US10661822B2 - Worm reducer and electric power steering system - Google Patents

Worm reducer and electric power steering system Download PDF

Info

Publication number
US10661822B2
US10661822B2 US15/951,532 US201815951532A US10661822B2 US 10661822 B2 US10661822 B2 US 10661822B2 US 201815951532 A US201815951532 A US 201815951532A US 10661822 B2 US10661822 B2 US 10661822B2
Authority
US
United States
Prior art keywords
bearing
housing
worm
rotation regulation
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/951,532
Other versions
US20180304915A1 (en
Inventor
Naofumi KAWAMURA
Hirofumi Ueda
Kaname Joushita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Assigned to JTEKT CORPORATION reassignment JTEKT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOUSHITA, KANAME, KAWAMURA, Naofumi, UEDA, HIROFUMI
Publication of US20180304915A1 publication Critical patent/US20180304915A1/en
Application granted granted Critical
Publication of US10661822B2 publication Critical patent/US10661822B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/04Steering gears mechanical of worm type
    • B62D3/10Steering gears mechanical of worm type with worm engaging in sector or roller gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/06Elastic or yielding bearings or bearing supports, for exclusively rotary movement by means of parts of rubber or like materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/22Toothed members; Worms for transmissions with crossing shafts, especially worms, worm-gears
    • F16H55/24Special devices for taking up backlash
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • F16C2326/24Steering systems, e.g. steering rods or columns

Definitions

  • the invention relates to a worm reducer and an electric power steering system.
  • a worm shaft of an electric power steering system that transmits rotation output of an electric motor to a steering shaft
  • backlash occurs between the worm shaft and a worm wheel.
  • the worm shaft has an end that is drivingly coupled to the electric motor and the worm wheel is coupled to the steering shaft.
  • the other end of the worm shaft is urged toward the worm wheel by an urging member via a bearing, in order to suppress the backlash.
  • the direction of the load that acts on the bearing via the worm shaft due to a meshing reaction force of the worm shaft and the worm wheel during assistance is determined by the gear specifications. If an arc-shaped elastic portion is used, which extends in a range including the direction in which the load acts, it will be necessary to regulate the position so that the elastic portion does not rotate in the circumferential direction of the bearing.
  • JP 2013-155789 A a resin bearing holder is used.
  • the bearing holder interposes an arc-shaped body portion between an outer peripheral surface of a bearing and an inner peripheral surface of a housing.
  • a solid positioning protrusion that protrudes radially outward from the arc-shaped body portion is housed in a recess of the inner peripheral surface of the housing.
  • An object of the invention is to provide a low-noise worm reducer and an electric power steering system.
  • the worm reducer includes: a worm shaft that has a first end portion and a second end portion in an axial direction of the worm shaft, the second end portion coupled to an electric motor; a worm wheel that meshes with the worm shaft; a bearing that supports the first end portion of the worm shaft; a housing including an inner surface having a portion that defines a first end housing portion that houses the first end portion of the worm shaft and the bearing, the portion of the inner surface provided with a recess having a pair of inner wall surfaces that face each other in a circumferential direction of the bearing; an urging member that urges the first end portion of the worm shaft toward the worm wheel via the bearing; and an elastic member including an arc-shaped buffer portion that is interposed between the portion of the inner surface of the housing and an outer peripheral surface of the bearing and that opens toward the worm wheel, and a rotation regulation portion that extends from the buffer portion and is housed in the recess and that regulates the buffer portion from rotating in the
  • FIG. 1 is a schematic diagram of an electric power steering system to which a worm reducer of the first embodiment of the invention is applied;
  • FIG. 2 is a sectional view of a main part of the worm reducer
  • FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG. 2 ;
  • FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG. 2 ;
  • FIG. 5 is a sectional view of the surrounding structure of a first end portion of a worm shaft
  • FIG. 6 is a sectional view of the first end housing portion of a housing
  • FIG. 7 is an exploded perspective view of the periphery a first opening of the housing, an urging member, and an elastic member;
  • FIG. 8 is a perspective view of the elastic member in a different direction from FIG. 7 ;
  • FIG. 9 is an explanatory diagram of the state of rotation regulation by a rotation regulation portion
  • FIG. 10A is a schematic view of an elastic member in the first variation
  • FIG. 10B is a cross section taken along line Xb-Xb in FIG. 10A ;
  • FIG. 11 is a schematic view of an elastic member in the second variation.
  • FIG. 1 is a schematic diagram of an electric power steering system 2 to which a worm reducer 1 of the first embodiment of the invention is applied.
  • the electric power steering system 2 has a steering mechanism 3 and a steering operation mechanism 4 .
  • the electric power steering system 2 turns steered wheels 6 based on the operation of a steering wheel 5 (steering member) by a driver.
  • the steering mechanism 3 has an assist mechanism 7 that assists the operation of the steering wheel 5 by the driver.
  • the steering mechanism 3 includes a steering shaft 8 that rotates in association with the rotation of the steering wheel 5 .
  • the steering shaft 8 includes a column shaft 9 , an intermediate shaft 10 , and a pinion shaft 11 .
  • the column shaft 9 includes an input shaft 9 a , an output shaft 9 b , and a torsion bar 9 c .
  • the input shaft 9 a is coupled to the steering wheel 5 .
  • the output shaft 9 b is coupled to the intermediate shaft 10 .
  • the torsion bar 9 c is coaxially coupled to the input shaft 9 a and the output shaft 9 b.
  • the output shaft 9 b is coupled to the intermediate shaft 10 via a universal joint 12 .
  • the intermediate shaft 10 is coupled to the pinion shaft 11 via a universal joint 13 .
  • a pinion 11 a is formed on the pinion shaft 11 .
  • the steering operation mechanism 4 has a rack shaft 14 and tie rods 15 .
  • a rack 14 a that meshes with the pinion 11 a is formed on the rack shaft 14 .
  • One end of each tie rod 15 is coupled to the rack shaft 14 , and the other end is coupled to a corresponding one of the steered wheels 6 .
  • the pinion shaft 11 rotates via the column shaft 9 and the intermediate shaft 10 .
  • the rotation of the pinion shaft 11 is converted to a reciprocating motion in the axial direction of the rack shaft 14 by a rack and pinion mechanism.
  • the reciprocating motion of the rack shaft 14 changes the turning angle of the steered wheels 6 .
  • the assist mechanism 7 has a torque sensor 16 , a vehicle speed sensor 17 , an electronic control unit (ECU) 18 , an electric motor 19 , and the worm reducer 1 .
  • the torque sensor 16 detects a steering torque T based on a torsion amount between the input shaft 9 a and the output shaft 9 b .
  • the ECU 18 determines an assist torque based on the steering torque T detected by the torque sensor 16 and a vehicle speed V detected by the vehicle speed sensor 17 .
  • Driving of the electric motor 19 is controlled by the ECU 18 .
  • the rotational force (power) of the electric motor 19 is transmitted to the output shaft 9 b of the column shaft 9 of the steering shaft 8 via the worm reducer 1 .
  • the assist torque is applied to the output shaft 9 b and the steering operation of the driver is assisted.
  • FIG. 2 is a sectional view of a main part of the worm reducer 1 .
  • FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG. 2 .
  • FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG. 2 .
  • the worm reducer 1 includes a housing 20 , a worm shaft 21 , a first bearing 22 , a second bearing 23 , a worm wheel 24 , an urging member 25 , an elastic member 60 , and a lid member 29 .
  • the worm shaft 21 includes a first end portion 21 a and a second end portion 21 b that are separated from each other in an axial direction X, and a tooth portion 21 c that is an intermediate portion between the first end portion 21 a and the second end portion 21 b .
  • the first end portion 21 a is an axial end portion of the worm shaft 21 away from the electric motor 19 .
  • the second end portion 21 b is the end portion of the worm shaft 21 closer to the electric motor 19 .
  • the worm wheel 24 is coupled to the output shaft 9 b of the column shaft 9 to be rotatable together with the output shaft 9 b of the column shaft 9 .
  • the worm wheel 24 includes an annular core metal 24 a , and an annular resin member 24 b fitted onto the core metal 24 a .
  • the core metal 24 a is connected to the output shaft 9 b to be rotatable together with the output shaft 9 b .
  • the resin member 24 b is fitted onto the core metal 24 a .
  • a tooth portion 24 c is formed on an outer peripheral surface of the resin member 24 b .
  • the tooth portion 24 c of the worm wheel 24 meshes with the tooth portion 21 c of the worm shaft 21 .
  • the worm shaft 21 is generally coaxially disposed with an output shaft 19 a of the electric motor 19 .
  • the second end portion 21 b of the worm shaft 21 and an end portion of the output shaft 19 a of the electric motor 19 are coupled so as to be able to transmit a torque and pivot, via a power transmission joint 27 .
  • the power transmission joint 27 has a first rotation element 27 a , a second rotation element 27 b , and an intermediate element 27 c .
  • the first rotation element 27 a is coupled to the second end portion 21 b of the worm shaft 21 to be rotatable together with the second end portion 21 b of the worm shaft 21 .
  • the second rotation element 27 b is coupled to the output shaft 19 a of the electric motor 19 to be rotatable together with the output shaft 19 a of the electric motor 19 .
  • the intermediate element 27 c is interposed between the first rotation element 27 a and the second rotation element 27 b , and transmits torque between the rotation elements 27 a , 27 b .
  • the intermediate element 27 c is formed of an elastic body, such as rubber.
  • the first bearing 22 is attached to the first end portion 21 a of the worm shaft 21 .
  • the first end portion 21 a of the worm shaft 21 is rotatably supported in the housing 20 via the first bearing 22 .
  • the second bearing 23 is attached to the second end portion 21 b of the worm shaft 21 .
  • the second end portion 21 b of the worm shaft 21 is rotatably supported in the housing 20 via the second bearing 23 .
  • the intermediate element 27 c of the power transmission joint 27 elastically deforms.
  • the worm shaft 21 is allowed to pivot about the bearing center of the second bearing 23 relative to the output shaft 19 a of the electric motor 19 .
  • the first bearing 22 is formed of a ball bearing, for example.
  • the first bearing 22 includes an inner ring 40 , an outer ring 41 , and a plurality of rolling elements 42 .
  • the inner ring 40 of the first bearing 22 is fitted to a fitting recess 43 provided on the outer periphery of the first end portion 21 a of the worm shaft 21 .
  • the inner ring 40 is rotatable together with the worm shaft 21 .
  • the inner ring 40 abuts on a positioning step part 44 provided on the outer periphery of the first end portion 21 a of the worm shaft 21 in the axial direction.
  • the movement of the inner ring 40 in the axial direction relative to the worm shaft 21 is regulated.
  • the second bearing 23 is formed of a ball bearing, for example.
  • the second bearing 23 includes an inner ring 30 , an outer ring 31 , and a plurality of rolling elements 32 .
  • the inner ring 30 of the second bearing 23 is fitted to the second end portion 21 b of the worm shaft 21 by clearance fit to be rotatable together with the second end portion 21 b of the worm shaft 21 .
  • the outer ring 31 is held between a positioning step part 34 and a clamping member 35 in the axial direction X.
  • the positioning step part 34 is provided in the housing 20 and the clamping member 35 is screw-fitted on to a screw portion provided on an inner surface 20 a of the housing 20 .
  • movement of the outer ring 31 in the axial direction is regulated.
  • the urging member 25 is a compression coil spring, for example.
  • the urging member 25 elastically urges the first end portion 21 a of the worm shaft 21 toward the worm wheel 24 via the first bearing 22 .
  • the elastic member 60 is made of an elastic material such as rubber.
  • FIG. 5 is a sectional view of the surrounding structure of the first end portion 21 a of the worm shaft 21 .
  • FIG. 6 is a sectional view of a main part of the housing 20 .
  • FIG. 7 is an exploded perspective view of a main part of the housing 20 , the urging member 25 , and the elastic member 60 .
  • FIG. 8 is a perspective view of the elastic member 60 in a different direction from in FIG. 7 .
  • the elastic member 60 includes a buffer portion 61 , a rotation regulation portion 62 , a coupling portion 63 , and an axial urging portion 64 .
  • the buffer portion 61 has an arc shape, and is interposed between the inner surface 20 a of the housing 20 and the outer peripheral surface of the outer ring 41 of the first bearing 22 .
  • the rotation regulation portion 62 extends from the buffer portion 61 outward in a radial direction R of the first bearing 22 (in the direction away from the worm wheel).
  • the rotation regulation portion 62 is housed in a rotation regulation portion housing recess 80 provided in the inner surface 20 a of the housing 20 .
  • the coupling portion 63 couples a pair of arc end portions 611 of the buffer portion 61 .
  • the coupling portion 63 is interposed between the lid member 29 and the first end portion 21 a of the worm shaft 21 .
  • the axial urging portion 64 is a protrusion protruded towards the lid member 29 from the coupling portion 63 (see also FIG. 7 ).
  • the lid member 29 includes a tubular portion 29 a , an end wall portion 29 b , and an annular flange portion 29 c .
  • the end wall portion 29 b closes an end of the tubular portion 29 a in the axial direction.
  • the flange portion 29 c extends in the radially outward direction of the tubular portion 29 a from the other end of the tubular portion 29 a in the axial direction.
  • the housing 20 has an internal space 28 that houses the worm shaft 21 , the first bearing 22 , the second bearing 23 , the worm wheel 24 , the urging member 25 , the elastic member 60 , and the lid member 29 .
  • the internal space 28 is defined by the inner surface 20 a of the housing 20 .
  • the internal space 28 has a worm shaft housing space 100 , a worm wheel housing space 110 , a first opening 51 , and a second opening 52 .
  • the worm shaft 21 is housed in the worm shaft housing space 100 .
  • the worm wheel 24 is housed in the worm wheel housing space 110 .
  • the openings 51 , 52 connect the worm shaft housing space 100 and the outside of the internal space 28 .
  • the worm shaft housing space 100 is a cylindrical space that extends in the axial direction X.
  • the worm shaft housing space 100 has a first end housing portion 101 , a second end housing portion 102 , and a tooth housing portion 103 .
  • a lid member fitting recess 53 As shown in FIGS. 5, 6, and 7 , a lid member fitting recess 53 , an elastic member fitting recess 54 , and a bearing housing recess 55 are formed in this order from the first opening 51 side on the inner surface 20 a of the housing 20 .
  • the lid member fitting recess 53 is an annular recess that defines the first opening 51 and into which the tubular portion 29 a of the lid member 29 is fitted.
  • the elastic member fitting recess 54 is an annular recess into which the buffer portion 61 of the elastic member 60 is fitted.
  • the rotation regulation portion housing recess 80 is formed on a portion of the elastic member fitting recess 54 in the circumferential direction.
  • the bearing housing recess 55 is an annular recess that surrounds the outer peripheral surface of the outer ring 41 of the first bearing 22 with a clearance interposed therebetween.
  • the bearing housing recess 55 houses the first bearing 22 which is fitted onto the first end portion 21 a of the worm shaft 21 .
  • an inner diameter D 4 of the elastic member fitting recess 54 is smaller than an inner diameter D 3 of the lid member fitting recess 53 , and is larger than an inner diameter D 5 of the bearing housing recess 55 (D 3 >D 4 >D 5 ).
  • An annular first step portion 56 that faces the first opening 51 side is formed on the boundary between the lid member fitting recess 53 and the elastic member fitting recess 54 .
  • the first step portion 56 faces the end wall portion 29 b of the lid member 29 .
  • An annular second step portion 57 that faces the first opening 51 side is formed on the boundary between the elastic member fitting recess 54 and the bearing housing recess 55 .
  • the second step portion 57 abuts on an edge 61 d , on the electric motor side, of the buffer portion 61 of the elastic member 60 that is fitted to the elastic member fitting recess 54 . Then, the second step portion 57 positions the buffer portion 61 in the axial direction X relative to the housing 20 .
  • the first end housing portion 101 of the worm shaft housing space 100 is defined by the elastic member fitting recess 54 provided on the inner surface 20 a of the housing 20 , and the bearing housing recess 55 .
  • the first end housing portion 101 is an end of the worm shaft housing space 100 in the axial direction X.
  • the first end housing portion 101 is in communication with the outside of the internal space 28 via the first opening 51 .
  • the first end housing portion 101 functions as a bearing moving hole in which the first bearing 22 moves in the direction that a core-to-core distance D 1 of the worm shaft 21 and the worm wheel 24 increases and decreases (see also FIG. 3 ).
  • the core-to-core distance D 1 is the distance between a central axis C 1 of the worm shaft 21 and a central axis C 2 of the worm wheel 24 .
  • an urging member housing hole 70 that opens to the side that does not face the worm wheel 24 relative to the first bearing 22 is formed on the inner surface 20 a of the housing 20 .
  • the urging member 25 is housed in the urging member housing hole 70 .
  • An inner opening 70 a that opens to the first end housing portion 101 and an outer opening 70 b that opens to the outside of the internal space 28 are formed in the urging member housing hole 70 .
  • the outer opening 70 b is closed by a closing member 71 .
  • the urging member 25 is interposed between the closing member 71 and the outer peripheral surface of the outer ring 41 of the first bearing 22 , and elastically urges the first end portion 21 a of the worm shaft 21 toward the worm wheel 24 via the first bearing 22 .
  • the rotation regulation portion housing recess 80 that houses the rotation regulation portion 62 of the elastic member 60 is formed in the elastic member fitting recess 54 .
  • the rotation regulation portion housing recess 80 is defined by a bottom portion 81 that is depressed from the elastic member fitting recess 54 , and a pair of inner wall surfaces 82 , 83 that are spaced away from each other in the circumferential direction.
  • Inlet corner portions 84 of the rotation regulation portion housing recess 80 are formed by the crossing of the inner wall surfaces 82 , 83 and the elastic member fitting recess 54 .
  • the buffer portion 61 of the elastic member 60 is interposed between the inner surface 20 a of the housing 20 and the outer peripheral surface of the outer ring 41 of the first bearing 22 . Additionally, the buffer portion 61 is formed by an arc-shaped plate that opens to the worm wheel 24 side. As shown in FIGS. 7 and 8 , the buffer portion 61 includes an outer surface 61 a and an inner surface 61 b both formed of an arc-shaped surface, an edge 61 c on the lid member 29 side, and the edge 61 d on the electric motor 19 side. As shown in FIG. 5 , the outer surface 61 a of the buffer portion 61 is fitted to the elastic member fitting recess 54 . The inner surface 61 b of the buffer portion 61 is fitted to the outer peripheral surface of the outer ring 41 of the first bearing 22 .
  • a clearance may be interposed between the inner surface 61 b of the buffer portion 61 and the outer peripheral surface of the outer ring 41 of the first bearing 22 .
  • the outer surface 61 a of the buffer portion 61 is fitted to the elastic member fitting recess 54 of the inner surface 20 a of the housing 20 .
  • the inner surface 61 b of the buffer portion 61 is fitted to the outer peripheral surface of the outer ring 41 of the first bearing 22 . In this state, when the buffer portion 61 is in a non-compressed state, a clearance S 1 is provided between the bearing housing recess 55 and the outer peripheral surface of the outer ring 41 of the first bearing 22 .
  • the buffer portion 61 is elastically compressed when the first bearing 22 is moved in the direction away from the worm wheel, by a load acting on the first bearing 22 from the worm wheel via the worm shaft 21 .
  • the buffer portion 61 attenuates the movement of the first bearing 22 by elastic resiliency.
  • the load acting on the first bearing 22 is excessive, the outer peripheral surface of the outer ring 41 of the first bearing 22 and the bearing housing recess 55 abut against each other, and the clearance S 1 becomes zero.
  • the durability of the buffer portion 61 is ensured, by the amount of compression of the buffer portion 61 being limited to the amount of the clearance S 1 or lower.
  • a semicircular clearance groove 61 e for example, is formed in the buffer portion 61 .
  • the clearance groove 61 e extends through the outer surface 61 a and the inner surface 61 b to open to the edge 61 d on the electric motor 19 side, in order to avoid interference with the urging member 25 .
  • the rotation regulation portion 62 is extended radially outward (in the direction away from the worm wheel) from the outer surface 61 a of the buffer portion 61 .
  • the rotation regulation portion 62 has a generally rectangular shape that extends in a circumferential direction C and has a prescribed thickness in the axial direction X (not shown in FIG.
  • the rotation regulation portion 62 housed in the rotation regulation portion housing recess 80 engages with the inner wall surfaces 82 , 83 of the rotation regulation portion housing recess 80 .
  • the rotation of the buffer portion 61 in the circumferential direction C of the first bearing 22 is regulated.
  • the rotation regulation portion 62 includes a pair of engagement portions 65 , a bridge portion 66 , and a hollow portion 67 .
  • Each of the engagement portions 65 is a columnar portion that has a base end portion 65 a and a distal end 65 b .
  • the base end portion 65 a is connected to the buffer portion 61 .
  • the distal end 65 b is spaced from the base end portion 65 a in the direction away from the worm wheel.
  • the engagement portions 65 are spaced away from each other in the circumferential direction C, and can be engaged with the inner wall surfaces 82 , 83 of the rotation regulation portion housing recess 80 .
  • a clearance portion 68 that has a recessed curved shape for example, is formed in the base end portions 65 a of each of the engagement portions 65 .
  • the clearance portion 68 suppresses interference of the base end portion 65 a and the corresponding inlet corner portion 84 of the rotation regulation portion housing recess 80 , during rotation regulation of the buffer portion 61 .
  • the bridge portion 66 extends between the distal ends 65 b of the engagement portions 65 , and connects the distal ends 65 b together.
  • the hollow portion 67 is interposed between the engagement portions 65 in the circumferential direction C.
  • the hollow portion 67 is interposed between the bridge portion 66 and the outer surface 61 a of the buffer portion 61 in the radial direction R.
  • the hollow portion 67 is formed of a though hole (see also FIG. 7 ) that extends through in the direction parallel to the axial direction X of the worm shaft 21 , between the engagement portions 65 .
  • the coupling portion 63 has a generally rectangular plate shape, and couples the edges, on the lid member 29 side, in the arc end portions 611 of the arc-shaped buffer portion 61 .
  • the coupling portion 63 faces the end face of the first end portion 21 a of the worm shaft 21 and the end wall portion 29 b of the lid member 29 .
  • the coupling portion 63 and the arc end portions 611 are assembled, and a groove shape is formed.
  • the axial urging portion 64 is formed of a protrusion that protrudes from the surface of the coupling portion 63 on the lid member 29 side. As shown in FIG. 5 , the axial urging portion 64 elastically abuts on the end wall portion 29 b of the lid member 29 .
  • the contact reaction force acts to press the edge 61 d of the buffer portion 61 on the electric motor 19 side onto the second step portion 57 of the inner surface 20 a of the housing 20 .
  • holding of the axial position of the buffer portion 61 with respect to the housing 20 becomes stable.
  • the second end portion 21 b , the second bearing 23 , and the power transmission joint 27 are housed in the second end housing portion 102 .
  • the second bearing 23 is attached to the second end portion 21 b .
  • the power transmission joint 27 is coupled to the second end portion 21 b .
  • the second end housing portion 102 is the other end of the worm shaft housing space 100 in the axial direction X.
  • the second opening 52 is formed in the other end of the housing 20 in the axial direction X.
  • the second end housing portion 102 is in communication with the outside of the internal space 28 via the second opening 52 .
  • the tooth portion 21 c is housed in the tooth housing portion 103 .
  • the tooth housing portion 103 is in communication with the worm wheel housing space 110 .
  • the rotation regulation portion 62 engages with the inner wall surface 82 or 83 of the rotation regulation portion housing recess 80 of the housing 20 and deforms, during rotation regulation of the elastic member 60 by the rotation regulation portion 62 .
  • the hollow portion 67 is provided in the rotation regulation portion 62 , and thus the rotation regulation portion 62 is easily deformed. Therefore, it is possible to suppress deformation of the buffer portion 61 due to transmission of the deformation load of the rotation regulation portion 62 to the buffer portion 61 .
  • the buffer portion 61 can attenuate the movement of the first bearing 22 in the radial direction R, without being influenced by the deformation of the rotation regulation portion 62 . Thus, it is possible to suppress the striking noise due to contact between the first bearing 22 and the housing 20 , and achieve the low-noise worm reducer 1 .
  • the rotation regulation portion 62 regulates rotation of the elastic member 60
  • the engagement portions 65 of the rotation regulation portion 62 are easily deformed toward the through hole (hollow portion 67 ) interposed between the engagement portions 65 .
  • the clearance portions 68 provided on the rotation regulation portion 62 suppress interference of the rotation regulation portion 62 and the inlet corner portions 84 of the rotation regulation portion housing recess 80 .
  • the durability of the rotation regulation portion 62 is improved.
  • the low-noise electric power steering system 2 By lowering the noise of the worm reducer 1 , the low-noise electric power steering system 2 can be achieved.
  • the invention is not limited to the above-described embodiment.
  • the hollow portion 67 formed of a through hole is provided in the rotation regulation portion 62 of the elastic member 60 .
  • a hollow portion 67 P formed of a non-through hole may be provided, as of the first variation shown in FIG. 10A and FIG. 10B which is a sectional view taken along line Xb-Xb in FIG. 10A .
  • the durability of the engagement portions 65 is improved.
  • a rotation regulation portion 62 Q of an elastic member 60 Q may be formed of a pair of engagement portions 65 Q that are independent of each other.
  • a hollow portion 67 Q formed of a through hole is opened to the side opposite to the buffer portion 61 .
  • the engagement portions 65 Q are more easily deformed and transmission of load to the buffer portion 61 is further suppressed, during rotation regulation of the elastic member 60 Q by the rotation regulation portion 62 Q.

Abstract

A first end portion of a worm shaft and a first bearing that supports the first end portion are housed in a first end housing portion in a housing. The first end portion is urged toward a worm wheel by an urging member. A rotation regulation portion housing recess is formed in a portion that defines the first end housing portion on an inner surface of the housing. An elastic member includes an arc-shaped buffer portion that is interposed between the portion that defines the inner surface and an outer peripheral surface of the first bearing, and a rotation regulation portion that extends from the buffer portion and is housed in the rotation regulation portion housing recess. The rotation regulation portion includes a hollow portion which suppresses load transmission from the rotation regulation portion to the buffer portion during rotation regulation.

Description

INCORPORATION BY REFERENCE
The disclosure of Japanese Patent Application No. 2017-082913 filed on Apr. 19, 2017 including the specification, drawings and abstract, is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION 1. Field of the Invention
The invention relates to a worm reducer and an electric power steering system.
2. Description of Related Art
In a worm shaft of an electric power steering system that transmits rotation output of an electric motor to a steering shaft, backlash occurs between the worm shaft and a worm wheel. The worm shaft has an end that is drivingly coupled to the electric motor and the worm wheel is coupled to the steering shaft. In a conventionally known structure, the other end of the worm shaft is urged toward the worm wheel by an urging member via a bearing, in order to suppress the backlash.
A technology has been proposed, in which a striking noise due to contact between a housing that houses the worm shaft and the bearing is suppressed, by absorbing load that acts on the bearing through the worm shaft from the worm wheel side. For example, in Japanese Patent Application Publication No. 2014-125113 (2014-125113 A), an inner peripheral surface of a gear case (housing) and an outer peripheral surface of a bearing face each other across a prescribed clearance. An annular elastic portion that extends along the whole circumference of the outer peripheral surface of the bearing is interposed between an annular groove provided on the inner peripheral surface of the gear case and the outer peripheral surface of the bearing. Thus, the striking noise due to contact of the bearing and the housing is suppressed.
The direction of the load that acts on the bearing via the worm shaft due to a meshing reaction force of the worm shaft and the worm wheel during assistance, is determined by the gear specifications. If an arc-shaped elastic portion is used, which extends in a range including the direction in which the load acts, it will be necessary to regulate the position so that the elastic portion does not rotate in the circumferential direction of the bearing. In Japanese Patent Application Publication No. 2013-155789 (JP 2013-155789 A), a resin bearing holder is used. The bearing holder interposes an arc-shaped body portion between an outer peripheral surface of a bearing and an inner peripheral surface of a housing. In this bearing holder, a solid positioning protrusion that protrudes radially outward from the arc-shaped body portion is housed in a recess of the inner peripheral surface of the housing. By engaging the solid positioning protrusion with a pair of inner wall surfaces of the recess, the rotation of the body portion of the bearing holder in the circumferential direction can be regulated.
When regulating the rotation of the arc-shaped elastic portion with the solid positioning protrusion that protrudes radially outward from the arc-shaped elastic portion, for disposing the arc-shaped elastic portion around the bearing, as in JP 2013-155789 A, the following malfunctions can be expected to occur. With rotation regulation of the elastic portion, the solid positioning protrusion engages with the inner wall surfaces of the recess of the housing and deforms. Deformation load is then applied to the arc-shaped elastic portion. Thus, the arc-shaped elastic portion deforms and can no longer sufficiently attenuate the movement of the bearing, and there is a risk of a striking noise due to contact being generated.
SUMMARY OF THE INVENTION
An object of the invention is to provide a low-noise worm reducer and an electric power steering system.
According to an aspect of the invention, the worm reducer includes: a worm shaft that has a first end portion and a second end portion in an axial direction of the worm shaft, the second end portion coupled to an electric motor; a worm wheel that meshes with the worm shaft; a bearing that supports the first end portion of the worm shaft; a housing including an inner surface having a portion that defines a first end housing portion that houses the first end portion of the worm shaft and the bearing, the portion of the inner surface provided with a recess having a pair of inner wall surfaces that face each other in a circumferential direction of the bearing; an urging member that urges the first end portion of the worm shaft toward the worm wheel via the bearing; and an elastic member including an arc-shaped buffer portion that is interposed between the portion of the inner surface of the housing and an outer peripheral surface of the bearing and that opens toward the worm wheel, and a rotation regulation portion that extends from the buffer portion and is housed in the recess and that regulates the buffer portion from rotating in the circumferential direction by engaging with the inner wall surfaces. The rotation regulation portion includes a hollow portion which suppresses load transmission from the rotation regulation portion to the buffer portion.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and further features and advantages of the invention will become apparent from the following description of example embodiments with reference to the accompanying drawings, wherein like numerals are used to represent like elements and wherein:
FIG. 1 is a schematic diagram of an electric power steering system to which a worm reducer of the first embodiment of the invention is applied;
FIG. 2 is a sectional view of a main part of the worm reducer;
FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG. 2;
FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG. 2;
FIG. 5 is a sectional view of the surrounding structure of a first end portion of a worm shaft;
FIG. 6 is a sectional view of the first end housing portion of a housing;
FIG. 7 is an exploded perspective view of the periphery a first opening of the housing, an urging member, and an elastic member;
FIG. 8 is a perspective view of the elastic member in a different direction from FIG. 7;
FIG. 9 is an explanatory diagram of the state of rotation regulation by a rotation regulation portion;
FIG. 10A is a schematic view of an elastic member in the first variation;
FIG. 10B is a cross section taken along line Xb-Xb in FIG. 10A; and
FIG. 11 is a schematic view of an elastic member in the second variation.
DETAILED DESCRIPTION OF EMBODIMENTS
Hereinafter, embodiments of the invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram of an electric power steering system 2 to which a worm reducer 1 of the first embodiment of the invention is applied. With reference to FIG. 1, the electric power steering system 2 has a steering mechanism 3 and a steering operation mechanism 4. The electric power steering system 2 turns steered wheels 6 based on the operation of a steering wheel 5 (steering member) by a driver. The steering mechanism 3 has an assist mechanism 7 that assists the operation of the steering wheel 5 by the driver.
The steering mechanism 3 includes a steering shaft 8 that rotates in association with the rotation of the steering wheel 5. The steering shaft 8 includes a column shaft 9, an intermediate shaft 10, and a pinion shaft 11. The column shaft 9 includes an input shaft 9 a, an output shaft 9 b, and a torsion bar 9 c. The input shaft 9 a is coupled to the steering wheel 5. The output shaft 9 b is coupled to the intermediate shaft 10. The torsion bar 9 c is coaxially coupled to the input shaft 9 a and the output shaft 9 b.
The output shaft 9 b is coupled to the intermediate shaft 10 via a universal joint 12. The intermediate shaft 10 is coupled to the pinion shaft 11 via a universal joint 13. A pinion 11 a is formed on the pinion shaft 11. The steering operation mechanism 4 has a rack shaft 14 and tie rods 15. A rack 14 a that meshes with the pinion 11 a is formed on the rack shaft 14. One end of each tie rod 15 is coupled to the rack shaft 14, and the other end is coupled to a corresponding one of the steered wheels 6.
When the steering wheel 5 rotates according to the operation of the steering wheel 5 by the driver, the pinion shaft 11 rotates via the column shaft 9 and the intermediate shaft 10. The rotation of the pinion shaft 11 is converted to a reciprocating motion in the axial direction of the rack shaft 14 by a rack and pinion mechanism. The reciprocating motion of the rack shaft 14 changes the turning angle of the steered wheels 6.
The assist mechanism 7 has a torque sensor 16, a vehicle speed sensor 17, an electronic control unit (ECU) 18, an electric motor 19, and the worm reducer 1. The torque sensor 16 detects a steering torque T based on a torsion amount between the input shaft 9 a and the output shaft 9 b. The ECU 18 determines an assist torque based on the steering torque T detected by the torque sensor 16 and a vehicle speed V detected by the vehicle speed sensor 17. Driving of the electric motor 19 is controlled by the ECU 18. The rotational force (power) of the electric motor 19 is transmitted to the output shaft 9 b of the column shaft 9 of the steering shaft 8 via the worm reducer 1. As a result, the assist torque is applied to the output shaft 9 b and the steering operation of the driver is assisted.
In the embodiment, an electric power steering system, in which power from the electric motor 19 is applied to the column shaft 9, will be described as an example. However, the invention is not limited to this, and can be applied to the electric power steering system that has a worm reducer. Next, the structure of the worm reducer 1 will be described. FIG. 2 is a sectional view of a main part of the worm reducer 1. FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG. 2. FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG. 2.
Referring to FIG. 2, the worm reducer 1 includes a housing 20, a worm shaft 21, a first bearing 22, a second bearing 23, a worm wheel 24, an urging member 25, an elastic member 60, and a lid member 29. The worm shaft 21 includes a first end portion 21 a and a second end portion 21 b that are separated from each other in an axial direction X, and a tooth portion 21 c that is an intermediate portion between the first end portion 21 a and the second end portion 21 b. The first end portion 21 a is an axial end portion of the worm shaft 21 away from the electric motor 19. The second end portion 21 b is the end portion of the worm shaft 21 closer to the electric motor 19.
The worm wheel 24 is coupled to the output shaft 9 b of the column shaft 9 to be rotatable together with the output shaft 9 b of the column shaft 9. The worm wheel 24 includes an annular core metal 24 a, and an annular resin member 24 b fitted onto the core metal 24 a. The core metal 24 a is connected to the output shaft 9 b to be rotatable together with the output shaft 9 b. The resin member 24 b is fitted onto the core metal 24 a. A tooth portion 24 c is formed on an outer peripheral surface of the resin member 24 b. The tooth portion 24 c of the worm wheel 24 meshes with the tooth portion 21 c of the worm shaft 21.
The worm shaft 21 is generally coaxially disposed with an output shaft 19 a of the electric motor 19. The second end portion 21 b of the worm shaft 21 and an end portion of the output shaft 19 a of the electric motor 19 are coupled so as to be able to transmit a torque and pivot, via a power transmission joint 27. The power transmission joint 27 has a first rotation element 27 a, a second rotation element 27 b, and an intermediate element 27 c. The first rotation element 27 a is coupled to the second end portion 21 b of the worm shaft 21 to be rotatable together with the second end portion 21 b of the worm shaft 21. The second rotation element 27 b is coupled to the output shaft 19 a of the electric motor 19 to be rotatable together with the output shaft 19 a of the electric motor 19. The intermediate element 27 c is interposed between the first rotation element 27 a and the second rotation element 27 b, and transmits torque between the rotation elements 27 a, 27 b. The intermediate element 27 c is formed of an elastic body, such as rubber.
The first bearing 22 is attached to the first end portion 21 a of the worm shaft 21. The first end portion 21 a of the worm shaft 21 is rotatably supported in the housing 20 via the first bearing 22. The second bearing 23 is attached to the second end portion 21 b of the worm shaft 21. The second end portion 21 b of the worm shaft 21 is rotatably supported in the housing 20 via the second bearing 23. The intermediate element 27 c of the power transmission joint 27 elastically deforms. Thus, the worm shaft 21 is allowed to pivot about the bearing center of the second bearing 23 relative to the output shaft 19 a of the electric motor 19.
The first bearing 22 is formed of a ball bearing, for example. The first bearing 22 includes an inner ring 40, an outer ring 41, and a plurality of rolling elements 42. The inner ring 40 of the first bearing 22 is fitted to a fitting recess 43 provided on the outer periphery of the first end portion 21 a of the worm shaft 21. Thus, the inner ring 40 is rotatable together with the worm shaft 21. The inner ring 40 abuts on a positioning step part 44 provided on the outer periphery of the first end portion 21 a of the worm shaft 21 in the axial direction. Thus, the movement of the inner ring 40 in the axial direction relative to the worm shaft 21 is regulated.
The second bearing 23 is formed of a ball bearing, for example. The second bearing 23 includes an inner ring 30, an outer ring 31, and a plurality of rolling elements 32. The inner ring 30 of the second bearing 23 is fitted to the second end portion 21 b of the worm shaft 21 by clearance fit to be rotatable together with the second end portion 21 b of the worm shaft 21. The outer ring 31 is held between a positioning step part 34 and a clamping member 35 in the axial direction X. The positioning step part 34 is provided in the housing 20 and the clamping member 35 is screw-fitted on to a screw portion provided on an inner surface 20 a of the housing 20. Thus, movement of the outer ring 31 in the axial direction is regulated.
As shown in FIG. 3, the urging member 25 is a compression coil spring, for example. The urging member 25 elastically urges the first end portion 21 a of the worm shaft 21 toward the worm wheel 24 via the first bearing 22. The elastic member 60 is made of an elastic material such as rubber. FIG. 5 is a sectional view of the surrounding structure of the first end portion 21 a of the worm shaft 21. FIG. 6 is a sectional view of a main part of the housing 20. FIG. 7 is an exploded perspective view of a main part of the housing 20, the urging member 25, and the elastic member 60. FIG. 8 is a perspective view of the elastic member 60 in a different direction from in FIG. 7.
First, the overall structure of the elastic member 60 will be described. As shown in FIGS. 4, 5, and 7, the elastic member 60 includes a buffer portion 61, a rotation regulation portion 62, a coupling portion 63, and an axial urging portion 64. As shown in FIG. 4, the buffer portion 61 has an arc shape, and is interposed between the inner surface 20 a of the housing 20 and the outer peripheral surface of the outer ring 41 of the first bearing 22. The rotation regulation portion 62 extends from the buffer portion 61 outward in a radial direction R of the first bearing 22 (in the direction away from the worm wheel). The rotation regulation portion 62 is housed in a rotation regulation portion housing recess 80 provided in the inner surface 20 a of the housing 20. As shown in FIG. 7, the coupling portion 63 couples a pair of arc end portions 611 of the buffer portion 61. As shown in FIG. 5, the coupling portion 63 is interposed between the lid member 29 and the first end portion 21 a of the worm shaft 21. The axial urging portion 64 is a protrusion protruded towards the lid member 29 from the coupling portion 63 (see also FIG. 7).
As shown in FIG. 5, the lid member 29 includes a tubular portion 29 a, an end wall portion 29 b, and an annular flange portion 29 c. The end wall portion 29 b closes an end of the tubular portion 29 a in the axial direction. The flange portion 29 c extends in the radially outward direction of the tubular portion 29 a from the other end of the tubular portion 29 a in the axial direction. Referring to FIG. 2, the housing 20 has an internal space 28 that houses the worm shaft 21, the first bearing 22, the second bearing 23, the worm wheel 24, the urging member 25, the elastic member 60, and the lid member 29. The internal space 28 is defined by the inner surface 20 a of the housing 20. The internal space 28 has a worm shaft housing space 100, a worm wheel housing space 110, a first opening 51, and a second opening 52.
The worm shaft 21 is housed in the worm shaft housing space 100. The worm wheel 24 is housed in the worm wheel housing space 110. The openings 51, 52 connect the worm shaft housing space 100 and the outside of the internal space 28. The worm shaft housing space 100 is a cylindrical space that extends in the axial direction X. The worm shaft housing space 100 has a first end housing portion 101, a second end housing portion 102, and a tooth housing portion 103.
As shown in FIGS. 5, 6, and 7, a lid member fitting recess 53, an elastic member fitting recess 54, and a bearing housing recess 55 are formed in this order from the first opening 51 side on the inner surface 20 a of the housing 20. The lid member fitting recess 53 is an annular recess that defines the first opening 51 and into which the tubular portion 29 a of the lid member 29 is fitted. The elastic member fitting recess 54 is an annular recess into which the buffer portion 61 of the elastic member 60 is fitted. The rotation regulation portion housing recess 80 is formed on a portion of the elastic member fitting recess 54 in the circumferential direction.
As shown in FIG. 5, the bearing housing recess 55 is an annular recess that surrounds the outer peripheral surface of the outer ring 41 of the first bearing 22 with a clearance interposed therebetween. The bearing housing recess 55 houses the first bearing 22 which is fitted onto the first end portion 21 a of the worm shaft 21. As shown in FIG. 6, an inner diameter D4 of the elastic member fitting recess 54 is smaller than an inner diameter D3 of the lid member fitting recess 53, and is larger than an inner diameter D5 of the bearing housing recess 55 (D3>D4>D5).
An annular first step portion 56 that faces the first opening 51 side is formed on the boundary between the lid member fitting recess 53 and the elastic member fitting recess 54. The first step portion 56 faces the end wall portion 29 b of the lid member 29. An annular second step portion 57 that faces the first opening 51 side is formed on the boundary between the elastic member fitting recess 54 and the bearing housing recess 55. As shown in FIG. 5, the second step portion 57 abuts on an edge 61 d, on the electric motor side, of the buffer portion 61 of the elastic member 60 that is fitted to the elastic member fitting recess 54. Then, the second step portion 57 positions the buffer portion 61 in the axial direction X relative to the housing 20.
As shown in FIGS. 5 and 6, the first end housing portion 101 of the worm shaft housing space 100 is defined by the elastic member fitting recess 54 provided on the inner surface 20 a of the housing 20, and the bearing housing recess 55. The first end housing portion 101 is an end of the worm shaft housing space 100 in the axial direction X. The first end housing portion 101 is in communication with the outside of the internal space 28 via the first opening 51.
Referring to FIG. 2, the first end housing portion 101 functions as a bearing moving hole in which the first bearing 22 moves in the direction that a core-to-core distance D1 of the worm shaft 21 and the worm wheel 24 increases and decreases (see also FIG. 3). As shown in FIG. 2, the core-to-core distance D1 is the distance between a central axis C1 of the worm shaft 21 and a central axis C2 of the worm wheel 24. As shown in FIGS. 5 and 6, an urging member housing hole 70 that opens to the side that does not face the worm wheel 24 relative to the first bearing 22 is formed on the inner surface 20 a of the housing 20. The urging member 25 is housed in the urging member housing hole 70. An inner opening 70 a that opens to the first end housing portion 101 and an outer opening 70 b that opens to the outside of the internal space 28 are formed in the urging member housing hole 70. The outer opening 70 b is closed by a closing member 71. The urging member 25 is interposed between the closing member 71 and the outer peripheral surface of the outer ring 41 of the first bearing 22, and elastically urges the first end portion 21 a of the worm shaft 21 toward the worm wheel 24 via the first bearing 22.
As shown in FIGS. 4 and 5, and FIG. 9 that is an explanatory diagram, the rotation regulation portion housing recess 80 that houses the rotation regulation portion 62 of the elastic member 60 is formed in the elastic member fitting recess 54. As shown in FIG. 9, the rotation regulation portion housing recess 80 is defined by a bottom portion 81 that is depressed from the elastic member fitting recess 54, and a pair of inner wall surfaces 82, 83 that are spaced away from each other in the circumferential direction. Inlet corner portions 84 of the rotation regulation portion housing recess 80 are formed by the crossing of the inner wall surfaces 82, 83 and the elastic member fitting recess 54.
Next, the structure of the elastic member 60 will be described. As shown in FIG. 4, the buffer portion 61 of the elastic member 60 is interposed between the inner surface 20 a of the housing 20 and the outer peripheral surface of the outer ring 41 of the first bearing 22. Additionally, the buffer portion 61 is formed by an arc-shaped plate that opens to the worm wheel 24 side. As shown in FIGS. 7 and 8, the buffer portion 61 includes an outer surface 61 a and an inner surface 61 b both formed of an arc-shaped surface, an edge 61 c on the lid member 29 side, and the edge 61 d on the electric motor 19 side. As shown in FIG. 5, the outer surface 61 a of the buffer portion 61 is fitted to the elastic member fitting recess 54. The inner surface 61 b of the buffer portion 61 is fitted to the outer peripheral surface of the outer ring 41 of the first bearing 22.
A clearance may be interposed between the inner surface 61 b of the buffer portion 61 and the outer peripheral surface of the outer ring 41 of the first bearing 22. The outer surface 61 a of the buffer portion 61 is fitted to the elastic member fitting recess 54 of the inner surface 20 a of the housing 20. The inner surface 61 b of the buffer portion 61 is fitted to the outer peripheral surface of the outer ring 41 of the first bearing 22. In this state, when the buffer portion 61 is in a non-compressed state, a clearance S1 is provided between the bearing housing recess 55 and the outer peripheral surface of the outer ring 41 of the first bearing 22.
The buffer portion 61 is elastically compressed when the first bearing 22 is moved in the direction away from the worm wheel, by a load acting on the first bearing 22 from the worm wheel via the worm shaft 21. The buffer portion 61 attenuates the movement of the first bearing 22 by elastic resiliency. When the load acting on the first bearing 22 is excessive, the outer peripheral surface of the outer ring 41 of the first bearing 22 and the bearing housing recess 55 abut against each other, and the clearance S1 becomes zero. Thus, the durability of the buffer portion 61 is ensured, by the amount of compression of the buffer portion 61 being limited to the amount of the clearance S1 or lower.
As shown in FIGS. 5 and 8, a semicircular clearance groove 61 e for example, is formed in the buffer portion 61. The clearance groove 61 e extends through the outer surface 61 a and the inner surface 61 b to open to the edge 61 d on the electric motor 19 side, in order to avoid interference with the urging member 25. As shown in FIG. 9, the rotation regulation portion 62 is extended radially outward (in the direction away from the worm wheel) from the outer surface 61 a of the buffer portion 61. The rotation regulation portion 62 has a generally rectangular shape that extends in a circumferential direction C and has a prescribed thickness in the axial direction X (not shown in FIG. 9, the direction orthogonal to the sheet on which FIG. 9 is drawn). The rotation regulation portion 62 housed in the rotation regulation portion housing recess 80 engages with the inner wall surfaces 82, 83 of the rotation regulation portion housing recess 80. Thus, the rotation of the buffer portion 61 in the circumferential direction C of the first bearing 22 is regulated.
The rotation regulation portion 62 includes a pair of engagement portions 65, a bridge portion 66, and a hollow portion 67. Each of the engagement portions 65 is a columnar portion that has a base end portion 65 a and a distal end 65 b. The base end portion 65 a is connected to the buffer portion 61. The distal end 65 b is spaced from the base end portion 65 a in the direction away from the worm wheel. The engagement portions 65 are spaced away from each other in the circumferential direction C, and can be engaged with the inner wall surfaces 82, 83 of the rotation regulation portion housing recess 80. Specifically, either one of the engagement portions 65 is engaged with the corresponding one of the inner wall surfaces 82, 83 depending on the direction of the rotation of the buffer portion 61. Thus, rotation of the buffer portion 61 is regulated. A clearance portion 68 that has a recessed curved shape for example, is formed in the base end portions 65 a of each of the engagement portions 65. The clearance portion 68 suppresses interference of the base end portion 65 a and the corresponding inlet corner portion 84 of the rotation regulation portion housing recess 80, during rotation regulation of the buffer portion 61.
The bridge portion 66 extends between the distal ends 65 b of the engagement portions 65, and connects the distal ends 65 b together. The hollow portion 67 is interposed between the engagement portions 65 in the circumferential direction C. The hollow portion 67 is interposed between the bridge portion 66 and the outer surface 61 a of the buffer portion 61 in the radial direction R. Thus, the hollow portion 67 is formed of a though hole (see also FIG. 7) that extends through in the direction parallel to the axial direction X of the worm shaft 21, between the engagement portions 65.
As shown in FIGS. 7 and 8, the coupling portion 63 has a generally rectangular plate shape, and couples the edges, on the lid member 29 side, in the arc end portions 611 of the arc-shaped buffer portion 61. As shown in FIG. 5, the coupling portion 63 faces the end face of the first end portion 21 a of the worm shaft 21 and the end wall portion 29 b of the lid member 29. As shown in FIG. 8, the coupling portion 63 and the arc end portions 611 are assembled, and a groove shape is formed. When installing the elastic member 60 in the housing 20, during the assembly of the worm reducer 1 the elastic member 60 can be easily installed by gripping the coupling portion 63. In particular, the coupling portion 63 can be gripped by a robot hand during assembly, and is thus suitable for automatic assembly.
The axial urging portion 64 is formed of a protrusion that protrudes from the surface of the coupling portion 63 on the lid member 29 side. As shown in FIG. 5, the axial urging portion 64 elastically abuts on the end wall portion 29 b of the lid member 29. The contact reaction force acts to press the edge 61 d of the buffer portion 61 on the electric motor 19 side onto the second step portion 57 of the inner surface 20 a of the housing 20. Thus, holding of the axial position of the buffer portion 61 with respect to the housing 20 becomes stable.
Referring to FIG. 2, the second end portion 21 b, the second bearing 23, and the power transmission joint 27 are housed in the second end housing portion 102. The second bearing 23 is attached to the second end portion 21 b. The power transmission joint 27 is coupled to the second end portion 21 b. The second end housing portion 102 is the other end of the worm shaft housing space 100 in the axial direction X. The second opening 52 is formed in the other end of the housing 20 in the axial direction X. The second end housing portion 102 is in communication with the outside of the internal space 28 via the second opening 52.
The tooth portion 21 c is housed in the tooth housing portion 103. The tooth housing portion 103 is in communication with the worm wheel housing space 110. In the embodiment, as shown in FIG. 9, the rotation regulation portion 62 engages with the inner wall surface 82 or 83 of the rotation regulation portion housing recess 80 of the housing 20 and deforms, during rotation regulation of the elastic member 60 by the rotation regulation portion 62. The hollow portion 67 is provided in the rotation regulation portion 62, and thus the rotation regulation portion 62 is easily deformed. Therefore, it is possible to suppress deformation of the buffer portion 61 due to transmission of the deformation load of the rotation regulation portion 62 to the buffer portion 61. The buffer portion 61 can attenuate the movement of the first bearing 22 in the radial direction R, without being influenced by the deformation of the rotation regulation portion 62. Thus, it is possible to suppress the striking noise due to contact between the first bearing 22 and the housing 20, and achieve the low-noise worm reducer 1.
When the rotation regulation portion 62 regulates rotation of the elastic member 60, the engagement portions 65 of the rotation regulation portion 62 are easily deformed toward the through hole (hollow portion 67) interposed between the engagement portions 65. Thus, it is possible to effectively suppress deformation load of the rotation regulation portion 62 from being applied to the buffer portion 61. The clearance portions 68 provided on the rotation regulation portion 62 suppress interference of the rotation regulation portion 62 and the inlet corner portions 84 of the rotation regulation portion housing recess 80. Thus, the durability of the rotation regulation portion 62 is improved.
By lowering the noise of the worm reducer 1, the low-noise electric power steering system 2 can be achieved. The invention is not limited to the above-described embodiment. For example, in the embodiment shown in FIG. 9, the hollow portion 67 formed of a through hole is provided in the rotation regulation portion 62 of the elastic member 60. However, in a rotation regulation portion 62P of an elastic member 60P, a hollow portion 67P formed of a non-through hole may be provided, as of the first variation shown in FIG. 10A and FIG. 10B which is a sectional view taken along line Xb-Xb in FIG. 10A. In the first variation, the durability of the engagement portions 65 is improved.
In the embodiment shown in FIG. 9, the distal ends 65 b of the columnar engagement portions 65 of the elastic member 60 are connected via the bridge portion 66. However, as of the second variation shown in FIG. 11, a rotation regulation portion 62Q of an elastic member 60Q may be formed of a pair of engagement portions 65Q that are independent of each other. A hollow portion 67Q formed of a through hole is opened to the side opposite to the buffer portion 61. In the second variation, the engagement portions 65Q are more easily deformed and transmission of load to the buffer portion 61 is further suppressed, during rotation regulation of the elastic member 60Q by the rotation regulation portion 62Q.
In addition, various modifications can be made to the invention within the scope of the claims.

Claims (6)

What is claimed is:
1. A worm reducer comprising:
a worm shaft that has a first end portion and a second end portion in an axial direction of the worm shaft, the second end portion coupled to an electric motor;
a worm wheel that meshes with the worm shaft;
a bearing that supports the first end portion of the worm shaft;
a housing including an inner surface having a portion that defines a first end housing portion that houses the first end portion of the worm shaft and the bearing, the portion of the inner surface provided with a recess having a pair of inner wall surfaces that face each other in a circumferential direction of the bearing;
an urging member that urges the first end portion of the worm shaft toward the worm wheel via the bearing; and
an elastic member including an arc-shaped buffer portion that is interposed between the portion of the inner surface of the housing and an outer peripheral surface of the bearing and that opens toward the worm wheel, and a rotation regulation portion that extends from the buffer portion and is housed in the recess and that regulates the buffer portion from rotating in the circumferential direction by engaging with the inner wall surfaces, wherein
the rotation regulation portion includes a hollow portion which suppresses load transmission from the rotation regulation portion to the buffer portion,
the rotation regulation portion includes a pair of engagement portions that are spaced away from each other in the circumferential direction of the bearing and each engage with a corresponding one of the pair of inner wall surfaces of the recess of the housing, and
the hollow portion is interposed between the engagement portions, and is formed of a through hole or a non-through hole that has a depth in a direction parallel to the axial direction of the warm shaft.
2. The worm reducer according to claim 1, wherein
an inlet corner portion of the recess is formed of each of the inner wall surfaces and the portion of the inner surface of the housing, and
the rotation regulation portion has a clearance portion that suppresses interference with the inlet corner portion.
3. An electric power steering system, wherein
power from the electric motor is transmitted to a steering shaft via the worm reducer according to claim 2.
4. An electric power steering system, wherein
power from the electric motor is transmitted to a steering shaft via the worm reducer according to claim 1.
5. A worm reducer comprising:
a worm shaft that has a first end portion and a second end portion in an axial direction of the worm shaft, the second end portion coupled to an electric motor;
a worm wheel that meshes with the worm shaft;
a bearing that supports the first end portion of the worm shaft;
a housing including an inner surface having a portion that defines a first end housing portion that houses the first end portion of the worm shaft and the bearing, the portion of the inner surface provided with a recess having a pair of inner wall surfaces that face each other in a circumferential direction of the bearing;
an urging member that urges the first end portion of the worm shaft toward the worm wheel via the bearing; and
an elastic member including an arc-shaped buffer portion that is interposed between the portion of the inner surface of the housing and an outer peripheral surface of the bearing and that opens toward the worm wheel, and a rotation regulation portion that extends from the buffer portion and is housed in the recess and that regulates the buffer portion from rotating in the circumferential direction by engaging with the inner wall surfaces, wherein
the rotation regulation portion includes a hollow portion which suppresses load transmission from the rotation regulation portion to the buffer portion,
an inlet corner portion of the recess is formed of each of the inner wall surfaces and the portion of the inner surface of the housing, and
the rotation regulation portion has a clearance portion that suppresses interference with the inlet corner portion.
6. An electric power steering system, wherein
power from the electric motor is transmitted to a steering shaft via the worm reducer according to claim 5.
US15/951,532 2017-04-19 2018-04-12 Worm reducer and electric power steering system Active 2038-09-18 US10661822B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017082913A JP6876249B2 (en) 2017-04-19 2017-04-19 Warm reducer and electric power steering device
JP2017-082913 2017-04-19

Publications (2)

Publication Number Publication Date
US20180304915A1 US20180304915A1 (en) 2018-10-25
US10661822B2 true US10661822B2 (en) 2020-05-26

Family

ID=62002544

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/951,532 Active 2038-09-18 US10661822B2 (en) 2017-04-19 2018-04-12 Worm reducer and electric power steering system

Country Status (4)

Country Link
US (1) US10661822B2 (en)
EP (1) EP3398833B1 (en)
JP (1) JP6876249B2 (en)
CN (1) CN108725572B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210339795A1 (en) * 2018-10-18 2021-11-04 Thyssenkrupp Presta Ag Spring element for a reduction gear of an electromechanical steering system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3067084B1 (en) * 2017-05-31 2019-07-19 Jtekt Europe SEAL PLUG FOR REDUCER HOUSING CARRYING A GEAR SET COMPENSATION TROLLEY
KR101993295B1 (en) * 2017-12-19 2019-06-26 주식회사 만도 Reducer of Electric Power Steering Apparatus
KR102033558B1 (en) * 2018-05-18 2019-10-17 주식회사 만도 Reducer of Electric power steering apparatus
DE102018217459A1 (en) * 2018-10-12 2020-04-16 Robert Bosch Gmbh Steering gear and steering system for a motor vehicle
JP7167691B2 (en) * 2018-12-19 2022-11-09 株式会社ジェイテクト Worm reducer and electric power steering device
CN113423960B (en) * 2019-02-12 2023-02-17 日本精工株式会社 Worm gear reducer and electric assist device
EP4005901A4 (en) * 2019-07-30 2023-06-28 Bosch Huayu Steering Systems Co., Ltd. Bearing bushing, preload structure, housing of transmission mechanism, and assembling structure of worm gear and worm

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967858A (en) * 1987-09-11 1990-11-06 Mitsubishi Denki Kabushiki Kaisha Power steering apparatus with unitary torque sensor and worm driving housing
US6357313B1 (en) * 1997-09-03 2002-03-19 Trw Lucasvarity Electric Steering Ltd. Electric power steering comprising a worm gear
US20050235768A1 (en) * 2004-04-26 2005-10-27 Honda Motor Co., Ltd. Worm gear mechanism and electric power steering apparatus equipped with the worm gear mechanism
US20120077605A1 (en) * 2010-09-24 2012-03-29 Aisin Seiki Kabushiki Kaisha Torque fluctuation absorber
US20120111657A1 (en) * 2010-11-09 2012-05-10 Jtekt Corporation Electric power steering system
US20130075189A1 (en) * 2011-09-28 2013-03-28 Showa Corporation Motor-driven power steering apparatus
JP2013155789A (en) 2012-01-27 2013-08-15 Honda Motor Co Ltd Worm gear mechanism and electric power steering device having worm gear mechanism
US20140008142A1 (en) * 2011-03-22 2014-01-09 Kayaba Industry Co., Ltd. Power steering device
EP2689988A2 (en) 2012-07-27 2014-01-29 Jtekt Corporation Electric power steering system
JP2014125113A (en) 2012-12-26 2014-07-07 Kayaba Ind Co Ltd Power steering device
US20150276047A1 (en) * 2014-03-26 2015-10-01 Showa Corporation Worm biasing structure
US20160010740A1 (en) * 2014-07-09 2016-01-14 Jtekt Corporation Worm speed reducer and electric power steering system using the same
GB2528517A (en) 2014-07-23 2016-01-27 Showa Corp Worm biasing structure
US20160069423A1 (en) * 2014-09-08 2016-03-10 Jtekt Corporation Worm speed reducer
EP3088277A1 (en) 2015-04-30 2016-11-02 Jtekt Corporation Worm reduction gear and steering mechanism
US20160319906A1 (en) * 2015-04-30 2016-11-03 Jtekt Corporation Worm reduction gear and steering system
US10053139B2 (en) * 2013-05-08 2018-08-21 Thyssenkrupp Presta Ag Damping eccentric motion link in CEPS usage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816401B1 (en) * 2006-07-05 2008-03-27 주식회사 만도 Electronic Steering Apparatus
KR101364930B1 (en) * 2006-07-18 2014-02-20 현대모비스 주식회사 Gear's teeth contact upkeep typed motor driven power steering system in vehicle
DE102009046386A1 (en) * 2009-11-04 2011-05-05 Zf Lenksysteme Gmbh Electric power steering system i.e. servo steering mechanism, for passenger car, has gear housing including heat transfer portion, and roller bearing whose inner ring is directly or indirectly heated by transfer portion
JP5908380B2 (en) * 2012-09-24 2016-04-26 日立オートモティブシステムズステアリング株式会社 Power steering device and reduction gear for power steering device
JP2016055732A (en) * 2014-09-09 2016-04-21 日立オートモティブシステムズステアリング株式会社 Backlash adjustment mechanism, and power steering device using the same

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967858A (en) * 1987-09-11 1990-11-06 Mitsubishi Denki Kabushiki Kaisha Power steering apparatus with unitary torque sensor and worm driving housing
US6357313B1 (en) * 1997-09-03 2002-03-19 Trw Lucasvarity Electric Steering Ltd. Electric power steering comprising a worm gear
US20050235768A1 (en) * 2004-04-26 2005-10-27 Honda Motor Co., Ltd. Worm gear mechanism and electric power steering apparatus equipped with the worm gear mechanism
US20120077605A1 (en) * 2010-09-24 2012-03-29 Aisin Seiki Kabushiki Kaisha Torque fluctuation absorber
US20120111657A1 (en) * 2010-11-09 2012-05-10 Jtekt Corporation Electric power steering system
US20140008142A1 (en) * 2011-03-22 2014-01-09 Kayaba Industry Co., Ltd. Power steering device
US20130075189A1 (en) * 2011-09-28 2013-03-28 Showa Corporation Motor-driven power steering apparatus
JP2013155789A (en) 2012-01-27 2013-08-15 Honda Motor Co Ltd Worm gear mechanism and electric power steering device having worm gear mechanism
EP2689988A2 (en) 2012-07-27 2014-01-29 Jtekt Corporation Electric power steering system
JP2014125113A (en) 2012-12-26 2014-07-07 Kayaba Ind Co Ltd Power steering device
US20150336603A1 (en) 2012-12-26 2015-11-26 Kayaba Industry Co., Ltd. Power steering device
US10053139B2 (en) * 2013-05-08 2018-08-21 Thyssenkrupp Presta Ag Damping eccentric motion link in CEPS usage
US20150276047A1 (en) * 2014-03-26 2015-10-01 Showa Corporation Worm biasing structure
US20160010740A1 (en) * 2014-07-09 2016-01-14 Jtekt Corporation Worm speed reducer and electric power steering system using the same
GB2528517A (en) 2014-07-23 2016-01-27 Showa Corp Worm biasing structure
US20160069423A1 (en) * 2014-09-08 2016-03-10 Jtekt Corporation Worm speed reducer
EP3088277A1 (en) 2015-04-30 2016-11-02 Jtekt Corporation Worm reduction gear and steering mechanism
US20160318544A1 (en) * 2015-04-30 2016-11-03 Jtekt Corporation Worm reduction gear and steering mechanism
US20160319906A1 (en) * 2015-04-30 2016-11-03 Jtekt Corporation Worm reduction gear and steering system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Oct. 5, 2018 Extended Search Report issued in European Patent Application No. 18167502.6.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210339795A1 (en) * 2018-10-18 2021-11-04 Thyssenkrupp Presta Ag Spring element for a reduction gear of an electromechanical steering system
US11820441B2 (en) * 2018-10-18 2023-11-21 Thyssenkrupp Presta Ag Spring element for a reduction gear of an electromechanical steering system

Also Published As

Publication number Publication date
CN108725572A (en) 2018-11-02
US20180304915A1 (en) 2018-10-25
JP6876249B2 (en) 2021-05-26
JP2018179237A (en) 2018-11-15
EP3398833A1 (en) 2018-11-07
CN108725572B (en) 2022-04-19
EP3398833B1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
US10661822B2 (en) Worm reducer and electric power steering system
EP1065132B1 (en) Electric power steering apparatus
EP3388309B1 (en) Steering system
EP1760368B1 (en) Electric Power Steering Apparatus
EP1714851B1 (en) Electric power steering device
EP2966318B1 (en) Worm speed reducer and method for manufacturing worm wheel included in worm speed reducer
JP5062465B2 (en) Steering device
JP3763347B2 (en) Electric steering device
EP3248855B1 (en) Electric power steering system
JP5984010B2 (en) Steering device
JP2016003760A (en) Worm reduction gear and electric power steering device including the same
JP5062467B2 (en) Steering device
EP1106475A2 (en) Power steering apparatus
EP1970290B1 (en) Center take-off rack-and-pinion steering apparatus
US20180266542A1 (en) Method for manufacturing worm reducer, worm reducer, and electric power steering system
US20220281515A1 (en) Steer by wire type steering apparatus
JP2014136437A (en) Rack pinion type steering device
JP4930771B2 (en) Electric power steering device
JP2012236489A (en) Rack shaft support device and steering device for vehicle
JP2004338450A (en) Electric power steering device
JP4085802B2 (en) Electric power steering device
US20230021499A1 (en) Steer by wire type steering apparatus
JP6714845B2 (en) Worm reducer and electric power steering device
JP3458867B2 (en) Electric power steering device
JP6360446B2 (en) Rack shaft pressing mechanism

Legal Events

Date Code Title Description
AS Assignment

Owner name: JTEKT CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAWAMURA, NAOFUMI;UEDA, HIROFUMI;JOUSHITA, KANAME;REEL/FRAME:045521/0487

Effective date: 20180315

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4