that modifications to the disclosed exemplary embodiments, as well as other exemplary embodiments, are intended to be included within the scope of the appended claims.

Claims (20)

What is claimed is:
1. A display device comprising:
a display panel divided into a first display area and a second display area in a first direction;
a first data driver which provides a first data signal to the first display area through data lines arranged in a second direction crossing the first direction;
a second data driver which provides a second data signal to the second display area through the data lines arranged in the second direction;
a gate driver which provides a gate signal to the display panel through gate lines arranged in the first direction;
a timing controller which generates control signals that control the first data driver, the second data driver, and the gate driver; and
a defect detector which controls to display a defect detecting image and a reference image on the first display area and the second display area alternately based on an enable signal to detect a defect of at least one of the first data driver and the second data driver.
2. The display device of claim 1, wherein the timing controller provides defect detecting image data corresponding to the defect detecting image to the defect detector, and
wherein the defect detector provides the defect detecting image data or reference image data corresponding to the reference image to the first data driver or the second data driver based on the enable signal.
3. The display device of claim 1, wherein the defect detector includes:
a first defect detector which provides defect detecting image data corresponding to the defect detecting image or reference image data corresponding to the reference image to the first data driver based on a first enable signal; and
a second defect detector which provides the defect image data or the reference image data to the second data driver based on a second enable signal.
4. The display device of claim 3, wherein the first defect detector controls to display the defect detecting image on the first display area for detecting the defect of the first data driver, and
wherein the second defect detector controls to display the defect detecting image on the second display area for detecting the defect of the second data driver.
5. The display device of claim 3, wherein the first defect detector provides the defect detecting image data to the first data driver when the first enable signal having a first level is provided and provides the reference image data to the first data driver when the first enable signal having a second level is provided.
6. The display device of claim 3, wherein the second defect detector provides the defect detecting image data to the second data driver when the second enable signal having a first level is provided and provides the reference image data to the second data driver when the second enable signal having a second level is provided.
7. The display device of claim 3, wherein the defect detecting image is displayed on the first display area when the first enable signal having a first level is provided to the first defect detector, and
wherein the reference image is displayed on the first display area when the first enable signal having a second level is provided to the first defect detector.
8. The display device of claim 3, wherein the defect detecting image is displayed on the second display area when the second enable signal having a first level is provided to the second defect detector, and
wherein the reference image is displayed on the second display area when the second enable signal having a second level is provided to the second defect detector.
9. The display device of claim 3, wherein the first enable signal having a first level is provided to the first defect detector and the second enable signal having a second level is provided to the second defect detector in order to detect the defect of the first data driver.
10. The display device of claim 3, wherein the first enable signal having a second level is provided to the first defect detector and the second enable signal having a first level is provided to the second defect detector in order to detect the defect of the second data driver.
11. The display device of claim 3, wherein the defect detecting image data is a differential signal that includes a positive signal and a negative signal.
12. The display device of claim 11, wherein each of the first defect detector and the second defect detector includes:
a first AND gate which performs a logical conjunction of the positive signal and a corresponding enable signal of the first and second enable signals;
a second AND gate which performs a logical conjunction of the negative signal and the corresponding enable signal of the first and second enable signals; and
a NOT gate which inverses an output of the second AND gate.
13. The display device of claim 11, wherein each of the first defect detector and the second defect detector includes:
a first multiplexer which outputs one of the positive signal and a first voltage based on a corresponding enable signal of the first and second enable signals; and
a second multiplexer which outputs one of the negative signal and a second voltage.
14. The display device of claim 1, wherein the reference image is a black color image.
15. A method of detecting defect of a display device comprising:
displaying a defect detecting image on a first display area of a display panel and a reference image on a second display area of the display panel, wherein the display panel is divided into the first display area and the second display area in a direction;
detecting a defect of a first data driver coupled to the first display area;
displaying the reference image on the first display area and the defect detecting image on the second display area; and
detecting a defect of a second data driver coupled to the second display area,
wherein a defect of at least one of the first data driver and the second data driver is detected by alternately displaying the defect detecting image and the reference image on the first display area and the second display area.
16. The method of claim 15, wherein displaying the defect detecting image on the first display area and the reference image on the second display area includes:
providing a first enable signal having a first level to a first defect detector coupled to the first data driver that provides a data signal to the first display area; and
providing a second enable signal having a second level to a second defect detector coupled to the second data driver that provides a data signal to the second display area.
17. The method of claim 15, wherein displaying the reference image on the first display area and the defect detecting image on the second display area includes:
providing a first enable signal having a second level to a first defect detector coupled to the first data driver that provides a data signal to the first display area; and
providing a second enable signal having a first level to a second defect detector coupled to the second data driver that provides a data signal to the second display area.
18. A display device comprising:
a display panel which includes a first display area and a second display area; and
a defect detector which controls a first data driver to display a defect detecting image or a reference image on the first display area based on a first enable signal and controls a second data driver to display a defect detecting image or a reference image on the second display area based on a second enable signal,
wherein the reference image is displayed on the second display area when the defect detecting image is displayed on the first display area, and the defect detecting image is displayed on the second display area when the reference image is displayed on the first display area, and
wherein a defect of at least one of the first data driver and the second data driver is detected by alternately displaying the defect detecting image and the reference image on the first display area and the second display area.
19. The display device of claim 18, wherein the defect detector includes:
a first defect detector which provides defect detecting image data corresponding to the defect detecting image or reference image data corresponding to the reference image to a first data driver that provides a data signal to the first display area; and
a second defect detector which provides the defect detecting image data or the reference image data to a second data driver that provides a data signal to the second display area.
20. The display device of claim 19, wherein the first defect detector provides the defect detecting image data to the first data driver when the first enable signal having a first level is provided and provides the reference image data to the first data driver when the first enable signal having a second level is provided, and
wherein the second defect detector provides the defect detecting image data to the second data driver when the second enable signal having the first level is provided and provides the reference image data to the second data driver when the second enable signal having the second level is provided.
US16/186,944 2017-11-17 2018-11-12 Display device and method of detecting defect of the same Active US10854161B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170154323A KR102471042B1 (en) 2017-11-17 2017-11-17 Display device and method of detecting defect of the same
KR10-2017-0154323 2017-11-17

Publications (2)

Publication Number Publication Date
US20190156783A1 US20190156783A1 (en) 2019-05-23
US10854161B2 true US10854161B2 (en) 2020-12-01

Family

ID=66532448

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/186,944 Active US10854161B2 (en) 2017-11-17 2018-11-12 Display device and method of detecting defect of the same

Country Status (2)

Country Link
US (1) US10854161B2 (en)
KR (1) KR102471042B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6673388B2 (en) * 2018-03-09 2020-03-25 セイコーエプソン株式会社 Driving method of electro-optical device
KR102543041B1 (en) * 2018-11-29 2023-06-14 엘지디스플레이 주식회사 Display device for external compensation and driving method of the same
KR102659827B1 (en) * 2020-02-12 2024-04-24 삼성디스플레이 주식회사 Display apparatus and method of operating the same
US11783739B2 (en) * 2020-09-10 2023-10-10 Apple Inc. On-chip testing architecture for display system
US11645957B1 (en) * 2020-09-10 2023-05-09 Apple Inc. Defective display source driver screening and repair
CN112562600B (en) * 2020-12-01 2021-12-03 Tcl华星光电技术有限公司 Display device and driving method thereof
US11455924B1 (en) * 2021-07-30 2022-09-27 Dell Products L.P. System and method for LCD display panel failure diagnostics
CN113990231A (en) * 2021-11-22 2022-01-28 信利(惠州)智能显示有限公司 Display exception switching system
CN115019703B (en) * 2021-11-30 2023-05-09 荣耀终端有限公司 Display panel, detection method and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081687A (en) * 1990-11-30 1992-01-14 Photon Dynamics, Inc. Method and apparatus for testing LCD panel array prior to shorting bar removal
US6816143B1 (en) * 1999-11-23 2004-11-09 Koninklijke Philips Electronics N.V. Self diagnostic and repair in matrix display panel
KR100471782B1 (en) 1997-10-23 2005-08-10 삼성전자주식회사 Defect Detection Method of LCD
US7145539B2 (en) * 2000-09-30 2006-12-05 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method of testing the same
US20100214316A1 (en) * 2009-02-20 2010-08-26 Kim Beon-Young Device and method for driving liquid crystal display device
US20110234574A1 (en) * 2008-09-30 2011-09-29 Fujitsu Ten Limited Display device and display control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081687A (en) * 1990-11-30 1992-01-14 Photon Dynamics, Inc. Method and apparatus for testing LCD panel array prior to shorting bar removal
KR100471782B1 (en) 1997-10-23 2005-08-10 삼성전자주식회사 Defect Detection Method of LCD
US6816143B1 (en) * 1999-11-23 2004-11-09 Koninklijke Philips Electronics N.V. Self diagnostic and repair in matrix display panel
US7145539B2 (en) * 2000-09-30 2006-12-05 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method of testing the same
US20110234574A1 (en) * 2008-09-30 2011-09-29 Fujitsu Ten Limited Display device and display control device
US20100214316A1 (en) * 2009-02-20 2010-08-26 Kim Beon-Young Device and method for driving liquid crystal display device

Also Published As

Publication number Publication date
KR102471042B1 (en) 2022-11-28
US20190156783A1 (en) 2019-05-23
KR20190057192A (en) 2019-05-28

Similar Documents

Publication Publication Date Title
US10854161B2 (en) Display device and method of detecting defect of the same
US10546900B2 (en) Edge bending display panel and edge bending display device having the same
US10832624B2 (en) Driving device of display panel and display device including the same
US20160093270A1 (en) Display driving circuit and display driving method
US9318076B2 (en) Pixel luminance compensating unit, flat panel display device having the same and method of adjusting a luminance curve for respective pixels
US10431134B2 (en) Display device having master and slave drivers and electronic device having the same
US11887544B2 (en) Display device and electronic device having the same
US20200211440A1 (en) Method of driving a display device and display device employing the same
US11199573B2 (en) Display panel and display device
US11227555B2 (en) Display device performing adaptive refresh
US11676553B2 (en) Reduced heat generation from a source driver of display device
US11493552B2 (en) Display panel test circuit
US11735118B2 (en) Organic light emitting display device and driving method of the same
US20140070709A1 (en) Method of arranging power-lines for an organic light emitting display device, display panel module, and organic light emitting display device having the same
US8471796B2 (en) Apparatus for providing grayscale voltages and display device using the same
US10909941B2 (en) Liquid crystal display device having a timing controller for reducing crosstalk defect and driving method thereof
US10902815B2 (en) Reflective liquid crystal display and grayscale voltage generator configured to generate grayscale voltages based on the driving voltage-reflection ratio property
CN111508406A (en) Display device and driving method thereof
US10482802B2 (en) Display apparatus having a shift driving mode and method of testing the same
US11132928B2 (en) Horizontal line driver and display device including the same
US20140009447A1 (en) Display panel, flat panel display device having the same, and method of driving a display panel
US10847113B2 (en) Method of driving a liquid crystal display panel and liquid crystal display device employing the same
US20200027418A1 (en) Display device and driving method of the same
US20160163268A1 (en) Display devices and methods of driving the same
US11158272B2 (en) Display device including data drivers

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SAMSUNG DISPLAY CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, YUNMI;PYUN, KIHYUN;KANG, SUNG-IN;REEL/FRAME:048357/0637

Effective date: 20180509

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4