US10850567B2 - Tire - Google Patents

Tire Download PDF

Info

Publication number
US10850567B2
US10850567B2 US14/773,477 US201414773477A US10850567B2 US 10850567 B2 US10850567 B2 US 10850567B2 US 201414773477 A US201414773477 A US 201414773477A US 10850567 B2 US10850567 B2 US 10850567B2
Authority
US
United States
Prior art keywords
tire
protrusion
block
concavity
tread surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/773,477
Other versions
US20160016437A1 (en
Inventor
Masafumi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013091648A external-priority patent/JP6093637B2/en
Priority claimed from JP2013091654A external-priority patent/JP5529998B1/en
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Assigned to BRIDGESTONE CORPORATION reassignment BRIDGESTONE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ITO, MASAFUMI
Publication of US20160016437A1 publication Critical patent/US20160016437A1/en
Application granted granted Critical
Publication of US10850567B2 publication Critical patent/US10850567B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/10Tyres specially adapted for particular applications for motorcycles, scooters or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/14Tyres specially adapted for particular applications for off-road use

Definitions

  • This disclosure relates to a tire provided with a tread on which a plurality of blocks is formed, with a protrusion extending outward in the tire radial direction being formed on at least some of the blocks.
  • protrusions on the tread surface of blocks is a known technique in motorcycle tires designed to be driven on irregular terrain, in particular muddy terrain (for example, see JP 2009-196425 A (PTL 1)). According to this technique, traction performance can be improved by increasing the edge effect with the protrusions.
  • ground contact pressure concentrates at the edges of the protrusion when driving, causing the edges to wear and become rounded.
  • the edge effect of the protrusions thus degrades, and the improvement in traction performance can no longer be expected.
  • protrusions are formed on the tread surface of the blocks, it has thus been difficult to improve the traction performance over an extended period of time.
  • ground contact performance In order to improve control performance, it is necessary to improve ground contact performance.
  • One approach for improving ground contact performance would be to reduce the size of the protrusions formed on the tread surface of the blocks, thereby reducing the rigidity of the protrusions and making it easier for the tread surface of the protrusions to deform.
  • the edge effect achieved by the protrusions is reduced, which may result in diminished traction performance.
  • a tire according to one of the embodiments includes a tread with a plurality of blocks formed thereon; a protrusion extending outward in a tire radial direction and formed on more than one block among the plurality of blocks; and a stepped portion formed on a side of the protrusion.
  • a tire according to another one of the embodiments includes a tread with a plurality of blocks formed thereon; a protrusion extending outward in a tire radial direction and formed on more than one block among the plurality of blocks; and a second concavity formed on a tread surface of the protrusion.
  • the disclosed tires improve high traction performance over an extended period of time and/or improve control performance while maintaining traction performance.
  • FIG. 1 is a partial plan view illustrating a tire according to one of the embodiments
  • FIG. 2 is a cross-sectional diagram in the tire width direction along the line II-II of the tire in FIG. 1 ;
  • FIG. 3 is an expanded view of the area around a protrusion formed on the center block of the tire in FIG. 1 ;
  • FIG. 4 is a cross-sectional diagram in the tire width direction along the line III-III of the tire in FIG. 1 ;
  • FIG. 5 is an expanded view of the area around a protrusion formed on an intermediate block of the tire in FIG. 1 .
  • the tire according to one of the embodiments illustrated in FIG. 1 is a motorcycle tire in which a center block row is formed by a first center block 10 a , a second center block 10 b , a third center block 10 c , a fourth center block 10 d , and a fifth center block 10 e disposed at intervals along the tire circumferential direction, near the tire equatorial plane CL of the tread.
  • an intermediate block row is formed by a first intermediate block 20 a , a second intermediate block 20 b , a third intermediate block 20 c , and a fourth intermediate block 20 d disposed at intervals along the tire circumferential direction.
  • a shoulder block row is formed by a first shoulder block 30 a , a second shoulder block 30 b , a third shoulder block 30 c , a fourth shoulder block 30 d , and a fifth shoulder block 30 e disposed at intervals along the tire circumferential direction.
  • the first to fifth center blocks 10 a to 10 e each have an approximately rectangular shape, with the long sides along the tire width direction.
  • a shallow groove 19 that is relatively wide and extends in the tire circumferential direction is formed. The depth of the shallow groove 19 in the tire radial direction is less than the height of the first to fifth center blocks 10 a to 10 e in the tire radial direction.
  • a protrusion 11 that is rectangular in plan view of the tread is formed on both sides of the tire widthwise center of the tread surface in the first to fifth center blocks 10 a to 10 e , as illustrated in FIG. 1 , and in FIG. 2 with respect to the second center block 10 b .
  • a stepped portion 12 having a rectangular perimeter in plan view of the tread is formed on at least a portion of the side of the protrusion 11 .
  • a protrusion 21 and a stepped portion 22 are also formed on the third intermediate block 20 c , described below with reference to FIGS. 4 and 5 . As illustrated in FIGS.
  • a first concavity 13 is disposed between two protrusions 11 of the first and fifth center blocks 10 a and 10 e and around the protrusions 11 .
  • a block peripheral portion 10 s is formed around the first concavity 13 .
  • the first concavity 13 is a groove between the two protrusions 11 and the block peripheral portion 10 s .
  • the second to fourth center blocks 10 b to 10 d the first concavity 13 is formed around each of the two protrusions 11
  • the block peripheral portion 10 s is formed around each first concavity 13 .
  • the first concavity 13 is a groove between each of the protrusions 11 and the block peripheral portion 10 s.
  • the “tread surface” as used in this disclosure refers to the surface that faces outward in the tire radial direction and can contact the ground when the tire is used.
  • the “protrusion” of a block as used in this disclosure refers to a portion that projects further outward in the tire radial direction than the surrounding area.
  • the “first concavity” and the “second concavity” refer to portions that are recessed in the tire radial direction from their surroundings.
  • the “block peripheral portion” in the blocks on which the protrusions are formed refers to a portion of the block excluding the following: the protrusion, which includes the stepped portion (in the case of the stepped portion being formed) and the second concavity (in the case of the below-described second concavity being formed), the portion inward in the tire radial direction from the protrusion, and the portion inward in the tire radial direction from the first concavity (in the case of the first concavity being formed).
  • the perimeter of the tread surface of the protrusion 11 and the perimeter of the stepped portion 12 in the first to fifth center blocks 10 a to 10 e each have sides extending in the tire width direction and sides extending in the tire circumferential direction.
  • corners are formed on the outer perimeter and inner perimeter of the block peripheral portion 10 s , the perimeter of the stepped portion 12 , and the perimeter of the tread surface of the protrusion 11 in the first to fifth center blocks 10 a to 10 e .
  • the shoulder block rows are formed on the same.
  • two or more stepped portions may be provided on at least a portion of the side of the protrusion in any of the blocks.
  • the first to fourth intermediate blocks 20 a to 20 d are formed to be smaller than each of the first to fifth center blocks 10 a to 10 e and are roughly rectangular in plan view of the tread.
  • a protrusion 21 that is rectangular in plan view of the tread is formed on the first to fourth intermediate blocks 20 a to 20 d .
  • a second concavity 24 is formed with a depth in the tire radial direction of, for example, 1.5 mm.
  • a stepped portion 22 having a rectangular perimeter in plan view of the tread is formed on at least a portion of the side of the protrusion 21 .
  • a first concavity 23 is formed around the protrusion 21
  • a block peripheral portion 20 s is formed around the first concavity 23 .
  • the perimeter of the tread surface of the protrusion 21 and the perimeter of the stepped portion 22 in the first to fourth intermediate blocks 20 a to 20 d each have sides extending in the tire width direction and sides extending in the tire circumferential direction.
  • corners are formed on the outer perimeter and inner perimeter of the block peripheral portion 20 s , the perimeter of the stepped portion 22 , the perimeter of the tread surface of the protrusion 21 , and the perimeter of the (virtual) opening 24 o of the second concavity 24 in the first to fourth intermediate blocks 20 a to 20 d.
  • the first to fifth shoulder blocks 30 a to 30 e are hexagonal in plan view of the tread.
  • a protrusion 31 is formed in each of the first to fifth shoulder blocks 30 a to 30 e .
  • a stepped portion similar to the above-described stepped portion 12 is formed on at least a portion of the side of the protrusion 31 .
  • a first concavity 33 is formed around the protrusion 31
  • a block peripheral portion 30 s is formed around the first concavity 33 .
  • both the perimeter of the tread surface of the protrusion 31 and the perimeter of the stepped portion in the first to fifth shoulder blocks 30 a and 30 e have an approximately similar shape as the shape of the perimeter of the block.
  • the protrusion 11 and the block peripheral portion 10 s contact the ground when the tire is new. Therefore, both the edges of the protrusion 11 and the edges of the block peripheral portion 10 s achieve an edge effect, in particular when driving on irregular terrain.
  • setting a and b so that ⁇ 2 mm ⁇ a ⁇ b ⁇ 2 mm where a is the height of the tread surface of the block peripheral portion 10 s and b is the height of the tread surface of the protrusion 11 is preferable, in that both the protrusion 11 and the block peripheral portion 10 s contact the ground.
  • the “height” of the stepped portion in the protrusion and the “height” of the tread surface of the block peripheral portion and the protrusion refer to the height in the tire radial direction from the base end of the protrusion.
  • the edges of the protrusion 11 and the edges of the block peripheral portion 10 s wear and become rounded due to ground contact pressure, and the height a of the tread surface of the block peripheral portion 10 s and the height b of the tread surface of the protrusion 11 illustrated in FIG. 2 gradually decrease.
  • the height a of the tread surface of the block peripheral portion 10 s becomes equal to or less than the height c of the stepped portion 12 formed on the side of the protrusion 11 , and the stepped portion 12 ends up positioned further outward in the tire radial direction than the tread surface of the block peripheral portion 10 s .
  • the edges of the stepped portion 12 begin to achieve an edge effect.
  • the edge effect of the edges of the protrusion 11 and the edges of the block peripheral portion 10 s diminishes, since these edges wear and become rounded, whereas the unworn edges of the stepped portion 12 newly achieve a large edge effect. Therefore, the edge effect is maintained even as the block wears, thereby improving the traction performance over an extended period of time.
  • the stepped portion 12 can achieve higher traction performance.
  • the first concavity 13 is formed between the protrusion 11 and the block peripheral portion 10 s , adjacent to the protrusion 11 .
  • an edge effect can be achieved at the inner perimeter of the block peripheral portion 10 s , improving the traction performance.
  • the protrusion 11 moves more easily and follows the shape of the road, thereby improving the ground contact performance and the control performance.
  • the height c of the stepped portion 12 in the protrusion 11 is more preferably smaller than the height d from the stepped portion 12 to the tread surface of the protrusion 11 .
  • c may, for example, be from 1 mm to 2 mm, and a-c may, for example, be approximately 1 mm.
  • the perimeter of the tread surface of the protrusion 11 is preferably shaped as a polygon (a rectangle in FIG. 3 ) having sides 11 a extending in the tire width direction and sides 11 b extending in the tire circumferential direction
  • the perimeter of the stepped portion 12 is preferably shaped as a polygon (a rectangle in FIG. 3 ) having sides 12 a extending in the tire width direction and sides 12 b extending in the tire circumferential direction.
  • the edge effect can be improved by adopting a polygon for the shape of the perimeter of the tread surface of the protrusion 11 and the perimeter of the stepped portion 12 .
  • Providing these perimeters with sides extending in the tire width direction improves traction performance when driving in a straight line. Furthermore, providing these perimeters with sides extending in the tire circumferential direction improves traction performance when turning.
  • the area S 1 of the upper surface of the stepped portion 12 (the region with diagonal lines extending to the lower right in FIG. 3 ) is preferably less than the area S 2 of the tread surface of the protrusion 11 (the region with diagonal lines extending to the upper right in FIG. 3 ).
  • sufficiently securing the area of the tread surface of the protrusion 11 not only guarantees ground contact performance and control performance, but also ensures the rigidity of the protrusion 11 and guarantees traction performance.
  • the protrusion 21 and the block peripheral portion 20 s contact the ground when the tire is used. Therefore, both the edges of the protrusion 21 and the edges of the block peripheral portion 20 s achieve an edge effect, in particular when driving on irregular terrain, thereby improving traction performance.
  • the second concavity 24 is formed on the tread surface of the protrusion 21 .
  • the rigidity of the tread surface of the protrusion 21 decreases as compared to when the second concavity 24 is not formed on the tread surface of the protrusion 21 . Therefore, in particular on a hard road surface, the tread surface of the protrusion 21 can follow the shape of the road surface more easily, improving ground contact performance and thereby improving control performance.
  • the area of the tread surface of the protrusion 21 decreases.
  • the ground contact performance diminishes, and the control performance also diminishes.
  • the above-described effect of increasing the ground contact performance of the protrusion 21 and improving the control performance by forming the second concavity 24 in the protrusion 21 exceeds the reduction in control performance due to the reduction in area of the tread surface of the protrusion 21 . As a result, the control performance can be improved.
  • the rigidity of the tread surface of the protrusion 21 decreases.
  • the edge effect As described above, by providing the second concavity 24 , the rigidity of the tread surface of the protrusion 21 decreases.
  • the perimeter of the opening 24 o of the second concavity 24 achieves an edge effect. Therefore, the edge effect is guaranteed even when the second concavity 24 is provided, and traction performance is maintained.
  • the area S 3 of the tread surface of the protrusion 21 (the region with diagonal lines extending to the lower right in FIG. 5 ) is preferably greater than the area S 4 of the base of the second concavity 24 (the region with diagonal lines extending to the upper right in FIG. 5 ).
  • the area S 4 of the base of the second concavity 24 is further preferably 10% to 30% of the area of the upper surface of the protrusion 21 (the area of the region surrounded by the outer perimeter of the protrusion 21 , i.e. S 3 +S 4 ).
  • the first concavity 23 is formed between the protrusion 21 and the block peripheral portion 20 s , adjacent to the protrusion 21 .
  • an edge effect can be achieved at the inner perimeter of the block peripheral portion 20 s , improving the traction performance.
  • the protrusion 21 moves more easily and follows the shape of the road better, thereby improving the ground contact performance and the control performance.
  • the second concavity in the block row (center block row) 10 a to 10 e that is closest to the tire equatorial plane CL as in this embodiment, sufficient block rigidity can be guaranteed in the center block row, where the greatest tire circumferential direction input is applied. Furthermore, by providing the second concavity 24 in blocks distant from the tire equatorial plane CL (in this embodiment, the intermediate block row 20 a to 20 d ), the traction performance can be improved not only when driving in a straight line but also when turning.
  • the perimeter of the tread surface of the protrusion 21 is preferably shaped as a polygon (a rectangle in FIG. 5 ) having sides 21 a extending in the tire width direction and sides 21 b extending in the tire circumferential direction.
  • the perimeter of the opening of the second concavity 24 is preferably shaped as a polygon (a rectangle in FIG. 5 ) having sides 24 a extending in the tire width direction and sides 24 b extending in the tire circumferential direction.
  • the edge effect can be improved.
  • Providing these perimeters with sides extending in the tire width direction improves traction performance when driving in a straight line. Furthermore, providing these perimeters with sides extending in the tire circumferential direction improves traction performance when turning.
  • the stepped portion 22 is formed on the side of the protrusion 21 in the third intermediate block 20 c .
  • the edges of the stepped portion 22 achieve a new edge effect, thereby allowing for high traction performance to be maintained over an extended period of time.
  • the height f of the tread surface of the protrusion 21 in the tire radial direction from the tread surface of the block peripheral portion 20 s is preferably less than the height g in the tire radial direction from the base of the first concavity 23 to the tread surface of the block peripheral portion 20 s , and the height of the protrusion 21 is preferably set to an appropriate value.
  • the rigidity of the protrusion 21 diminishes significantly, which might prevent sufficient traction performance from being obtained.
  • the depth e of the second concavity 24 in the tire radial direction is preferably 85% or less of the height h in the tire radial direction from the base of the first concavity 23 to the tread surface of the protrusion 21 .
  • the second concavity 24 is preferably made sufficiently deep by setting the depth e of the second concavity 24 in the tire radial direction to be equal to or greater than the height f of the tread surface of the protrusion 21 in the tire radial direction from the tread surface of the block peripheral portion 20 s.
  • the tread is preferably formed from rubber having a JIS A hardness of 55 or greater.
  • the edge effect of the block can be increased, improving traction performance, and the wear resistance of the block can be improved.
  • the tread surface of the block is allowed to move easily, improving ground contact performance. Therefore, sufficient ground contact performance can be guaranteed even when using hard rubber in the tread.
  • the tread is also preferably formed from rubber having a JIS A hardness of 80 or less. If the JIS A hardness of the rubber is larger than 80, the ground contact performance might decrease.
  • Bias tires and radial tires were prepared, and the traction performance was evaluated when the tire was new and after tire wear, as described below.
  • the sizes of the prepared bias tires were 120/80-19 and 110/90-19, and these tires had a two-layer nylon carcass ply and a one-layer nylon breaker.
  • the sizes of the prepared radial tires were 120/80R19 and 110/90R19, and these tires had a two-layer nylon carcass ply and a one-layer Kevlar belt.
  • Example Tires 1 and 2 were prepared.
  • the Example Tires 1 and 2 are provided with the tread pattern illustrated in FIGS. 1 to 3 , a protrusion is formed on each block, and a stepped portion is formed on the side of each protrusion.
  • a first concavity is formed adjacent to the protrusion in each block.
  • the perimeter of the tread surface of the protrusion and the perimeter of the stepped portion in each of the center blocks and intermediate blocks are shaped as a rectangle having sides extending in the tire width direction and sides extending in the tire circumferential direction.
  • the height of the tread surface of the protrusion in each block is greater than the height of the tread surface of the block peripheral portion.
  • the height of the stepped portion of the protrusion in each block is less than the height of the tread surface of the block peripheral portion.
  • the JIS A hardness of the rubber forming the tread is 55.
  • Example Tire 2 has a similar structure to that of the Example Tire, except that the height of the stepped portion is equal to or greater than the height of the block peripheral portion.
  • Comparative Example Tire 1 a concavity is formed in the center of the tread surface of each block.
  • the perimeter of the concavity is shaped as a rectangle having sides extending in the tire width direction and sides extending in the tire circumferential direction.
  • a stepped portion is not formed on the side of the concavity.
  • a protrusion is not formed in each block.
  • Comparative Example Tire 2 is the same as Example Tire 1.
  • Comparative Example Tire 2 a similar first concavity and a similar protrusion as in Example Tire 1 are formed on the tread surface of each block, but a stepped portion is not formed on the side of the protrusion. Other than these points, Comparative Example Tire 1 is the same as Example Tire 1.
  • Evaluation was made by mounting each of the prepared tires on a motorcycle, having a professional motocross rider drive the motorcycle 100 km on a motocross competition course, and having the rider provide a sensory assessment, on a 10-point scale, of the traction performance when driving in a straight line and when turning both initially (new tire) and after wear.
  • Example Tire 1 provided provided greater than height of provided less than height of 9 8 (bias, radial) tread surface of block tread surface of peripheral portion block peripheral portion
  • Example Tire 2 provided provided greater than height of provided equal to or greater 9 7 (bias, radial) tread surface of block than height of tread peripheral portion surface of block peripheral portion Comparative not provided not provided not provided 7 4
  • Example Tire 1 (concavity provided (bias, radial) in center of block tread surface) Comparative not provided provided greater than height of not provided 9 5
  • Example Tires 1 and 2 achieve equal or better initial traction performance and have greatly improved traction performance after wear. It is also clear that Example Tire 1, in which the height of the stepped portion is lower than the height of the tread surface of the block peripheral portion, has better traction performance after wear than Example Tire 2, in which the height of the stepped portion is equal to or greater than the height of the tread surface of the block peripheral portion.
  • Bias tires and radial tires were prepared, and the traction performance and control performance were evaluated, as described below.
  • the sizes of the prepared bias tires were 120/80-19 and 110/90-19, and these tires had a two-layer nylon carcass ply and a one-layer nylon breaker.
  • the sizes of the prepared radial tires were 120/80R19 and 110/90R19, and these tires had a two-layer nylon carcass ply and a one-layer Kevlar belt.
  • Example Tires 1 and 2 were prepared.
  • the Example Tire 1 is provided with the tread pattern illustrated in FIGS. 1, 4, and 5 , a protrusion is formed on each block, and a second concavity is formed on the tread surface of each protrusion in the intermediate blocks.
  • a first concavity is formed adjacent to the protrusion in each block.
  • the height of the tread surface of the protrusion in each block is greater than the height of the tread surface of the block peripheral portion.
  • the height f of the tread surface of the protrusion in the tire radial direction from the tread surface of the block peripheral portion is less than the height g in the tire radial direction from the base of the first concavity to the tread surface of the block peripheral portion.
  • the perimeter of the tread surface of the protrusion and the perimeter of the opening of the second concavity in each of the intermediate blocks are, in plan view of the tread, substantially shaped as a rectangle having sides extending in the tire width direction and sides extending in the tire circumferential direction.
  • the area of the tread surface of the protrusion is greater than the area of the opening of the second concavity.
  • the depth e of the second concavity in the tire radial direction is equal to or greater than the height f of the tread surface of the protrusion in the tire radial direction from the tread surface of the block peripheral portion.
  • the JIS A hardness of the rubber forming the tread is 55.
  • Example Tire 2 is the same as Example Tire 1, except that the first concavity formed in Example Tire 1 is not formed, but rather the block peripheral portion encompasses the portion where the first concavity is formed in Example Tire 1.
  • Comparative Example Tire 1 a concavity is formed in the center of the tread surface of each block. In plan view of the tread, the perimeter of the concavity is shaped as a rectangle having sides extending in the tire width direction and sides extending in the tire circumferential direction. A second concavity is not formed. Other than these points, Comparative Example Tire 1 is the same as Example Tire 1.
  • Comparative Example Tire 2 a similar first concavity and a similar protrusion as in Example Tire 1 are formed on the tread surface of each block, but a second concavity is not formed on the tread surface of the protrusion. Other than these points, Comparative Example Tire 2 is the same as Example Tire 1.
  • Evaluation was made by mounting each of the prepared tires on a motorcycle, having a professional motocross rider drive the motorcycle on a motocross competition course, and having the rider provide a sensory assessment, on a 10-point scale, of the traction performance and control performance.
  • Example Tire 1 provided greater than height of provided provided provided 8 9 (bias, radial) tread surface of block peripheral portion
  • Example Tire 2 provided greater than height of not provided provided 8 8 (bias, radial) tread surface of block peripheral portion Comparative not provided not provided 5 5
  • Example Tire 1 in which the first concavity is formed at a position adjacent to the protrusion, has even better control performance than Example Tire 2, in which the first concavity is not formed.

Abstract

This tire improves high traction performance over an extended period of time and/or improves control performance while maintaining traction performance. This tire includes a tread with blocks formed thereon, protrusions (11, 21, 31) extending outward in the tire radial direction and formed on more than one of the blocks, and stepped portions (12, 22) and/or a second concavity (24) formed on a side of the protrusions (11, 21, 31).

Description

TECHNICAL FIELD
This disclosure relates to a tire provided with a tread on which a plurality of blocks is formed, with a protrusion extending outward in the tire radial direction being formed on at least some of the blocks.
BACKGROUND
The formation of protrusions on the tread surface of blocks is a known technique in motorcycle tires designed to be driven on irregular terrain, in particular muddy terrain (for example, see JP 2009-196425 A (PTL 1)). According to this technique, traction performance can be improved by increasing the edge effect with the protrusions.
CITATION LIST Patent Literature
PTL 1: JP 2009-196425 A
SUMMARY Technical Problem
In a tire such as the one described above, ground contact pressure concentrates at the edges of the protrusion when driving, causing the edges to wear and become rounded. The edge effect of the protrusions thus degrades, and the improvement in traction performance can no longer be expected. In a conventional tire in which protrusions are formed on the tread surface of the blocks, it has thus been difficult to improve the traction performance over an extended period of time.
Furthermore, in order to improve control performance, it is necessary to improve ground contact performance. One approach for improving ground contact performance would be to reduce the size of the protrusions formed on the tread surface of the blocks, thereby reducing the rigidity of the protrusions and making it easier for the tread surface of the protrusions to deform. By reducing the size of the protrusions, however, the edge effect achieved by the protrusions is reduced, which may result in diminished traction performance. Hence, it has been difficult to improve control performance while maintaining traction performance.
It could therefore be helpful to provide a technique that improves high traction performance over an extended period of time and a technique that can improve control performance while maintaining traction performance.
Solution to Problem
A tire according to one of the embodiments includes a tread with a plurality of blocks formed thereon; a protrusion extending outward in a tire radial direction and formed on more than one block among the plurality of blocks; and a stepped portion formed on a side of the protrusion.
A tire according to another one of the embodiments includes a tread with a plurality of blocks formed thereon; a protrusion extending outward in a tire radial direction and formed on more than one block among the plurality of blocks; and a second concavity formed on a tread surface of the protrusion.
Advantageous Effect
The disclosed tires improve high traction performance over an extended period of time and/or improve control performance while maintaining traction performance.
BRIEF DESCRIPTION OF THE DRAWINGS
In the accompanying drawings:
FIG. 1 is a partial plan view illustrating a tire according to one of the embodiments;
FIG. 2 is a cross-sectional diagram in the tire width direction along the line II-II of the tire in FIG. 1;
FIG. 3 is an expanded view of the area around a protrusion formed on the center block of the tire in FIG. 1;
FIG. 4 is a cross-sectional diagram in the tire width direction along the line III-III of the tire in FIG. 1; and
FIG. 5 is an expanded view of the area around a protrusion formed on an intermediate block of the tire in FIG. 1.
DETAILED DESCRIPTION
Embodiments of my tire will be described below with reference to the drawings.
The tire according to one of the embodiments illustrated in FIG. 1 is a motorcycle tire in which a center block row is formed by a first center block 10 a, a second center block 10 b, a third center block 10 c, a fourth center block 10 d, and a fifth center block 10 e disposed at intervals along the tire circumferential direction, near the tire equatorial plane CL of the tread.
On both sides of the center block row in the tire width direction, an intermediate block row is formed by a first intermediate block 20 a, a second intermediate block 20 b, a third intermediate block 20 c, and a fourth intermediate block 20 d disposed at intervals along the tire circumferential direction.
Furthermore, on both sides of the intermediate block rows in the tire width direction, a shoulder block row is formed by a first shoulder block 30 a, a second shoulder block 30 b, a third shoulder block 30 c, a fourth shoulder block 30 d, and a fifth shoulder block 30 e disposed at intervals along the tire circumferential direction.
The first to fifth center blocks 10 a to 10 e each have an approximately rectangular shape, with the long sides along the tire width direction. At the tire widthwise center of the second to fourth center blocks 10 b to 10 d, a shallow groove 19 that is relatively wide and extends in the tire circumferential direction is formed. The depth of the shallow groove 19 in the tire radial direction is less than the height of the first to fifth center blocks 10 a to 10 e in the tire radial direction.
A protrusion 11 that is rectangular in plan view of the tread is formed on both sides of the tire widthwise center of the tread surface in the first to fifth center blocks 10 a to 10 e, as illustrated in FIG. 1, and in FIG. 2 with respect to the second center block 10 b. As illustrated in FIGS. 2 and 3, a stepped portion 12 having a rectangular perimeter in plan view of the tread is formed on at least a portion of the side of the protrusion 11. A protrusion 21 and a stepped portion 22 are also formed on the third intermediate block 20 c, described below with reference to FIGS. 4 and 5. As illustrated in FIGS. 1 to 3, a first concavity 13 is disposed between two protrusions 11 of the first and fifth center blocks 10 a and 10 e and around the protrusions 11. A block peripheral portion 10 s is formed around the first concavity 13. The first concavity 13 is a groove between the two protrusions 11 and the block peripheral portion 10 s. In the second to fourth center blocks 10 b to 10 d, the first concavity 13 is formed around each of the two protrusions 11, and the block peripheral portion 10 s is formed around each first concavity 13. The first concavity 13 is a groove between each of the protrusions 11 and the block peripheral portion 10 s.
The “tread surface” as used in this disclosure refers to the surface that faces outward in the tire radial direction and can contact the ground when the tire is used.
The “protrusion” of a block as used in this disclosure refers to a portion that projects further outward in the tire radial direction than the surrounding area. The “first concavity” and the “second concavity” refer to portions that are recessed in the tire radial direction from their surroundings.
In this disclosure, the “block peripheral portion” in the blocks on which the protrusions are formed refers to a portion of the block excluding the following: the protrusion, which includes the stepped portion (in the case of the stepped portion being formed) and the second concavity (in the case of the below-described second concavity being formed), the portion inward in the tire radial direction from the protrusion, and the portion inward in the tire radial direction from the first concavity (in the case of the first concavity being formed).
As illustrated in FIG. 1, in plan view of the tread, the perimeter of the tread surface of the protrusion 11 and the perimeter of the stepped portion 12 in the first to fifth center blocks 10 a to 10 e each have sides extending in the tire width direction and sides extending in the tire circumferential direction.
As illustrated in FIGS. 1 to 3, corners (edges) are formed on the outer perimeter and inner perimeter of the block peripheral portion 10 s, the perimeter of the stepped portion 12, and the perimeter of the tread surface of the protrusion 11 in the first to fifth center blocks 10 a to 10 e. The same is true for the shoulder block rows.
While not illustrated, two or more stepped portions may be provided on at least a portion of the side of the protrusion in any of the blocks.
As illustrated in FIG. 1, the first to fourth intermediate blocks 20 a to 20 d are formed to be smaller than each of the first to fifth center blocks 10 a to 10 e and are roughly rectangular in plan view of the tread. As illustrated in FIG. 1, and in FIGS. 4 and 5 with respect to the third intermediate block 20 c, a protrusion 21 that is rectangular in plan view of the tread is formed on the first to fourth intermediate blocks 20 a to 20 d. In the center of the protrusion 21, a second concavity 24 is formed with a depth in the tire radial direction of, for example, 1.5 mm. As illustrated in FIGS. 4 and 5, a stepped portion 22 having a rectangular perimeter in plan view of the tread is formed on at least a portion of the side of the protrusion 21. A first concavity 23 is formed around the protrusion 21, and a block peripheral portion 20 s is formed around the first concavity 23. As illustrated in FIG. 1, in plan view of the tread, the perimeter of the tread surface of the protrusion 21 and the perimeter of the stepped portion 22 in the first to fourth intermediate blocks 20 a to 20 d each have sides extending in the tire width direction and sides extending in the tire circumferential direction.
As illustrated in FIGS. 1, 4, and 5, corners (edges) are formed on the outer perimeter and inner perimeter of the block peripheral portion 20 s, the perimeter of the stepped portion 22, the perimeter of the tread surface of the protrusion 21, and the perimeter of the (virtual) opening 24 o of the second concavity 24 in the first to fourth intermediate blocks 20 a to 20 d.
As illustrated in FIG. 1, the first to fifth shoulder blocks 30 a to 30 e are hexagonal in plan view of the tread. A protrusion 31 is formed in each of the first to fifth shoulder blocks 30 a to 30 e. While not illustrated, a stepped portion similar to the above-described stepped portion 12 is formed on at least a portion of the side of the protrusion 31. A first concavity 33 is formed around the protrusion 31, and a block peripheral portion 30 s is formed around the first concavity 33. In plan view of the tread, both the perimeter of the tread surface of the protrusion 31 and the perimeter of the stepped portion in the first to fifth shoulder blocks 30 a and 30 e have an approximately similar shape as the shape of the perimeter of the block.
Next, the behavior of the blocks when the tire is used is described, taking the second center block 10 b as an example. The other blocks exhibit similar behavior.
In the tire of this embodiment, the protrusion 11 and the block peripheral portion 10 s contact the ground when the tire is new. Therefore, both the edges of the protrusion 11 and the edges of the block peripheral portion 10 s achieve an edge effect, in particular when driving on irregular terrain. As illustrated in FIG. 2, setting a and b so that
−2 mm≤a−b<2 mm
where a is the height of the tread surface of the block peripheral portion 10 s and b is the height of the tread surface of the protrusion 11 is preferable, in that both the protrusion 11 and the block peripheral portion 10 s contact the ground.
In this disclosure, the “height” of the stepped portion in the protrusion and the “height” of the tread surface of the block peripheral portion and the protrusion refer to the height in the tire radial direction from the base end of the protrusion.
Next, as the tire is driven, the edges of the protrusion 11 and the edges of the block peripheral portion 10 s wear and become rounded due to ground contact pressure, and the height a of the tread surface of the block peripheral portion 10 s and the height b of the tread surface of the protrusion 11 illustrated in FIG. 2 gradually decrease.
As the above-described wear progresses, the height a of the tread surface of the block peripheral portion 10 s becomes equal to or less than the height c of the stepped portion 12 formed on the side of the protrusion 11, and the stepped portion 12 ends up positioned further outward in the tire radial direction than the tread surface of the block peripheral portion 10 s. As a result, the edges of the stepped portion 12 begin to achieve an edge effect.
In other words, after wear of the block progresses, the edge effect of the edges of the protrusion 11 and the edges of the block peripheral portion 10 s diminishes, since these edges wear and become rounded, whereas the unworn edges of the stepped portion 12 newly achieve a large edge effect. Therefore, the edge effect is maintained even as the block wears, thereby improving the traction performance over an extended period of time.
By providing the stepped portion 12 as in this embodiment at least in the block row that is closest to the tire equatorial plane CL (center block row), which is the region where the ground contact pressure is highest, the stepped portion 12 can achieve higher traction performance.
In this embodiment, as illustrated in FIGS. 1 to 3, the first concavity 13 is formed between the protrusion 11 and the block peripheral portion 10 s, adjacent to the protrusion 11. As a result, an edge effect can be achieved at the inner perimeter of the block peripheral portion 10 s, improving the traction performance. Furthermore, the protrusion 11 moves more easily and follows the shape of the road, thereby improving the ground contact performance and the control performance.
The height c of the stepped portion 12 in the protrusion 11 is more preferably smaller than the height d from the stepped portion 12 to the tread surface of the protrusion 11. By thus providing the stepped portion 12 at a low position, the rigidity of the protrusion 11 can be decreased further, thereby further improving the ground contact performance.
Furthermore, by setting the height c of the stepped portion 12 in the protrusion 11 to be lower than the height a of the tread surface of the block peripheral portion 10 s, wear to the edges of the stepped portion 12 is suppressed until wear of the protrusion 11 progresses, and after wear of the protrusion 11 progresses, the stepped portion 12 achieves a great edge effect, thus maintaining the traction performance. Note that c may, for example, be from 1 mm to 2 mm, and a-c may, for example, be approximately 1 mm.
As illustrated in FIG. 3, in plan view of the tread, the perimeter of the tread surface of the protrusion 11 is preferably shaped as a polygon (a rectangle in FIG. 3) having sides 11 a extending in the tire width direction and sides 11 b extending in the tire circumferential direction, and the perimeter of the stepped portion 12 is preferably shaped as a polygon (a rectangle in FIG. 3) having sides 12 a extending in the tire width direction and sides 12 b extending in the tire circumferential direction.
In this case, in plan view of the tread, the edge effect can be improved by adopting a polygon for the shape of the perimeter of the tread surface of the protrusion 11 and the perimeter of the stepped portion 12. Providing these perimeters with sides extending in the tire width direction improves traction performance when driving in a straight line. Furthermore, providing these perimeters with sides extending in the tire circumferential direction improves traction performance when turning.
Here, the area S1 of the upper surface of the stepped portion 12 (the region with diagonal lines extending to the lower right in FIG. 3) is preferably less than the area S2 of the tread surface of the protrusion 11 (the region with diagonal lines extending to the upper right in FIG. 3).
In this case, sufficiently securing the area of the tread surface of the protrusion 11 not only guarantees ground contact performance and control performance, but also ensures the rigidity of the protrusion 11 and guarantees traction performance.
Next, the behavior of the third intermediate block 20 c is described. Note that blocks having a protrusion formed thereon, with a second concavity formed on the tread surface of the protrusion, exhibit similar behavior.
In the tire of this embodiment, the protrusion 21 and the block peripheral portion 20 s contact the ground when the tire is used. Therefore, both the edges of the protrusion 21 and the edges of the block peripheral portion 20 s achieve an edge effect, in particular when driving on irregular terrain, thereby improving traction performance.
The second concavity 24 is formed on the tread surface of the protrusion 21. As a result, the rigidity of the tread surface of the protrusion 21 decreases as compared to when the second concavity 24 is not formed on the tread surface of the protrusion 21. Therefore, in particular on a hard road surface, the tread surface of the protrusion 21 can follow the shape of the road surface more easily, improving ground contact performance and thereby improving control performance.
By providing the second concavity 24, the area of the tread surface of the protrusion 21 decreases. In general, as the area of the tread surface decreases, the ground contact performance diminishes, and the control performance also diminishes. The above-described effect of increasing the ground contact performance of the protrusion 21 and improving the control performance by forming the second concavity 24 in the protrusion 21, however, exceeds the reduction in control performance due to the reduction in area of the tread surface of the protrusion 21. As a result, the control performance can be improved.
As described above, by providing the second concavity 24, the rigidity of the tread surface of the protrusion 21 decreases. In general, as the rigidity of the tread surface decreases, so does the edge effect, and the traction performance also decreases. By forming the second concavity 24 in the protrusion 21, however, the perimeter of the opening 24 o of the second concavity 24 achieves an edge effect. Therefore, the edge effect is guaranteed even when the second concavity 24 is provided, and traction performance is maintained.
In order to achieve the above-described maintenance of traction performance and the effect of improving control performance, the area S3 of the tread surface of the protrusion 21 (the region with diagonal lines extending to the lower right in FIG. 5) is preferably greater than the area S4 of the base of the second concavity 24 (the region with diagonal lines extending to the upper right in FIG. 5). The area S4 of the base of the second concavity 24 is further preferably 10% to 30% of the area of the upper surface of the protrusion 21 (the area of the region surrounded by the outer perimeter of the protrusion 21, i.e. S3+S4).
In this embodiment, as illustrated in FIGS. 1, 4, and 5, the first concavity 23 is formed between the protrusion 21 and the block peripheral portion 20 s, adjacent to the protrusion 21. As a result, an edge effect can be achieved at the inner perimeter of the block peripheral portion 20 s, improving the traction performance. Furthermore, the protrusion 21 moves more easily and follows the shape of the road better, thereby improving the ground contact performance and the control performance.
By not providing the second concavity in the block row (center block row) 10 a to 10 e that is closest to the tire equatorial plane CL as in this embodiment, sufficient block rigidity can be guaranteed in the center block row, where the greatest tire circumferential direction input is applied. Furthermore, by providing the second concavity 24 in blocks distant from the tire equatorial plane CL (in this embodiment, the intermediate block row 20 a to 20 d), the traction performance can be improved not only when driving in a straight line but also when turning.
As illustrated in FIG. 5, in plan view of the tread, the perimeter of the tread surface of the protrusion 21 is preferably shaped as a polygon (a rectangle in FIG. 5) having sides 21 a extending in the tire width direction and sides 21 b extending in the tire circumferential direction. In plan view of the tread, the perimeter of the opening of the second concavity 24 is preferably shaped as a polygon (a rectangle in FIG. 5) having sides 24 a extending in the tire width direction and sides 24 b extending in the tire circumferential direction.
By thus forming the tread surface of the protrusion 21 and/or the perimeter of the opening of the second concavity 24 to be a polygon in plan view of the tread, the edge effect can be improved. Providing these perimeters with sides extending in the tire width direction improves traction performance when driving in a straight line. Furthermore, providing these perimeters with sides extending in the tire circumferential direction improves traction performance when turning.
In the tire of this embodiment, as illustrated in FIGS. 4 and 5, the stepped portion 22 is formed on the side of the protrusion 21 in the third intermediate block 20 c. As a result, after wear of the edges of the protrusion 21 has progressed, the edges of the stepped portion 22 achieve a new edge effect, thereby allowing for high traction performance to be maintained over an extended period of time.
From the perspective of guaranteeing sufficient rigidity of the protrusion 21, obtaining a sufficient edge effect, and guaranteeing traction performance, and from the perspective of preventing the protrusion 21 from breaking off when the tire is used, the height f of the tread surface of the protrusion 21 in the tire radial direction from the tread surface of the block peripheral portion 20 s is preferably less than the height g in the tire radial direction from the base of the first concavity 23 to the tread surface of the block peripheral portion 20 s, and the height of the protrusion 21 is preferably set to an appropriate value. If the height f of the tread surface of the protrusion 21 in the tire radial direction from the tread surface of the block peripheral portion 20 s is equal to or greater than the height g in the tire radial direction from the base of the first concavity 23 to the tread surface of the block peripheral portion 20 s, the rigidity of the protrusion 21 diminishes significantly, which might prevent sufficient traction performance from being obtained.
From the same perspectives, the depth e of the second concavity 24 in the tire radial direction is preferably 85% or less of the height h in the tire radial direction from the base of the first concavity 23 to the tread surface of the protrusion 21.
From the perspective of improving control performance by sufficiently decreasing rigidity of the portion that projects out more than the block peripheral portion 20 s in the protrusion 21, i.e. the portion that is strongly related to ground contact performance, the second concavity 24 is preferably made sufficiently deep by setting the depth e of the second concavity 24 in the tire radial direction to be equal to or greater than the height f of the tread surface of the protrusion 21 in the tire radial direction from the tread surface of the block peripheral portion 20 s.
The tread is preferably formed from rubber having a JIS A hardness of 55 or greater. In this case, the edge effect of the block can be increased, improving traction performance, and the wear resistance of the block can be improved.
In the tire of this embodiment, by forming the stepped portion on the side of the protrusion and/or forming the second concavity on the tread surface of the protrusion, the tread surface of the block is allowed to move easily, improving ground contact performance. Therefore, sufficient ground contact performance can be guaranteed even when using hard rubber in the tread.
The tread is also preferably formed from rubber having a JIS A hardness of 80 or less. If the JIS A hardness of the rubber is larger than 80, the ground contact performance might decrease.
EXAMPLES Example 1
Bias tires and radial tires were prepared, and the traction performance was evaluated when the tire was new and after tire wear, as described below.
The sizes of the prepared bias tires were 120/80-19 and 110/90-19, and these tires had a two-layer nylon carcass ply and a one-layer nylon breaker.
The sizes of the prepared radial tires were 120/80R19 and 110/90R19, and these tires had a two-layer nylon carcass ply and a one-layer Kevlar belt.
Using these bias tires and radial tires, the below-described Example Tires 1 and 2 and Comparative Example Tires 1 and 2 were prepared.
The Example Tires 1 and 2 are provided with the tread pattern illustrated in FIGS. 1 to 3, a protrusion is formed on each block, and a stepped portion is formed on the side of each protrusion. A first concavity is formed adjacent to the protrusion in each block. In plan view of the tread, the perimeter of the tread surface of the protrusion and the perimeter of the stepped portion in each of the center blocks and intermediate blocks are shaped as a rectangle having sides extending in the tire width direction and sides extending in the tire circumferential direction. The height of the tread surface of the protrusion in each block is greater than the height of the tread surface of the block peripheral portion. The height of the stepped portion of the protrusion in each block is less than the height of the tread surface of the block peripheral portion. Furthermore, the JIS A hardness of the rubber forming the tread is 55.
Example Tire 2 has a similar structure to that of the Example Tire, except that the height of the stepped portion is equal to or greater than the height of the block peripheral portion.
In Comparative Example Tire 1, a concavity is formed in the center of the tread surface of each block. In plan view of the tread, the perimeter of the concavity is shaped as a rectangle having sides extending in the tire width direction and sides extending in the tire circumferential direction. A stepped portion is not formed on the side of the concavity. Furthermore, a protrusion is not formed in each block. Other than these points, Comparative Example Tire 2 is the same as Example Tire 1.
In Comparative Example Tire 2, a similar first concavity and a similar protrusion as in Example Tire 1 are formed on the tread surface of each block, but a stepped portion is not formed on the side of the protrusion. Other than these points, Comparative Example Tire 1 is the same as Example Tire 1.
Evaluation was made by mounting each of the prepared tires on a motorcycle, having a professional motocross rider drive the motorcycle 100 km on a motocross competition course, and having the rider provide a sensory assessment, on a 10-point scale, of the traction performance when driving in a straight line and when turning both initially (new tire) and after wear.
The results of the evaluation indicated no difference between bias tires and radial tires for both the Example Tires 1 and 2 and the Comparative Example Tires 1 and 2. Table 1 lists the results.
TABLE 1
Initial Traction
Height of tread Stepped Height of stepped traction performance
First concavity Protrusion surface of protrusion portion portion performance after wear
Example Tire
1 provided provided greater than height of provided less than height of 9 8
(bias, radial) tread surface of block tread surface of
peripheral portion block peripheral
portion
Example Tire 2 provided provided greater than height of provided equal to or greater 9 7
(bias, radial) tread surface of block than height of tread
peripheral portion surface of block
peripheral portion
Comparative not provided not provided not provided 7 4
Example Tire 1 (concavity provided
(bias, radial) in center of block
tread surface)
Comparative not provided provided greater than height of not provided 9 5
Example Tire 2 tread surface of block
(bias, radial) peripheral portion
The results listed in Table 1 show that as compared to Comparative Example Tires 1 and 2, Example Tires 1 and 2 achieve equal or better initial traction performance and have greatly improved traction performance after wear. It is also clear that Example Tire 1, in which the height of the stepped portion is lower than the height of the tread surface of the block peripheral portion, has better traction performance after wear than Example Tire 2, in which the height of the stepped portion is equal to or greater than the height of the tread surface of the block peripheral portion.
Example 2
Bias tires and radial tires were prepared, and the traction performance and control performance were evaluated, as described below.
The sizes of the prepared bias tires were 120/80-19 and 110/90-19, and these tires had a two-layer nylon carcass ply and a one-layer nylon breaker.
The sizes of the prepared radial tires were 120/80R19 and 110/90R19, and these tires had a two-layer nylon carcass ply and a one-layer Kevlar belt.
Using these bias tires and radial tires, the below-described Example Tires 1 and 2 and Comparative Example Tires 1 and 2 were prepared.
The Example Tire 1 is provided with the tread pattern illustrated in FIGS. 1, 4, and 5, a protrusion is formed on each block, and a second concavity is formed on the tread surface of each protrusion in the intermediate blocks. A first concavity is formed adjacent to the protrusion in each block. The height of the tread surface of the protrusion in each block is greater than the height of the tread surface of the block peripheral portion. In each block, the height f of the tread surface of the protrusion in the tire radial direction from the tread surface of the block peripheral portion is less than the height g in the tire radial direction from the base of the first concavity to the tread surface of the block peripheral portion. The perimeter of the tread surface of the protrusion and the perimeter of the opening of the second concavity in each of the intermediate blocks are, in plan view of the tread, substantially shaped as a rectangle having sides extending in the tire width direction and sides extending in the tire circumferential direction. In the intermediate blocks, the area of the tread surface of the protrusion is greater than the area of the opening of the second concavity. In the intermediate blocks, the depth e of the second concavity in the tire radial direction is equal to or greater than the height f of the tread surface of the protrusion in the tire radial direction from the tread surface of the block peripheral portion. Furthermore, the JIS A hardness of the rubber forming the tread is 55.
Example Tire 2 is the same as Example Tire 1, except that the first concavity formed in Example Tire 1 is not formed, but rather the block peripheral portion encompasses the portion where the first concavity is formed in Example Tire 1.
In Comparative Example Tire 1, a concavity is formed in the center of the tread surface of each block. In plan view of the tread, the perimeter of the concavity is shaped as a rectangle having sides extending in the tire width direction and sides extending in the tire circumferential direction. A second concavity is not formed. Other than these points, Comparative Example Tire 1 is the same as Example Tire 1.
In Comparative Example Tire 2, a similar first concavity and a similar protrusion as in Example Tire 1 are formed on the tread surface of each block, but a second concavity is not formed on the tread surface of the protrusion. Other than these points, Comparative Example Tire 2 is the same as Example Tire 1.
Evaluation was made by mounting each of the prepared tires on a motorcycle, having a professional motocross rider drive the motorcycle on a motocross competition course, and having the rider provide a sensory assessment, on a 10-point scale, of the traction performance and control performance.
The results of the evaluation indicated that no difference between bias tires and radial tires for both the Example Tires 1 and 2 and the Comparative Example Tires 1 and 2, nor was any difference observed when changing the tire size. Table 2 lists the results.
TABLE 2
Height of tread Second Traction Control
Protrusion surface of protrusion First concavity concavity performance performance
Example Tire
1 provided greater than height of provided provided 8 9
(bias, radial) tread surface of block
peripheral portion
Example Tire 2 provided greater than height of not provided provided 8 8
(bias, radial) tread surface of block
peripheral portion
Comparative not provided not provided not provided 5 5
Example Tire 1 (concavity provided
(bias, radial) in center of block
tread surface)
Comparative provided greater than height of provided not provided 7 7
Example Tire 2 tread surface of block
(bias, radial) peripheral portion
The results listed in Table 2 show that as compared to Comparative Example Tires 1 and 2, both the traction performance and the control performance are greatly improved in Example Tires 1 and 2.
It is also clear that Example Tire 1, in which the first concavity is formed at a position adjacent to the protrusion, has even better control performance than Example Tire 2, in which the first concavity is not formed.
REFERENCE SIGNS LIST
    • 10 a-10 e First to fifth center blocks
    • 10 s Block peripheral portion of center block
    • 11 Protrusion of center block
    • 12 Stepped portion of center block
    • 13 First concavity of center block
    • 19 Shallow groove of center block
    • 20 a-20 d First to fourth intermediate blocks
    • 21 Protrusion of intermediate block
    • 22 Stepped portion of intermediate block
    • 23 First concavity of intermediate block
    • 24 Second concavity of intermediate block
    • 20 s Block peripheral portion of intermediate block
    • 30 a-30 e First to fifth shoulder blocks
    • 31 Protrusion of shoulder block
    • 33 First concavity of shoulder block
    • 30 s Block peripheral portion of shoulder block
    • a Height of tread surface of block peripheral portion
    • b Height of tread surface of protrusion
    • c Height of stepped portion
    • d Height from stepped portion to tread surface of protrusion
    • e Depth of second concavity in tire radial direction
    • f Height of tread surface of protrusion in tire radial direction
    • from tread surface of block peripheral portion
    • g Height in tire radial direction from base of first concavity to
    • tread surface of block peripheral portion
    • h Height in tire radial direction from base of first concavity to
    • tread surface of protrusion
    • CL Tire equatorial plane

Claims (9)

The invention claimed is:
1. A tire comprising:
a tread with a plurality of blocks formed thereon;
a protrusion extending outward in a tire radial direction and formed on more than one block among the plurality of blocks;
a stepped portion formed on a side of the protrusion;
a first concavity formed around the stepped portion; and
a block peripheral portion formed around the first concavity,
wherein in plan view of the tread, a perimeter of a tread surface of the protrusion is shaped as a polygon having at least one side extending in a tire width direction and one side extending in a tire circumferential direction, and
wherein the height of the stepped portion is equal or greater than the height of the block peripheral portion.
2. The tire of claim 1, wherein the area of an upper surface of the stepped portion is less than the area of a tread surface of the protrusion.
3. The tire of claim 1, further comprising
a second concavity formed on a tread surface of the protrusion.
4. The tire of claim 3, wherein a height of the tread surface of the protrusion in the tire radial direction from a tread surface of a block peripheral portion is less than a height in the tire radial direction from a base of the first concavity to the tread surface of the block peripheral portion.
5. The tire of claim 3, wherein in plan view of the tread, a perimeter of an opening of the second concavity is shaped as a polygon having at least one side extending in a tire width direction and one side extending in a tire circumferential direction.
6. The tire of claim 3, wherein the area of a tread surface of the protrusion is greater than the area of a base of the second concavity.
7. The tire of claim 3, wherein a depth of the second concavity in the tire radial direction is equal to or greater than a height of the tread surface of the protrusion in the tire radial direction from a tread surface of a block peripheral portion.
8. The tire of claim 1, wherein the tread is formed from rubber having a JIS A hardness of 55 or greater.
9. The tire of claim 3, wherein the tread is formed from rubber having a JIS A hardness of 55 or greater.
US14/773,477 2013-04-24 2014-04-24 Tire Active 2037-03-18 US10850567B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013-091648 2013-04-24
JP2013091648A JP6093637B2 (en) 2013-04-24 2013-04-24 tire
JP2013091654A JP5529998B1 (en) 2013-04-24 2013-04-24 tire
JP2013-091654 2013-04-24
PCT/JP2014/002320 WO2014174851A1 (en) 2013-04-24 2014-04-24 Tire

Publications (2)

Publication Number Publication Date
US20160016437A1 US20160016437A1 (en) 2016-01-21
US10850567B2 true US10850567B2 (en) 2020-12-01

Family

ID=51791439

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/773,477 Active 2037-03-18 US10850567B2 (en) 2013-04-24 2014-04-24 Tire

Country Status (3)

Country Link
US (1) US10850567B2 (en)
EP (1) EP2990233B1 (en)
WO (1) WO2014174851A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637804B2 (en) 2015-07-15 2020-01-29 株式会社ブリヂストン Pneumatic tires for motorcycles
JP6834464B2 (en) * 2016-12-22 2021-02-24 住友ゴム工業株式会社 tire
JP7070071B2 (en) * 2018-05-15 2022-05-18 住友ゴム工業株式会社 Motorcycle tires for rough terrain
JP7110784B2 (en) * 2018-07-19 2022-08-02 住友ゴム工業株式会社 tire
JP7124531B2 (en) * 2018-08-01 2022-08-24 住友ゴム工業株式会社 tires for rough terrain
JP7070233B2 (en) * 2018-08-17 2022-05-18 住友ゴム工業株式会社 Tires for rough terrain
EP3616945B1 (en) * 2018-08-29 2022-01-26 Sumitomo Rubber Industries, Ltd. Motorcycle tyre for off-road
EP3747673A1 (en) * 2019-06-05 2020-12-09 Nokian Raskaat Renkaat Oy Pneumatic vehicle tyre comprising a wear indicator

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578053A (en) 1969-09-05 1971-05-11 Goodyear Tire & Rubber Tire stud
DE2804939A1 (en) 1978-02-06 1979-08-09 Anton Wallner Skid-preventing fitting for pneumatic tyre - consists of abradable, self-roughening, part which fits into plastics or soft-metal component inserted into depression in tyre
JPS5889404U (en) * 1981-12-14 1983-06-17 横浜ゴム株式会社 Radial tires for rally
US5957180A (en) * 1996-03-05 1999-09-28 The Yokohama Rubber Co., Ltd. Pneumatic tire including kerfs
JP2000211321A (en) * 1999-01-22 2000-08-02 Bridgestone Corp Pneumatic tire
JP2001187520A (en) * 1999-10-21 2001-07-10 Bridgestone Corp Pneumatic tire
JP2006218948A (en) 2005-02-09 2006-08-24 Bridgestone Corp Pneumatic tire
JP2008279996A (en) 2007-05-14 2008-11-20 Sumitomo Rubber Ind Ltd Tire for motorcycle for traveling on rough terrain
JP2009196425A (en) 2008-02-19 2009-09-03 Bridgestone Corp Pneumatic tire for two-wheeled vehicle
US20100000643A1 (en) 2006-11-30 2010-01-07 Claudio Minoli Tire tread comprising blocks with stepped sidewalls
JP2010143370A (en) 2008-12-18 2010-07-01 Bridgestone Corp Tire for two-wheeled vehicle
JP2010188931A (en) 2009-02-19 2010-09-02 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2011521845A (en) 2008-06-03 2011-07-28 ソシエテ ド テクノロジー ミシュラン Ice tire
JP2012011916A (en) 2010-07-01 2012-01-19 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2012011953A (en) 2010-07-02 2012-01-19 Sumitomo Rubber Ind Ltd Pneumatic tire for traveling on off-road
US20120024443A1 (en) * 2010-07-29 2012-02-02 Shingo Ishida Motorcycle tire for off-road traveling
JP2012030615A (en) 2010-07-28 2012-02-16 Sumitomo Rubber Ind Ltd Motorcycle tire for off-road traveling
JP2012056479A (en) 2010-09-09 2012-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012126363A (en) 2010-12-17 2012-07-05 Yokohama Rubber Co Ltd:The Pneumatic tire
WO2013009314A1 (en) 2011-07-14 2013-01-17 Michelin Recherche Et Technique, S.A. Method and tire for improved uniformity and endurance of aggressive tread designs
JP2013060075A (en) 2011-09-13 2013-04-04 Yokohama Rubber Co Ltd:The Pneumatic tire
JP5182455B1 (en) 2012-07-13 2013-04-17 横浜ゴム株式会社 Pneumatic tire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3145252A1 (en) * 1981-11-14 1983-05-19 Continental Gummi-Werke Ag, 3000 Hannover VEHICLE WHEEL

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578053A (en) 1969-09-05 1971-05-11 Goodyear Tire & Rubber Tire stud
DE2804939A1 (en) 1978-02-06 1979-08-09 Anton Wallner Skid-preventing fitting for pneumatic tyre - consists of abradable, self-roughening, part which fits into plastics or soft-metal component inserted into depression in tyre
JPS5889404U (en) * 1981-12-14 1983-06-17 横浜ゴム株式会社 Radial tires for rally
US5957180A (en) * 1996-03-05 1999-09-28 The Yokohama Rubber Co., Ltd. Pneumatic tire including kerfs
JP2000211321A (en) * 1999-01-22 2000-08-02 Bridgestone Corp Pneumatic tire
JP2001187520A (en) * 1999-10-21 2001-07-10 Bridgestone Corp Pneumatic tire
JP2006218948A (en) 2005-02-09 2006-08-24 Bridgestone Corp Pneumatic tire
US20100000643A1 (en) 2006-11-30 2010-01-07 Claudio Minoli Tire tread comprising blocks with stepped sidewalls
JP2008279996A (en) 2007-05-14 2008-11-20 Sumitomo Rubber Ind Ltd Tire for motorcycle for traveling on rough terrain
US20080283167A1 (en) * 2007-05-14 2008-11-20 Sumitomo Rubber Industries, Ltd. Motorcycle tire for off-road traveling
JP2009196425A (en) 2008-02-19 2009-09-03 Bridgestone Corp Pneumatic tire for two-wheeled vehicle
US20110024009A1 (en) * 2008-02-19 2011-02-03 Bridgestone Corporation Pneumatic tire for motorcycle
JP2011521845A (en) 2008-06-03 2011-07-28 ソシエテ ド テクノロジー ミシュラン Ice tire
JP2010143370A (en) 2008-12-18 2010-07-01 Bridgestone Corp Tire for two-wheeled vehicle
US20110308681A1 (en) * 2008-12-18 2011-12-22 Bridgestone Corporation Tire for motrocycle
JP2010188931A (en) 2009-02-19 2010-09-02 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012011916A (en) 2010-07-01 2012-01-19 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2012011953A (en) 2010-07-02 2012-01-19 Sumitomo Rubber Ind Ltd Pneumatic tire for traveling on off-road
JP2012030615A (en) 2010-07-28 2012-02-16 Sumitomo Rubber Ind Ltd Motorcycle tire for off-road traveling
US20120024443A1 (en) * 2010-07-29 2012-02-02 Shingo Ishida Motorcycle tire for off-road traveling
JP2012030658A (en) 2010-07-29 2012-02-16 Sumitomo Rubber Ind Ltd Motorcycle tire for off-road traveling
JP2012056479A (en) 2010-09-09 2012-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012126363A (en) 2010-12-17 2012-07-05 Yokohama Rubber Co Ltd:The Pneumatic tire
WO2013009314A1 (en) 2011-07-14 2013-01-17 Michelin Recherche Et Technique, S.A. Method and tire for improved uniformity and endurance of aggressive tread designs
JP2013060075A (en) 2011-09-13 2013-04-04 Yokohama Rubber Co Ltd:The Pneumatic tire
JP5182455B1 (en) 2012-07-13 2013-04-17 横浜ゴム株式会社 Pneumatic tire

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Jan. 7, 2014, Notification of Reasons for Refusal issued by the Japan Patent Office in the corresponding Japanese Patent Application No. 2013-091654.
Jun. 17, 2014 International Search Report issued in International Patent Application No. PCT/JP2014/002320.
Machine translation of JP2000-211321 (no date). *
Machine translation of JP2001-187520 (no date). *

Also Published As

Publication number Publication date
EP2990233B1 (en) 2017-05-31
EP2990233A4 (en) 2016-04-06
US20160016437A1 (en) 2016-01-21
WO2014174851A1 (en) 2014-10-30
EP2990233A1 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
US10850567B2 (en) Tire
US9469159B2 (en) Pneumatic tire
US10252575B2 (en) Pneumatic tire
JP6093637B2 (en) tire
US20140360639A1 (en) Pneumatic tire
US20170174007A1 (en) Pneumatic tire
US9656520B2 (en) Pneumatic tire
JP6261457B2 (en) Pneumatic tire
JP6774307B2 (en) Pneumatic tires
CA2969747C (en) Pneumatic tire
JP2010018154A (en) Tire
JP5513065B2 (en) tire
US10131189B2 (en) Pneumatic tire
JP6934410B2 (en) tire
JP5529998B1 (en) tire
JP2009202639A (en) Pneumatic tire
JP6198577B2 (en) Pneumatic tire
JP5497462B2 (en) tire
KR100592061B1 (en) Pneumatic tire for heavy vehicle
JP6650798B2 (en) Radial tires for heavy loads
JP2009161046A (en) Pneumatic tire
WO2016199774A1 (en) Tire
JP5475591B2 (en) Pneumatic tire
JP6777487B2 (en) Pneumatic tires
JP6774306B2 (en) Pneumatic tires

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRIDGESTONE CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ITO, MASAFUMI;REEL/FRAME:036508/0984

Effective date: 20150727

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE