US10690067B2 - Waste gate valve control method and control device - Google Patents

Waste gate valve control method and control device Download PDF

Info

Publication number
US10690067B2
US10690067B2 US16/071,216 US201616071216A US10690067B2 US 10690067 B2 US10690067 B2 US 10690067B2 US 201616071216 A US201616071216 A US 201616071216A US 10690067 B2 US10690067 B2 US 10690067B2
Authority
US
United States
Prior art keywords
waste gate
level
gate valve
valve body
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/071,216
Other versions
US20190353107A1 (en
Inventor
Masashi Morikawa
Mitsuhiko Kubota
Tsubasa ENDO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Assigned to NISSAN MOTOR CO., LTD. reassignment NISSAN MOTOR CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDO, Tsubasa, MORIKAWA, MASASHI, KUBOTA, MITSUHIKO
Publication of US20190353107A1 publication Critical patent/US20190353107A1/en
Application granted granted Critical
Publication of US10690067B2 publication Critical patent/US10690067B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • F02B37/186Arrangements of actuators or linkage for bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • F16K31/042Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves with electric means, e.g. for controlling the motor or a clutch between the valve and the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • F16K31/043Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/16End position calibration, i.e. calculation or measurement of actuator end positions, e.g. for throttle or its driving actuator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to valve opening control of a waste gate valve which is provided to a turbocharger.
  • a turbocharger used for supercharging of an internal combustion engine is provided with a waste gate valve at a turbine part which is configured so as to bypass a part of exhaust flow without passing through a turbine wheel, for supercharging pressure control.
  • a so-called swing type mechanism is disclosed in which the linear motion of a rod of an electric actuator is converted to the rotational motion of a rotation shaft through a link and then a poppet type valve body which is supported on the distal end of an arm fixed to the rotation shaft oscillates.
  • the present invention is one configured to perform a process when a waste gate valve is closed from an opening state to a full closing position, wherein, the process includes increasing the driving force of an actuator in a stage in which a valve body is locally seated.
  • the valve body becomes in a state of coming in tight contact with a seat surface, while displacing a spring member.
  • FIG. 1 is an explanatory drawing showing a system configuration of an embodiment of the present invention.
  • FIG. 2 is a sectional view showing a main part of a turbocharger.
  • FIG. 3 is a main part enlarged view showing a valve body attachment structure of a waste gate valve.
  • FIG. 4 is a flow chart showing a flow of control of an embodiment.
  • FIG. 5 is a flow chart showing a flow of a process of full closing control.
  • FIG. 6 is a characteristic diagram showing features of a waste gate valve opening degree to an engine operation condition.
  • FIG. 7 is a time chart showing an operation at the time of the full closing control immediately after engine start.
  • FIG. 1 is a schematic explanatory drawing showing the system configuration of an embodiment of the present invention.
  • An exhaust passage 2 of an internal combustion engine 1 that is a spark ignition type gasoline engine is disposed with an exhaust gas turbine 4 of a turbocharger 3 , and on its downstream side, a catalyst converter 6 in which, for example, a three way catalyst is used is disposed.
  • An exhaust muffler which is not shown in the drawings is provided on the further downstream side of exhaust passage 2 , and exhaust passage 2 is opened outside via the exhaust muffler.
  • Exhaust gas turbine 4 is provided with a waste gate valve 7 for supercharging pressure control.
  • internal combustion engine 1 has, for example, a direct injection type configuration, and a fuel injection valve for injecting fuel into cylinders, which is not shown in the drawings, is provided in each cylinder, and an ignition plug which is not shown in the drawings is provided in each of the cylinders.
  • Internal combustion engine 1 is not limited to the direct injection type, and may be a port injection type fuel injection device.
  • An intake passage 10 of internal combustion engine 1 is disposed with an air cleaner 11 , an air flow meter 12 and a throttle valve 13 arranged in this order from the upstream side.
  • a compressor 5 of turbocharger 3 is disposed between air flow meter 12 and throttle valve 13 .
  • a water-cooled type or an air-cooled type intercooler 14 is interposed between compressor 5 and throttle valve 13 .
  • intake passage 10 is provided with a recirculation passage 16 which communicates between the upstream side and the downstream side of compressor 5 .
  • This recirculation passage 16 is provided with a recirculation valve 17 .
  • This recirculation valve 17 has a function of circulating intake air by opening the valve at the time of deceleration when throttle valve 13 is suddenly closed.
  • a supercharging pressure sensor 15 for detecting supercharging pressure is disposed on the downstream side of throttle valve 13 of intake passage 10 .
  • Waste gate valve 7 has a configuration in which the opening degree of waste gate valve 7 is controlled by an electric actuator 20 , and a position sensor 21 is included in electric actuator 20 to detect an actual opening degree.
  • electric actuator 20 outputs the rotation of an electric motor as the movement in the axial direction of a rod 22 by a ball screw mechanism, and position sensor 21 detects the axial direction position of rod 22 with respect to the case of the actuator.
  • Rod 22 is linked to a poppet type valve body 7 a of waste gate valve 7 via a link 23 and an arm 24 .
  • the operation of electric actuator 20 is controlled by an engine controller 25 which performs various kinds of control of internal combustion engine 1 .
  • detection signals of sensors such as a cooling water temperature sensor 26 which detects a cooling water temperature TW of internal combustion engine 1 , an accelerator opening degree sensor 27 which detects an accelerator depressing amount which is not shown in the drawings, that is, an accelerator opening degree APO, a crank angle sensor 28 which detects a rotation speed Ne of internal combustion engine 1 and an atmospheric pressure sensor 29 which detects an atmospheric pressure ATM, are input to engine controller 25 .
  • the opening degree of throttle valve 13 , the fuel injection amount of the fuel injection valves which are not shown in the drawings and the ignition timing of the ignition plugs which are not shown in the drawings are also controlled by engine controller 25 .
  • FIG. 2 shows a more specific configuration example of waste gate valve 7 provided to exhaust gas turbine 4 of turbocharger 3 .
  • valve body 7 a of waste gate valve 7 is positioned at an exhaust outlet portion 33 of a turbine housing 31 having a scroll portion 32 , and is configured to open and close a bypass passage 34 (schematically shown in FIG. 1 ) from exhaust outlet portion 33 side, which communicates the upstream side part of scroll portion 32 with exhaust outlet portion 33 .
  • This waste gate valve 7 has a so-called swing type configuration, and valve body 7 a is supported on the distal end of arm 24 having a shaft portion 24 a .
  • Shaft portion 24 a is rotatably supported on turbine housing 31 , and one end of link 23 is fixed to the base end of shaft portion 24 a which is exposed to the outer surface of turbine housing 31 .
  • Rod 22 of electric actuator 20 for detail, an intermediate rod 22 a is connected to the other end of link 23 via a pin 35 .
  • the basic configuration of the swing type waste gate valve is publicly known by, for example, Japanese Patent Application Publication No. 2014-58894. In this configuration, arm 24 oscillates with shaft portion 24 a as a center by the axial direction movement of rod 22 of electric actuator 20 , and with this, circular valve body 7 a opens and closes the distal end opening of bypass passage 34 .
  • FIG. 3 shows an example of the attachment structure of valve body 7 a in the distal end of arm 24 .
  • a shaft portion 7 b in the center of valve body 7 a penetrates an attachment hole 24 b of arm 24 , and is prevented from coming out by attaching a ring-shaped fixing member 36 to a small diameter portion 7 c at the distal end of shaft portion 7 b .
  • a ring-shaped conical washer 37 having a gentle taper is interposed between fixing member 36 and an upper surface 24 c of arm 24 in a state of being compressed.
  • valve body 7 a is pressed toward a lower surface 24 d of arm 24 by the spring force of conical washer 37 , and thereby the abnormal sound caused by the vibration can be suppressed.
  • valve body 7 a is substantially fixed to arm 24 by a spring member, such as conical washer 37 , sealability to a seat surface 34 a of the circumference of the opening of bypass passage 34 deteriorates, because the degree of freedom of valve body 7 a deteriorates.
  • the deterioration of the sealability is compensated by changing the driving force of electric actuator 20 .
  • FIG. 4 is a flow chart showing a flow of the process of the opening degree control of waste gate valve 7 which is executed by the above engine controller 25 that corresponds to a control section.
  • a step 1 it is judged whether or not a condition to perform the learning of position sensor 21 in the full closing position of waste gate valve 7 is satisfied. At each time of the start of internal combustion engine 1 , this learning is executed after the start. If the judgement is “YES”, the process proceeds to a step 3 , and the opening degree of waste gate valve 7 is forcibly controlled to be fully closed as an open loop control unrelated to the supercharging pressure. In this way, in a state in which the opening degree of waste gate valve 7 is physically controlled to be fully closed, the learning of a detection value of position sensor 21 is performed.
  • step 1 When the learning of the full closing position of position sensor 21 is finished, the judgement of step 1 becomes “NO”. In this case, the process proceeds from step 1 to a step 2 , and by a change in accelerator opening degree APO, it is judged whether or not the engine is in a sudden acceleration state. If the judgement is “YES”, the process proceeds from step 2 to a step 3 , and the opening degree of waste gate valve 7 is forcibly controlled to be fully closed as an open loop control unrelated to the supercharging pressure. With this, the responsiveness of the supercharging at the time when acceleration is required, that is, the rise of torque is improved. In addition, the forcible full closing control at the time of this sudden acceleration is released after the elapse of an extremely short fixed time from acceleration start.
  • step 2 If the judgement in step 2 is “NO”, the process proceeds from step 2 to a step 4 , and a regular valve opening control by a feedback control system for supercharging pressure control (in other words, torque control) is executed.
  • a regular valve opening control by a feedback control system for supercharging pressure control in other words, torque control
  • FIG. 6 a feature of the opening degree of waste gate valve 7 to an engine rotation speed and a torque is shown in a contour line shape. In an area “a” in which a load is high and the rotation speed is low, waste gate valve 7 is fully closed, and as shown by an arrow, the opening degree of waste gate valve 7 is increased more as the load becomes lower and the rotation speed becomes higher from the area “a” toward the right lower side of the figure.
  • the area in which the opening degree of waste gate valve 7 is continuously changed is a so-called supercharging area, and by the opening control of waste gate valve 7 , the torque of internal combustion engine 1 is controlled, while the opening degree of throttle valve 13 is basically set to full opening.
  • a lower load area “b” than a predetermined torque T 1 waste gate valve 7 becomes full opening.
  • the supercharging is not substantially performed, and as a non-supercharging area, that is, a natural intake area, by the opening degree of throttle valve 13 , the torque is controlled.
  • a target supercharging pressure (more strictly, a target pressure ratio) is given by a predetermined control map based on the engine rotation speed and a required torque, and to achieve this target, the target opening degree of waste gate valve 7 is feedback-controlled by using the detection signal of supercharging pressure sensor 15 .
  • a target supercharging pressure (more strictly, a target pressure ratio) is given by a predetermined control map based on the engine rotation speed and a required torque, and to achieve this target, the target opening degree of waste gate valve 7 is feedback-controlled by using the detection signal of supercharging pressure sensor 15 .
  • an opening degree feature shown in FIG. 6 can be obtained.
  • electric actuator 20 is feedback-controlled based on the deviation of the above target opening degree and the opening degree detected by position sensor 21 .
  • the opening degree of waste gate valve 7 is basically feedback-controlled based on the supercharging pressure detected by supercharging pressure sensor 15 for the supercharging pressure control.
  • the target opening degree becomes full closing, and waste gate valve 7 is forcibly controlled to the full closing position.
  • FIG. 5 shows details of the process of the forcible full closing control in the above step 3 . Since the target opening degree is changed from the full opening or intermediate opening to the full closing, electric actuator 20 is driven toward the closing direction of valve body 7 a .
  • a step 11 it is judged whether a position L of valve body 7 a is larger than a predetermined position L 1 or not.
  • the position of rod 22 (the position detected by position sensor 21 ) when valve body 7 a is full closing is set to 0 point as a reference point, and position L and predetermined position L 1 of valve body 7 a are shown by a stroke amount of rod 22 from this 0 pint toward an opening direction. That is, the larger the value L is, the further valve body 7 a is away from seat surface 34 a .
  • predetermined position L 1 is set to a position immediately before the seating of valve body 7 a on seat surface 34 a.
  • step 11 The judgement of step 11 is “YES” until position L reaches predetermined position L 1 , while valve body 7 a is changed from the full opening or the intermediate opening to the full closing.
  • the process proceeds to a step 12 , and the driving force of electric actuator 20 (in other words, the thrust of rod 22 ) is set to a first level in which the driving force is relatively large.
  • the driving force of electric actuator 20 is determined by ON-duty of a driving pulse signal given to an electric motor.
  • step 12 electric actuator 20 is therefore driven by a relatively high ON-duty.
  • step 11 When position L of valve body 7 a reaches predetermined position L 1 , the judgement in step 11 becomes “NO”. In this case, the process proceeds from step 11 to a step 13 , and it is judged whether or not an elapsed time TM after reaching predetermined position L 1 is equal to a predetermined time TM or more. Until predetermined time TM 1 passes, the process proceeds from step 13 to a step 14 , and the driving force of electric actuator 20 is set to a second level in which the driving force is smaller than that in the first level. That is, in step 14 , by a relatively small ON-duty, electric actuator 20 is driven.
  • step 15 the driving force of electric actuator 20 is set to a third level 3 at which the driving force is larger than that in the second level.
  • the driving force in the third level is required to have at least a force enough to cause the displacement of conical washer 37 that is a spring member.
  • the driving force in the third level is lower than that in the first level. Accordingly, in step 15 , by an ON-duty that is smaller than the ON-duty corresponding to the first level and that is larger than the ON-duty at the second level, electric actuator 20 is driven.
  • FIG. 7 is a time chart at the time of the full closing control immediately after the start, as an example of forcible full closing control, and comparatively shows changes in (a) the opening degree of waste gate valve 7 (the stroke amount of rod 22 of electric actuator 20 ), (b) the starter switch of internal combustion engine 1 and (c) the ON-duty of the driving pulse signal given to electric actuator 20 .
  • the starter switch is switched to “ON” by the operation of a driver, and cranking is started.
  • internal combustion engine 1 is started, and the starter switch is switched to “OFF”.
  • the learning of position sensor 21 is started, and the opening degree indicated by a reference sign Ltg is changed stepwise to “0” that corresponds to the full closing position by the open loop control.
  • the waste gate valve 7 is fully opened, and also target opening degree Ltg is full opening during the cranking.
  • valve body 7 a At a time t 3 , position L of valve body 7 a reaches predetermined position L 1 , and with this, the driving force of electric actuator 20 is reduced to the second level. For example, it becomes 30% of the ON-duty. Consequently, the moving speed of valve body 7 a is reduced, and valve body 7 a is gently seated without strongly colliding with seat surface 34 a .
  • the degree of the driving force that is, the degree of the thrust force of rod 22 at this time becomes a degree to which valve body 7 a cannot be moved any more, when a part of valve body 7 a is locally seated to seat surface 34 a .
  • valve body 7 a By a variation in posture of valve body 7 a to seat surface 34 a , in many cases, valve body 7 a therefore becomes a state in which a part of thereof is locally seated.
  • valve body 7 a which is locally seated is further pressed toward seat surface 34 a . Therefore, even in case where a part of valve body 7 a is floated from seat surface 34 a , valve body 7 a is pressed to seat surface 34 a while displacing conical washer 37 , and the entire periphery of valve body 7 a comes in tight contact with seat surface 34 a . A reliable sealability is, as result, obtained.
  • valve body 7 a becomes in a state of sufficiently coming in tight contact with seat surface 34 a.
  • valve body 7 a in the state in which valve body 7 a is sufficiently seated on seat surface 34 a , the learning of the full closing position of valve body 7 a is executed.
  • the learning control is completed, and the forcible full closing control is finished.
  • target opening degree Ltg is changed to an opening degree in correspondence with a condition at that time.
  • FIG. 7 shows a change in the driving force at the time of the full closing control for the learning control immediately after the start
  • the forcible full closing control at the time of the sudden acceleration is also the same.
  • valve body 7 a when valve body 7 a is driven to the full closing, the driving force is set to the first level in an initial period, and by reducing the driving force from the first level to the second level in the stage of reaching predetermined position L 1 , valve body 7 a is quickly closed, and at the same time of this, valve body 7 a can be avoided from colliding with seat surface 34 a , and thereby it can be seated gently.
  • a reliable sealability can be obtained, regardless of the interposing of the spring member (conical washer 37 ) used for the suppression of abnormal sound. Therefore, both of the suppression of the abnormal sound by conical washer 37 and the securing of the sealability at the time of the full closing can be achieved.
  • the ON-duty in the third level is set lower than the ON-duty in the first level, it is possible to avoid the electric motor from being excessively energized.
  • valve body 7 a since actual position L of valve body 7 a is detected by position sensor 21 and based on this, the reduction from the first level to the second reveal is performed, the speed of valve body 7 a at the time of the closing can be properly controlled, and the gentle seating can be always surely obtained.
  • the timing at which the driving force is increased from the second level to the third level is judged based on elapsed time TM after reaching valve body 7 a to predetermined position L 1 , it is not affected by a variation in position L of valve body 7 a at the time of the local seat of valve body 7 a.
  • a conical washer is used as a spring member, it is not limited to this, and one having elasticity can be used, washers such as a wave washer and a G-type spring washer can be also used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Safety Valves (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

When a waste gate valve (7) is forcibly fully closed for learning control at the time of start, the drive force of an electric actuator (20) is initially set to a large first level, and when a predetermined position (L1) immediately before seating is reached, the driving force is reduced to a second level. As a result, a valve body (7 a) is gently seated. When a predetermined time (TM1) passes, the driving force is increased to a third level. Consequently, the electric actuator (20) presses the valve body (7 a) onto a seat surface (34 a) while displacing a spring member (37). As a result, a reliable sealability is obtained.

Description

TECHNICAL FIELD
This invention relates to valve opening control of a waste gate valve which is provided to a turbocharger.
BACKGROUND TECHNOLOGY
In general, a turbocharger used for supercharging of an internal combustion engine is provided with a waste gate valve at a turbine part which is configured so as to bypass a part of exhaust flow without passing through a turbine wheel, for supercharging pressure control. In a patent document 1, as a driving mechanism for the open/close driving of the waste gate valve, a so-called swing type mechanism is disclosed in which the linear motion of a rod of an electric actuator is converted to the rotational motion of a rotation shaft through a link and then a poppet type valve body which is supported on the distal end of an arm fixed to the rotation shaft oscillates.
In such the above waste gate valve, as described in the patent document 1, a small clearance exists between the distal end of the arm and the valve body which oscillate interlocking with the actuator, and it becomes a factor of the occurrence of abnormal sound. This abnormal sound can be suppressed by interposing a spring member, such as a conical washer, into the clearance. However, since the clearance has a function to bring the valve body into tight contact with a seat surface with a small degree of freedom to the posture of the valve body when the valve body is seated on the seat surface, by interposing the spring member, sealability at the time of full closing is reduced.
PRIOR ART REFERENCE Patent Document
  • Patent Document 1: Japanese Patent Application Publication 2015-48837
SUMMARY OF THE INVENTION
The present invention is one configured to perform a process when a waste gate valve is closed from an opening state to a full closing position, wherein, the process includes increasing the driving force of an actuator in a stage in which a valve body is locally seated.
Therefore, by increasing the driving force after the valve body is locally seated, the valve body becomes in a state of coming in tight contact with a seat surface, while displacing a spring member.
According to the present invention, it is possible to suppress the reduction of sealability at the time of full closing caused by interposing the spring member to suppress abnormal sound of a waste gate valve.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an explanatory drawing showing a system configuration of an embodiment of the present invention.
FIG. 2 is a sectional view showing a main part of a turbocharger.
FIG. 3 is a main part enlarged view showing a valve body attachment structure of a waste gate valve.
FIG. 4 is a flow chart showing a flow of control of an embodiment.
FIG. 5 is a flow chart showing a flow of a process of full closing control.
FIG. 6 is a characteristic diagram showing features of a waste gate valve opening degree to an engine operation condition.
FIG. 7 is a time chart showing an operation at the time of the full closing control immediately after engine start.
MODE FOR IMPLEMENTING THE INVENTION
In the following, an embodiment of the present invention will be explained in detail based on the drawings.
FIG. 1 is a schematic explanatory drawing showing the system configuration of an embodiment of the present invention. An exhaust passage 2 of an internal combustion engine 1 that is a spark ignition type gasoline engine is disposed with an exhaust gas turbine 4 of a turbocharger 3, and on its downstream side, a catalyst converter 6 in which, for example, a three way catalyst is used is disposed. An exhaust muffler which is not shown in the drawings is provided on the further downstream side of exhaust passage 2, and exhaust passage 2 is opened outside via the exhaust muffler. Exhaust gas turbine 4 is provided with a waste gate valve 7 for supercharging pressure control. In addition, internal combustion engine 1 has, for example, a direct injection type configuration, and a fuel injection valve for injecting fuel into cylinders, which is not shown in the drawings, is provided in each cylinder, and an ignition plug which is not shown in the drawings is provided in each of the cylinders. Internal combustion engine 1 is not limited to the direct injection type, and may be a port injection type fuel injection device.
An intake passage 10 of internal combustion engine 1 is disposed with an air cleaner 11, an air flow meter 12 and a throttle valve 13 arranged in this order from the upstream side. A compressor 5 of turbocharger 3 is disposed between air flow meter 12 and throttle valve 13. In addition, in the embodiment shown in the drawing, a water-cooled type or an air-cooled type intercooler 14 is interposed between compressor 5 and throttle valve 13, Moreover, intake passage 10 is provided with a recirculation passage 16 which communicates between the upstream side and the downstream side of compressor 5. This recirculation passage 16 is provided with a recirculation valve 17. This recirculation valve 17 has a function of circulating intake air by opening the valve at the time of deceleration when throttle valve 13 is suddenly closed.
A supercharging pressure sensor 15 for detecting supercharging pressure is disposed on the downstream side of throttle valve 13 of intake passage 10.
Waste gate valve 7 has a configuration in which the opening degree of waste gate valve 7 is controlled by an electric actuator 20, and a position sensor 21 is included in electric actuator 20 to detect an actual opening degree. Specifically, electric actuator 20 outputs the rotation of an electric motor as the movement in the axial direction of a rod 22 by a ball screw mechanism, and position sensor 21 detects the axial direction position of rod 22 with respect to the case of the actuator. Rod 22 is linked to a poppet type valve body 7 a of waste gate valve 7 via a link 23 and an arm 24.
The operation of electric actuator 20 is controlled by an engine controller 25 which performs various kinds of control of internal combustion engine 1. In addition to the detection signals of supercharging pressure sensor 15 and position sensor 21, detection signals of sensors, such as a cooling water temperature sensor 26 which detects a cooling water temperature TW of internal combustion engine 1, an accelerator opening degree sensor 27 which detects an accelerator depressing amount which is not shown in the drawings, that is, an accelerator opening degree APO, a crank angle sensor 28 which detects a rotation speed Ne of internal combustion engine 1 and an atmospheric pressure sensor 29 which detects an atmospheric pressure ATM, are input to engine controller 25. The opening degree of throttle valve 13, the fuel injection amount of the fuel injection valves which are not shown in the drawings and the ignition timing of the ignition plugs which are not shown in the drawings are also controlled by engine controller 25.
FIG. 2 shows a more specific configuration example of waste gate valve 7 provided to exhaust gas turbine 4 of turbocharger 3. As shown in the drawing, valve body 7 a of waste gate valve 7 is positioned at an exhaust outlet portion 33 of a turbine housing 31 having a scroll portion 32, and is configured to open and close a bypass passage 34 (schematically shown in FIG. 1) from exhaust outlet portion 33 side, which communicates the upstream side part of scroll portion 32 with exhaust outlet portion 33. This waste gate valve 7 has a so-called swing type configuration, and valve body 7 a is supported on the distal end of arm 24 having a shaft portion 24 a. Shaft portion 24 a is rotatably supported on turbine housing 31, and one end of link 23 is fixed to the base end of shaft portion 24 a which is exposed to the outer surface of turbine housing 31. Rod 22 of electric actuator 20, for detail, an intermediate rod 22 a is connected to the other end of link 23 via a pin 35. The basic configuration of the swing type waste gate valve is publicly known by, for example, Japanese Patent Application Publication No. 2014-58894. In this configuration, arm 24 oscillates with shaft portion 24 a as a center by the axial direction movement of rod 22 of electric actuator 20, and with this, circular valve body 7 a opens and closes the distal end opening of bypass passage 34.
FIG. 3 shows an example of the attachment structure of valve body 7 a in the distal end of arm 24. As shown in the drawing, a shaft portion 7 b in the center of valve body 7 a penetrates an attachment hole 24 b of arm 24, and is prevented from coming out by attaching a ring-shaped fixing member 36 to a small diameter portion 7 c at the distal end of shaft portion 7 b. In addition, as a spring member, a ring-shaped conical washer 37 having a gentle taper is interposed between fixing member 36 and an upper surface 24 c of arm 24 in a state of being compressed. That is, if a spring member, such as conical washer 37, is not equipped, there is possibility that abnormal sound occurs due to the vibration of valve body 7 a caused by small clearances existing between arm 24 and valve body 7 a and between shaft portion 7 b and the inner circumferential surface of attachment hole 24. In contrast to this, in the configuration of the above embodiment, valve body 7 a is pressed toward a lower surface 24 d of arm 24 by the spring force of conical washer 37, and thereby the abnormal sound caused by the vibration can be suppressed.
On the other hand, as explained above, if valve body 7 a is substantially fixed to arm 24 by a spring member, such as conical washer 37, sealability to a seat surface 34 a of the circumference of the opening of bypass passage 34 deteriorates, because the degree of freedom of valve body 7 a deteriorates. In the present embodiment, the deterioration of the sealability is compensated by changing the driving force of electric actuator 20.
Next, with reference to FIG. 4 to FIG. 7, the opening degree control of waste gate valve 7 in the above embodiment will be explained.
FIG. 4 is a flow chart showing a flow of the process of the opening degree control of waste gate valve 7 which is executed by the above engine controller 25 that corresponds to a control section. In a step 1, it is judged whether or not a condition to perform the learning of position sensor 21 in the full closing position of waste gate valve 7 is satisfied. At each time of the start of internal combustion engine 1, this learning is executed after the start. If the judgement is “YES”, the process proceeds to a step 3, and the opening degree of waste gate valve 7 is forcibly controlled to be fully closed as an open loop control unrelated to the supercharging pressure. In this way, in a state in which the opening degree of waste gate valve 7 is physically controlled to be fully closed, the learning of a detection value of position sensor 21 is performed.
When the learning of the full closing position of position sensor 21 is finished, the judgement of step 1 becomes “NO”. In this case, the process proceeds from step 1 to a step 2, and by a change in accelerator opening degree APO, it is judged whether or not the engine is in a sudden acceleration state. If the judgement is “YES”, the process proceeds from step 2 to a step 3, and the opening degree of waste gate valve 7 is forcibly controlled to be fully closed as an open loop control unrelated to the supercharging pressure. With this, the responsiveness of the supercharging at the time when acceleration is required, that is, the rise of torque is improved. In addition, the forcible full closing control at the time of this sudden acceleration is released after the elapse of an extremely short fixed time from acceleration start.
If the judgement in step 2 is “NO”, the process proceeds from step 2 to a step 4, and a regular valve opening control by a feedback control system for supercharging pressure control (in other words, torque control) is executed. In FIG. 6, a feature of the opening degree of waste gate valve 7 to an engine rotation speed and a torque is shown in a contour line shape. In an area “a” in which a load is high and the rotation speed is low, waste gate valve 7 is fully closed, and as shown by an arrow, the opening degree of waste gate valve 7 is increased more as the load becomes lower and the rotation speed becomes higher from the area “a” toward the right lower side of the figure. In this way, the area in which the opening degree of waste gate valve 7 is continuously changed is a so-called supercharging area, and by the opening control of waste gate valve 7, the torque of internal combustion engine 1 is controlled, while the opening degree of throttle valve 13 is basically set to full opening. In a lower load area “b” than a predetermined torque T1, waste gate valve 7 becomes full opening. In this area “b”, the supercharging is not substantially performed, and as a non-supercharging area, that is, a natural intake area, by the opening degree of throttle valve 13, the torque is controlled. More specifically, a target supercharging pressure (more strictly, a target pressure ratio) is given by a predetermined control map based on the engine rotation speed and a required torque, and to achieve this target, the target opening degree of waste gate valve 7 is feedback-controlled by using the detection signal of supercharging pressure sensor 15. As a result of this supercharging pressure feedback control, an opening degree feature shown in FIG. 6 can be obtained. In addition, in this regular control, electric actuator 20 is feedback-controlled based on the deviation of the above target opening degree and the opening degree detected by position sensor 21.
In this way, during the operation of internal combustion engine 1, the opening degree of waste gate valve 7 is basically feedback-controlled based on the supercharging pressure detected by supercharging pressure sensor 15 for the supercharging pressure control. When executing the learning of position sensor 21 at the time of the sudden acceleration and immediately after the start, by the open loop control, the target opening degree becomes full closing, and waste gate valve 7 is forcibly controlled to the full closing position.
FIG. 5 shows details of the process of the forcible full closing control in the above step 3. Since the target opening degree is changed from the full opening or intermediate opening to the full closing, electric actuator 20 is driven toward the closing direction of valve body 7 a. In a step 11, it is judged whether a position L of valve body 7 a is larger than a predetermined position L1 or not. Here, for example, the position of rod 22 (the position detected by position sensor 21) when valve body 7 a is full closing is set to 0 point as a reference point, and position L and predetermined position L1 of valve body 7 a are shown by a stroke amount of rod 22 from this 0 pint toward an opening direction. That is, the larger the value L is, the further valve body 7 a is away from seat surface 34 a. In addition, predetermined position L1 is set to a position immediately before the seating of valve body 7 a on seat surface 34 a.
The judgement of step 11 is “YES” until position L reaches predetermined position L1, while valve body 7 a is changed from the full opening or the intermediate opening to the full closing. In this case, the process proceeds to a step 12, and the driving force of electric actuator 20 (in other words, the thrust of rod 22) is set to a first level in which the driving force is relatively large. Here, in the above embodiment, the driving force of electric actuator 20 is determined by ON-duty of a driving pulse signal given to an electric motor. In step 12, electric actuator 20 is therefore driven by a relatively high ON-duty.
When position L of valve body 7 a reaches predetermined position L1, the judgement in step 11 becomes “NO”. In this case, the process proceeds from step 11 to a step 13, and it is judged whether or not an elapsed time TM after reaching predetermined position L1 is equal to a predetermined time TM or more. Until predetermined time TM1 passes, the process proceeds from step 13 to a step 14, and the driving force of electric actuator 20 is set to a second level in which the driving force is smaller than that in the first level. That is, in step 14, by a relatively small ON-duty, electric actuator 20 is driven.
When elapsed time TM after reaching predetermined position L1 reaches predetermined time TM1, the process proceeds from step 13 to a step 15, the driving force of electric actuator 20 is set to a third level 3 at which the driving force is larger than that in the second level. Here, the driving force in the third level is required to have at least a force enough to cause the displacement of conical washer 37 that is a spring member. In addition, to avoid the electric motor from being excessively energized, it is preferable that the driving force in the third level is lower than that in the first level. Accordingly, in step 15, by an ON-duty that is smaller than the ON-duty corresponding to the first level and that is larger than the ON-duty at the second level, electric actuator 20 is driven.
FIG. 7 is a time chart at the time of the full closing control immediately after the start, as an example of forcible full closing control, and comparatively shows changes in (a) the opening degree of waste gate valve 7 (the stroke amount of rod 22 of electric actuator 20), (b) the starter switch of internal combustion engine 1 and (c) the ON-duty of the driving pulse signal given to electric actuator 20.
At a time t1, the starter switch is switched to “ON” by the operation of a driver, and cranking is started. At a time t2, internal combustion engine 1 is started, and the starter switch is switched to “OFF”. In this way, at the time of completing the start, the learning of position sensor 21 is started, and the opening degree indicated by a reference sign Ltg is changed stepwise to “0” that corresponds to the full closing position by the open loop control. In addition, before starting internal combustion engine 1, the waste gate valve 7 is fully opened, and also target opening degree Ltg is full opening during the cranking.
In correspondence with the change of target opening degree Ltg at time t2, electric actuator 20 is driven in a closing direction. However, the driving force in this time is set to the highest first level, and, for example, electric actuator 20 is driven by 90% of the ON-duty driving signal. With this, as shown by a solid line, position L of valve body 7 a is rapidly reduced.
At a time t3, position L of valve body 7 a reaches predetermined position L1, and with this, the driving force of electric actuator 20 is reduced to the second level. For example, it becomes 30% of the ON-duty. Consequently, the moving speed of valve body 7 a is reduced, and valve body 7 a is gently seated without strongly colliding with seat surface 34 a. The degree of the driving force, that is, the degree of the thrust force of rod 22 at this time becomes a degree to which valve body 7 a cannot be moved any more, when a part of valve body 7 a is locally seated to seat surface 34 a. By a variation in posture of valve body 7 a to seat surface 34 a, in many cases, valve body 7 a therefore becomes a state in which a part of thereof is locally seated.
At a time t4 after predetermined time TIM passes from time t3 at which position L reaches predetermined position L1, the driving force of electric actuator 20 is increased to the third level. For example, the ON-duty is increased to 70%. Consequently, valve body 7 a which is locally seated is further pressed toward seat surface 34 a. Therefore, even in case where a part of valve body 7 a is floated from seat surface 34 a, valve body 7 a is pressed to seat surface 34 a while displacing conical washer 37, and the entire periphery of valve body 7 a comes in tight contact with seat surface 34 a. A reliable sealability is, as result, obtained. In the embodiment shown in the drawing, at a time t5, valve body 7 a becomes in a state of sufficiently coming in tight contact with seat surface 34 a.
In this way, in the state in which valve body 7 a is sufficiently seated on seat surface 34 a, the learning of the full closing position of valve body 7 a is executed. At a time t6, the learning control is completed, and the forcible full closing control is finished. With this, target opening degree Ltg is changed to an opening degree in correspondence with a condition at that time.
Although, FIG. 7 shows a change in the driving force at the time of the full closing control for the learning control immediately after the start, the forcible full closing control at the time of the sudden acceleration is also the same.
In this way, when valve body 7 a is driven to the full closing, the driving force is set to the first level in an initial period, and by reducing the driving force from the first level to the second level in the stage of reaching predetermined position L1, valve body 7 a is quickly closed, and at the same time of this, valve body 7 a can be avoided from colliding with seat surface 34 a, and thereby it can be seated gently. In a state of being locally seated, by increasing the driving force from the second level to the third level, a reliable sealability can be obtained, regardless of the interposing of the spring member (conical washer 37) used for the suppression of abnormal sound. Therefore, both of the suppression of the abnormal sound by conical washer 37 and the securing of the sealability at the time of the full closing can be achieved.
In addition, in the above embodiment, since the ON-duty in the third level is set lower than the ON-duty in the first level, it is possible to avoid the electric motor from being excessively energized.
Moreover, in the above embodiment, since actual position L of valve body 7 a is detected by position sensor 21 and based on this, the reduction from the first level to the second revel is performed, the speed of valve body 7 a at the time of the closing can be properly controlled, and the gentle seating can be always surely obtained.
Furthermore, in the above embodiment, since the timing at which the driving force is increased from the second level to the third level is judged based on elapsed time TM after reaching valve body 7 a to predetermined position L1, it is not affected by a variation in position L of valve body 7 a at the time of the local seat of valve body 7 a.
In addition, in the above embodiment, although a spark ignition type internal combustion engine has been explained as an example, the present invention can be similarly applied to a turbocharger for a diesel engine.
In addition, in the above embodiment, although a conical washer is used as a spring member, it is not limited to this, and one having elasticity can be used, washers such as a wave washer and a G-type spring washer can be also used.

Claims (13)

The invention claimed is:
1. A waste gate valve control method for a waste gate valve provided to a turbocharger, wherein the waste gate valve comprises: an actuator; an arm which is driven by the actuator and which oscillates with a rotation center as a center; a valve body which is supported on a distal end of the arm; and a spring member which is interposed between the arm and the valve body, the waste gate valve control method comprising:
performing a process, by a controller, when the waste gate valve is closed from an opening state to a full closing position, wherein the process comprises:
causing a reduction of a driving force of the actuator from a first level to a second level, responsive to a sensor detecting that the valve body during movement in a closing direction reaches a predetermined position immediately before seating; and
causing an increase of the driving force from the second level to a third level in a stage in which the valve body is locally seated.
2. The waste gate valve control method according to claim 1, wherein the third level is a driving force level in which the spring member is displaced.
3. The waste gate valve control method according to claim 1, wherein when the valve body reaches the predetermined position and a predetermined time passes, the valve body is judged to be locally seated, and the driving force is increased from the second level to the third level.
4. The waste gate valve control method according to claim 1, wherein the driving force in the third level is set smaller than that in the first level.
5. The waste gate valve control method according to claim 1, wherein a feedback control of an opening degree of the waste gate valve based on a detection of supercharging pressure is included, and an open loop control is included in which the opening degree of the waste gate valve is set to full closing regardless of the supercharging pressure at a time of a predetermined condition, and
wherein a change in the driving force is executed at a time of full closing operation by the open loop control.
6. A waste gate valve control method for a waste gate valve which is provided to a turbocharger, wherein the waste gate valve comprises: an actuator; an arm which is driven by the actuator and which oscillates with a rotation center as a center; a valve body which is supported on a distal end of the arm; and a spring member which is interposed between the arm and the valve body, the waste gate valve control method comprising:
performing, by a controller, a process when the waste gate valve is closed from an opening state to a full closing position, wherein the process comprises:
causing a reduction of a driving force of the actuator from a first level to a second level, responsive to a sensor detecting that the valve body reaches a predetermined position immediately before seating; and
causing an increase of the driving force from the second level to a third level that is a driving force level in which the spring member is displaced, in a stage in which the valve body is locally seated.
7. The waste gate valve control method according to claim 6, wherein the driving force in the third level is set smaller than that in the first level.
8. The waste gate valve control method according to claim 6, wherein a feedback control of an opening degree of the waste gate valve based on a detection of supercharging pressure is included, and an open loop control is included in which the opening degree of the waste gate valve is set to full closing regardless of the supercharging pressure at a time of a predetermined condition, and
wherein a change in the driving force is executed at a time of full closing operation by the open loop control.
9. A waste gate valve control method for a waste gate valve which is provided to a turbocharger, wherein the waste gate valve comprises: an actuator; an arm which is driven by the actuator and which oscillates with a rotation center as a center; a valve body which is supported on a distal end of the arm; and a spring member which is interposed between the arm and the valve body, the waste gate valve control method comprising:
performing, by a controller, a process when the waste gate valve is closed from an opening state to a full closing position, wherein the process comprises:
detecting that the valve body reaches a predetermined position immediately before seating by a sensor; and
causing an increase of a driving force of the actuator such that an entire periphery of the valve body comes in tight contact with a seat surface, in a stage in which the valve body is locally seated.
10. The waste gate valve control method according to claim 9, wherein a feedback control of an opening degree of the waste gate valve based on a detection of supercharging pressure is included, and an open loop control is included in which the opening degree of the waste gate valve is set to full closing regardless of the supercharging pressure at a time of a predetermined condition, and
wherein a change in the driving force is executed at a time of full closing operation by the open loop control.
11. A waste gate valve control device comprising:
a turbocharger;
a waste gate valve including: an actuator; an arm which is driven by the actuator and which oscillates with a rotation center as a center; a valve body which is supported on a distal end of the arm; and a spring member which is interposed between the arm and the valve body; and
an engine controller, wherein the engine controller is configured to:
responsive to a command to close the waste gate valve from an opening state to a full closing position, set a driving force of the actuator to a first level and operate the actuator in a closing direction,
reduce the driving force of the actuator from the first level to a second level, responsive to a sensor detecting that the valve body during movement in the closing direction reaches a predetermined position immediately before seating, and
increase the driving force from the second level to a third level, in a stage in which the valve body is locally seated.
12. A waste gate valve control device comprising:
a turbocharger;
a waste gate valve including: an actuator; an arm which is driven by the actuator and which oscillates with a rotation center as a center; a valve body which is supported on a distal end of the arm; and a spring member which is interposed between the arm and the valve body; and
an engine controller, wherein the engine controller is configured to:
responsive to a command to close the waste gate valve from an opening state to a full closing position, set a driving force of the actuator to a first level and operate the actuator in a closing direction,
reduce the driving force of the actuator from the first level to a second level, responsive to a sensor detecting that the valve body reaches a predetermined position immediately before seating, and
increase the driving force from the second level to a third level that is a driving force level in which the spring member is displaced, in a stage in which the valve body is locally seated.
13. A waste gate valve control device comprising:
a turbocharger;
a waste gate valve including: an actuator; an arm which is driven by the actuator and which oscillates with a rotation center as a center; a valve body which is supported on a distal end of the arm; and a spring member which is interposed between the arm and the valve body; and
an engine controller, wherein the engine controller is configured to:
responsive to a command to close the waste gate valve from an opening state to a full closing position, set a driving force of the actuator to a first level and operate the actuator in a closing direction,
reduce the driving force of the actuator from the first level to a second level, responsive to a sensor detecting that the valve body reaches a predetermined position immediately before seating, and
increase the driving force of the actuator from the second level to a third level such that an entire periphery of the valve body comes in tight contact with a seat surface, in a stage in which the valve body is locally seated.
US16/071,216 2016-01-22 2016-09-29 Waste gate valve control method and control device Active 2036-10-06 US10690067B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016010527 2016-01-22
JP2016-010527 2016-01-22
PCT/JP2016/078897 WO2017126166A1 (en) 2016-01-22 2016-09-29 Waste gate valve control method and control device

Publications (2)

Publication Number Publication Date
US20190353107A1 US20190353107A1 (en) 2019-11-21
US10690067B2 true US10690067B2 (en) 2020-06-23

Family

ID=59362563

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/071,216 Active 2036-10-06 US10690067B2 (en) 2016-01-22 2016-09-29 Waste gate valve control method and control device

Country Status (9)

Country Link
US (1) US10690067B2 (en)
EP (1) EP3406879B1 (en)
JP (1) JP6536696B2 (en)
CN (1) CN108463619B (en)
BR (1) BR112018014688B1 (en)
MX (1) MX370227B (en)
MY (1) MY173640A (en)
RU (1) RU2681729C1 (en)
WO (1) WO2017126166A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106472A1 (en) 2019-11-25 2021-06-03 株式会社エム・システム技研 Actuator and fluid control device
CN114575994B (en) * 2020-11-30 2023-05-16 上海汽车集团股份有限公司 Noise control method and device for electric control turbocharger
US11732637B2 (en) * 2020-12-17 2023-08-22 Brp-Rotax Gmbh & Co. Kg Engine assembly for a vehicle having a compressor
CN114508624A (en) * 2022-01-25 2022-05-17 苏州普科环境技术有限公司 Control method and system for electric tuning controller of exhaust pipe and storage medium
CN115750072A (en) * 2022-10-13 2023-03-07 广州汽车集团股份有限公司 Wastegate control method, wastegate control apparatus, vehicle, and computer-readable storage medium

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197711A (en) * 1976-10-30 1980-04-15 Dr. Ing. H. C. F. Porsche Aktiengesellschaft Exhaust driven turbocharger for an internal combustion engine
US4387572A (en) * 1981-05-07 1983-06-14 The Garrett Corporation Turbocharger control system
EP0376493A1 (en) 1988-12-22 1990-07-04 LUCAS INDUSTRIES public limited company Control circuit
JP2001193507A (en) 2000-01-14 2001-07-17 Toyota Motor Corp Internal combustion engine having solenoid operated valve and adjusting method for solenoid operated valve
JP2009517604A (en) 2005-11-25 2009-04-30 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Reliable closing method of solenoid valve
US20110173974A1 (en) * 2008-10-01 2011-07-21 Borgwarner Inc. Variable flow wastegate
DE102010038908A1 (en) 2010-08-04 2012-02-09 Bayerische Motoren Werke Aktiengesellschaft Closure flap for opening and closing of bypass unit in turbine side of housing of supercharger, has pressure spring arranged in recess of locking collar and supported at recess by element, where recess is arranged coaxial to mandrel
US20140060041A1 (en) 2012-08-29 2014-03-06 Mitsubishi Electric Corporation Internal combustion engine wastegate valve controller
JP2014058894A (en) 2012-09-18 2014-04-03 Nissan Motor Co Ltd Turbocharger
US20140322046A1 (en) 2013-04-30 2014-10-30 Denso Corporation Valve drive apparatus and supercharger having the same
JP2014231829A (en) 2013-04-30 2014-12-11 株式会社デンソー Valve drive device
JP2015500955A (en) 2011-12-27 2015-01-08 三菱重工業株式会社 Exhaust turbocharger with wastegate valve and wastegate valve
JP2015048837A (en) 2013-09-04 2015-03-16 トヨタ自動車株式会社 Control device of waste gate valve
US20150240707A1 (en) * 2014-02-25 2015-08-27 Ford Global Technologies, Llc Wastegate valve seat position determination

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2168643C2 (en) * 1998-06-16 2001-06-10 ОАО "Газпром" Device for bypassing exhaust gases in dual-fuel turbocharged internal combustion engine
US8112994B2 (en) * 2005-10-12 2012-02-14 Honeywell International Inc. Method of controlling a turbocharger having a variable-geometry mechanism and a waste gate
DE102009028117A1 (en) * 2009-07-30 2011-02-03 Robert Bosch Gmbh Method and apparatus for operating a wastegate actuator for a wastegate
JP2011190778A (en) * 2010-03-16 2011-09-29 Toyota Motor Corp Control device for internal combustion engine
JP5420013B2 (en) * 2012-04-20 2014-02-19 三菱電機株式会社 Control device and control method for internal combustion engine
US9624824B2 (en) * 2012-07-19 2017-04-18 Nissan Motor Co., Ltd. Control device and control method for internal combustion engine
US10087825B2 (en) * 2013-03-05 2018-10-02 Wärtsilä Finland Oy Digital waste gate valve arrangement and method of operating a digital waste gate valve arrangement in an internal combustion engine
JP6036677B2 (en) * 2013-12-26 2016-11-30 トヨタ自動車株式会社 Electric wastegate valve system
CN104454140B (en) * 2014-10-21 2016-08-24 中国重汽集团济南动力有限公司 A kind of gas engine is with automatically controlled supercharger exhaust gas bypass controller

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197711A (en) * 1976-10-30 1980-04-15 Dr. Ing. H. C. F. Porsche Aktiengesellschaft Exhaust driven turbocharger for an internal combustion engine
US4387572A (en) * 1981-05-07 1983-06-14 The Garrett Corporation Turbocharger control system
EP0376493A1 (en) 1988-12-22 1990-07-04 LUCAS INDUSTRIES public limited company Control circuit
JPH02230702A (en) 1988-12-22 1990-09-13 Lucas Ind Plc Method and circuit for current control
JP2001193507A (en) 2000-01-14 2001-07-17 Toyota Motor Corp Internal combustion engine having solenoid operated valve and adjusting method for solenoid operated valve
US8424978B2 (en) 2005-11-25 2013-04-23 Robert Bosch Gmbh Method for reliably closing a solenoid valve
JP2009517604A (en) 2005-11-25 2009-04-30 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Reliable closing method of solenoid valve
US20110173974A1 (en) * 2008-10-01 2011-07-21 Borgwarner Inc. Variable flow wastegate
DE102010038908A1 (en) 2010-08-04 2012-02-09 Bayerische Motoren Werke Aktiengesellschaft Closure flap for opening and closing of bypass unit in turbine side of housing of supercharger, has pressure spring arranged in recess of locking collar and supported at recess by element, where recess is arranged coaxial to mandrel
JP2015500955A (en) 2011-12-27 2015-01-08 三菱重工業株式会社 Exhaust turbocharger with wastegate valve and wastegate valve
US9464565B2 (en) 2011-12-27 2016-10-11 Mitsubishi Heavy Industries, Ltd. Wastegate valve and exhaust gas turbocharger equipped with wastegate valve
US20140060041A1 (en) 2012-08-29 2014-03-06 Mitsubishi Electric Corporation Internal combustion engine wastegate valve controller
JP2014058894A (en) 2012-09-18 2014-04-03 Nissan Motor Co Ltd Turbocharger
US20140322046A1 (en) 2013-04-30 2014-10-30 Denso Corporation Valve drive apparatus and supercharger having the same
JP2014231829A (en) 2013-04-30 2014-12-11 株式会社デンソー Valve drive device
JP2015048837A (en) 2013-09-04 2015-03-16 トヨタ自動車株式会社 Control device of waste gate valve
US20150240707A1 (en) * 2014-02-25 2015-08-27 Ford Global Technologies, Llc Wastegate valve seat position determination

Also Published As

Publication number Publication date
MY173640A (en) 2020-02-12
CN108463619B (en) 2019-07-23
MX370227B (en) 2019-12-06
EP3406879A4 (en) 2018-11-28
WO2017126166A1 (en) 2017-07-27
RU2681729C1 (en) 2019-03-12
JPWO2017126166A1 (en) 2018-09-13
JP6536696B2 (en) 2019-07-03
BR112018014688B1 (en) 2023-03-21
EP3406879A1 (en) 2018-11-28
US20190353107A1 (en) 2019-11-21
BR112018014688A2 (en) 2018-12-11
MX2018008496A (en) 2018-08-15
CN108463619A (en) 2018-08-28
EP3406879B1 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
US10690067B2 (en) Waste gate valve control method and control device
EP3406880B1 (en) Waste gate valve control method and control device
JP5293897B2 (en) Control device for internal combustion engine
US8117840B2 (en) Abnormality-determining device and method for turbo-supercharger, and engine control unit
US8408180B2 (en) Control apparatus for turbocharged diesel engine
EP2674597A1 (en) Control device for internal combustion engine
JP5847857B2 (en) Reference position learning device for a valve of an internal combustion engine
JP6232793B2 (en) Engine control device
JP2008014198A (en) Control device for internal combustion engine
US7201143B2 (en) Intake amount control apparatus of internal combustion engine
JP4544300B2 (en) Control device for internal combustion engine
US11767787B2 (en) Catalyst early activation control at cold engine start
JP2004278307A (en) Egr device
CN113474548A (en) EGR device of engine
US11939907B2 (en) Engine control device
US11118542B2 (en) Engine system
JP3478027B2 (en) Intake control device for internal combustion engine
JP6154232B2 (en) Control device for supercharged engine
JP5526790B2 (en) Engine control device
JP2013036749A (en) Failure diagnosis device of electromagnetic driving type control valve
JPH094497A (en) Intake air throttling control device for internal combustion engine

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: NISSAN MOTOR CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORIKAWA, MASASHI;KUBOTA, MITSUHIKO;ENDO, TSUBASA;SIGNING DATES FROM 20181019 TO 20181023;REEL/FRAME:047589/0750

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4