US10658185B2 - Laser irradiation apparatus, method for manufacturing semiconductor device, and method for operating laser irradiation apparatus - Google Patents

Laser irradiation apparatus, method for manufacturing semiconductor device, and method for operating laser irradiation apparatus Download PDF

Info

Publication number
US10658185B2
US10658185B2 US16/330,759 US201716330759A US10658185B2 US 10658185 B2 US10658185 B2 US 10658185B2 US 201716330759 A US201716330759 A US 201716330759A US 10658185 B2 US10658185 B2 US 10658185B2
Authority
US
United States
Prior art keywords
laser beam
workpiece
laser
conveying stage
irradiation apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/330,759
Other versions
US20190189449A1 (en
Inventor
Ryo Shimizu
Ryosuke Sato
Teruaki SHIMOJI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSW Aktina System Co Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Assigned to THE JAPAN STEEL WORKS, LTD. reassignment THE JAPAN STEEL WORKS, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SATO, RYOSUKE, SHIMIZU, RYO, SHIMOJI, TERUAKI
Publication of US20190189449A1 publication Critical patent/US20190189449A1/en
Application granted granted Critical
Publication of US10658185B2 publication Critical patent/US10658185B2/en
Assigned to JSW AKTINA SYSTEM CO., LTD. reassignment JSW AKTINA SYSTEM CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THE JAPAN STEEL WORKS, LTD.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0838Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/707Auxiliary equipment for monitoring laser beam transmission optics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0414Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using plane or convex mirrors, parallel phase plates, or plane beam-splitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67784Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams

Definitions

  • the present invention relates to a laser irradiation apparatus, a method for manufacturing a semiconductor device, and a method for operating the laser irradiation apparatus.
  • the present invention relates to measurement of a beam profile of a laser beam.
  • Patent Literature 1 discloses a laser annealing apparatus that conveys an object to be processed in a floated state and applies a laser beam to the object to be processed.
  • Patent Literature 1 International Patent Publication No. WO2015/174347
  • Patent Literature 1 does not mention measurement of a beam profile of a laser beam at all.
  • a laser irradiation apparatus is configured so that a part of a conveying stage can be removed.
  • FIG. 1 is a side cross section for explaining a laser annealing apparatus according to a first embodiment
  • FIG. 2 is a plan view for explaining the laser annealing apparatus according to the first embodiment
  • FIG. 3 is a plan view for explaining the laser annealing apparatus according to the first embodiment
  • FIG. 4 is a flowchart showing a manufacturing method according to the first embodiment
  • FIG. 5 is a side cross section for explaining the laser annealing apparatus according to the first embodiment
  • FIG. 6 is a side cross section for explaining the laser annealing apparatus according to the first embodiment
  • FIG. 7 is a side cross section for explaining the laser annealing apparatus according to the first embodiment
  • FIG. 8 is a side cross section for explaining the laser annealing apparatus according to the first embodiment
  • FIG. 9 is a graph showing an example of a measurement result of beam profiles of laser beams.
  • FIG. 10 is a side cross section for explaining the laser annealing apparatus according to the first embodiment
  • FIG. 11 is a side cross section for explaining a laser annealing apparatus according to a second embodiment
  • FIG. 12 is a side cross section for explaining a laser annealing apparatus according to a third embodiment
  • FIG. 13 shows cross sections showing processes in a method for manufacturing a semiconductor device
  • FIG. 14 is a cross section showing a configuration of an organic EL display device in a simplified manner
  • FIG. 15 is a side cross section for explaining a laser annealing apparatus according to a Comparative Example 1;
  • FIG. 16 is a side cross section for explaining a laser annealing apparatus according to a Comparative Example 2.
  • the laser annealing apparatus 400 is an apparatus that forms, for example, a polysilicon film by applying a laser beam to an amorphous silicon film provided over a silicon substrate or a glass substrate.
  • the laser annealing apparatus 400 includes a processing chamber 401 , a movable conveying stage unit 402 , an optical system 403 , and a laser oscillator 404 .
  • a carrying-in port 401 a for carrying a workpiece W, which is an object to be processed, into the processing chamber 401 and a carrying-out port 401 b for carrying out an annealed workpiece W from the processing chamber 401 are provided.
  • the mobile conveying stage unit 402 is configured so that it can be moved from the carrying-in port 401 a toward the carrying-out port 401 b in the +X direction in the processing chamber 401 .
  • the movable conveying stage unit 402 includes a stage main body 402 a for supporting a workpiece W and a beam profiler 402 b .
  • the beam profiler 402 b is fixed to the stage main body 402 a and is movable in the +X direction together with the stage main body 402 a in the processing chamber 401 .
  • the optical system 403 is formed by using a mirror or a lens.
  • the optical system 403 concentrates and shapes a laser beam L generated by the laser oscillator 404 into a predetermined shape, and directs the shaped laser beam L into the processing chamber 401 .
  • a workpiece W is annealed by applying the laser beam L to the workpiece W while moving the movable conveying stage unit 402 from the carrying-in port 401 a toward the carrying-out port 401 b in the +X direction.
  • the beam profiler 402 b is fixed to, for example, a side of the stage main body 402 a.
  • the above-described laser annealing apparatus 400 according to the Comparative Example 1 is superior because it can measure the beam profile of the laser beam L without problems, there are still some problems to be solved. That is, firstly, it takes wasteful time when a workpiece W placed on the stage main body 402 a is replaced. Secondly, when a workpiece W is peeled from the stage main body 402 a , the workpiece W may be electrostatically charged due to the peeling. Thirdly, when a workpiece W is supported on the stage main body 402 a , the workpiece W may be contaminated due to the contact with the stage main body 402 a . Fourthly, a cycle time tends to increase to alleviate the aforementioned second and third problems, thus raising a possibility that productivity may deteriorate.
  • the laser annealing apparatus 405 is an apparatus that forms, for example, a polysilicon film by applying a laser beam to an amorphous silicon film provided over a silicon substrate or a glass substrate.
  • the laser annealing apparatus 405 includes a processing chamber 406 , a floating-type conveying stage 407 , an optical system 408 , a laser oscillator 409 , and a workpiece conveying unit (not shown).
  • a carrying-in port 406 a for carrying a workpiece W, which is an object to be processed, into the processing chamber 406 and a carrying-out port 406 b for carrying out an annealed workpiece W from the processing chamber 406 are provided.
  • the floating-type conveying stage 407 is immovably disposed in the processing chamber 406 and is configured so that it can float and convey a workpiece W.
  • the optical system 408 is formed by using a mirror or a lens.
  • the optical system 408 concentrates and shapes a laser beam L generated by the laser oscillator 409 into a predetermined shape, and directs the shaped laser beam L into the processing chamber 406 .
  • a workpiece W is annealed by applying the laser beam L to the workpiece W while floating the workpiece W over the floating-type conveying stage 407 and moving it from the carrying-in port 406 a toward the carrying-out port 406 b in the +X direction by the above-described workpiece conveying unit.
  • the Comparative Example 2 solves three problems in the above-described Comparative Example 1 because the workpiece W is moved in the +X direction in the processing chamber 406 while being floated over the floating-type conveying stage 407 .
  • a laser annealing apparatus to which a laser irradiation apparatus according to a first embodiment is applied is described hereinafter with reference to FIGS. 1 to 3 .
  • the laser irradiation apparatus according to the first embodiment may be applied to a laser peeling apparatus as well as to the laser annealing apparatus.
  • a laser annealing apparatus 1 may be, for example, an apparatus for forming a polysilicon film by applying a laser beam to an amorphous silicon film provided over a silicon substrate or a glass substrate and thereby crystallizing the amorphous silicon film.
  • the laser annealing apparatus 1 includes a processing chamber 2 , a floating-type conveying stage 3 as a conveying stage, a laser oscillator 4 , an optical system 5 , an attaching/detaching actuator 6 , a beam profiler 7 as a measuring instrument, a profiler actuator 8 , and a control unit 9 . Note that in FIG. 2 , illustration of the laser oscillator 4 , the optical system 5 , and the control unit 9 is omitted for convenience of explanation.
  • a carrying-in port 2 a for carrying a workpiece W, which is an object to be processed, into the processing chamber 2 and a carrying-out port 2 b for carrying out an annealed workpiece W from the processing chamber 2 are provided.
  • the carrying-in port 2 a and the carrying-out port 2 b are disposed on a pair of side walls opposed to each other.
  • a workpiece W is carried into the processing chamber 2 through the carrying-in port 2 a , annealed in the processing chamber 2 , and carried out from the processing chamber 2 through the carrying-out port 2 b .
  • a direction from the carrying-in port 2 a toward the carrying-out port 2 b is defined as a conveying direction (+X direction) in the first embodiment.
  • a vertically upward direction is defined as a +Z direction and a direction orthogonal to the X and Z directions is defined as a Y direction.
  • the floating-type conveying stage 3 is a conveying stage for floating and conveying a workpiece W to be irradiated with a laser beam L. Specifically, the workpiece W is floated by gas ejected from the floating-type conveying stage 3 toward the workpiece W.
  • the floating-type conveying stage 3 has a conveying surface 3 a , which is opposed to the workpiece W, and a bottom surface 3 b on the side opposite to the conveying surface 3 a .
  • a plurality of ejecting holes H through which gas is ejected upward are formed on the conveying surface 3 a.
  • the floating-type conveying stage 3 includes a conveying stage main body 11 with an opening S opened in the vertical direction (Z direction), and a detachable part 12 that can be attached in and detached from the opening S of the conveying stage main body 11 . That is, the floating-type conveying stage 3 includes, in a part thereof, the detachable part 12 that can be detached therefrom. Further, the opening S that extends from the conveying surface 3 a to the bottom surface 3 b is formed in the floating-type conveying stage 3 by detaching the detachable part 12 from the floating-type conveying stage 3 . The opening S and the detachable part 12 are located on an optical axis of the laser beam L. That is, the detachable part 12 is a part of the floating-type conveying stage 3 to which the laser beam L is applied.
  • the laser oscillator 4 generates the laser beam L.
  • the laser beam L generated by the laser oscillator 4 is not limited to any particular type. Examples of the laser beam L include an excimer laser beam.
  • the optical system 5 is formed by using a mirror or a lens. As shown in FIG. 3 , the optical system 5 concentrates and shapes the laser beam L generated by the laser oscillator 4 into a predetermined shape, and directs the shaped laser beam L into the processing chamber 2 .
  • the predetermined shape of the laser beam L at a focal point F of the laser beam L is a rectangle. That is, a planar shape of the laser beam L is a rectangle extending in a direction orthogonal to the conveying direction, and has a long axis and a short axis.
  • the attaching/detaching actuator 6 is an actuator for moving the detachable part 12 .
  • the attaching/detaching actuator 6 is an actuator for attaching/detaching the detachable part 12 in/from the opening S of the conveying stage main body 11 .
  • the attaching/detaching actuator 6 is fixed to the conveying stage main body 11 of the floating-type conveying stage 3 .
  • the attaching/detaching actuator 6 includes a vertical actuator 13 for moving the detachable part 12 attached in the opening S of the conveying stage main body 11 in the vertical direction (Z direction) and a horizontal actuator 14 for moving the detachable part 12 in the horizontal direction (X direction) after the movement thereof by the vertical actuator 13 .
  • the vertical actuator 13 is an actuator including a shaft 13 a connected to the detachable part 12 and a drive source 13 b for moving the shaft 13 a forward or backward in the vertical direction (Z direction).
  • the horizontal actuator 14 is an actuator including a shaft 14 a connected to the drive source 13 b of the vertical actuator 13 and a drive source 14 b for moving the shaft 14 a forward or backward in the horizontal direction (X direction).
  • the vertical actuator 13 and the horizontal actuator 14 are, for example, air cylinders.
  • the beam profiler 7 is a measuring instrument for measuring a beam profile of the laser beam L.
  • the beam profiler 7 is positioned below the bottom surface 3 b of the floating-type conveying stage 3 .
  • the beam profiler 7 is disposed directly below the detachable part 12 attached in the opening S of the conveying stage main body 11 .
  • the beam profiler 7 is positioned on the optical axis of the laser beam L.
  • the profiler actuator 8 is an actuator for moving the beam profiler 7 .
  • the profiler actuator 8 is fixed to the processing chamber 2 .
  • the profiler actuator 8 includes an inserting/removing actuator 8 a and a scanning actuator 8 b .
  • the inserting/removing actuator 8 a is an actuator for moving the beam profiler 7 in the vertical direction (Z direction).
  • the inserting/removing actuator 8 a is an actuator for inserting/removing the beam profiler 7 into/from the opening S of the conveying stage main body 11 .
  • the inserting/removing actuator 8 a includes a shaft and a drive source for moving this shaft forward or backward.
  • the inserting/removing actuator 8 a is, for example, an air cylinder.
  • the beam profiler 7 can be moved from a position below the bottom surface 3 b of the floating-type conveying stage 3 to a position of the opening S. In this way, the beam profiler 7 can measure the beam profile of the laser beam L at the focal point F thereof.
  • the scanning actuator 8 b is an actuator for moving the beam profiler 7 in a width direction (Y direction). Specifically, the scanning actuator 8 b is an actuator for moving the beam profiler 7 along the long axis of the planar shape of the laser beam L shown in FIG. 3 . Therefore, the beam profiler 7 can be moved along the long axis of the planar shape of the laser beam L.
  • the control unit 9 is a control unit for controlling operations of the attaching/detaching actuator 6 and the profiler actuator 8 , and controlling an output of the laser oscillator 4 .
  • the control unit 9 controls attaching/detaching operations of the detachable part 12 to/from the conveying stage main body 11 , up/down movements of the beam profiler 7 , and so on.
  • the control unit 9 includes a CPU (Central Processing Unit) as a central processing unit, a readable/writable RAM (Random Access Memory), and a read-only ROM (Read Only Memory).
  • a control program(s) that can be loaded and executed by the CPU is stored in the ROM.
  • the laser annealing apparatus 1 includes a conveying unit (not shown) for holding and conveying the workpiece W floated over the floating-type conveying stage 3 .
  • a conveying unit (not shown) for holding and conveying the workpiece W floated over the floating-type conveying stage 3 . Examples of the holding of the workpiece W by the conveying unit include holding by grasping, holding by adsorption, etc.
  • the detachable part 12 is removed from the floating-type conveying stage 3 .
  • the opening S extending from the conveying surface 3 a to the bottom surface 3 b is formed in the floating-type conveying stage 3 , so that the beam profiler 7 can measure the beam profile of the laser beam L through the opening S. Therefore, when the beam profile of the laser beam L is measured by using the beam profiler 7 , the presence of the floating-type conveying stage 3 does not act as an obstacle. Meanwhile, when the workpiece W is conveyed over the floating-type conveying stage 3 , it is only necessary to attach the detachable part 12 to the floating-type conveying stage 3 .
  • FIG. 4 shows a flowchart of a method for operating the laser annealing apparatus 1 .
  • the control unit 9 conveys a workpiece W, which has been carried into the processing chamber 2 through the carrying-in port 2 a , in the +X direction while floating the workpiece W by controlling a workpiece conveying unit (not shown) (S 100 ). That is, the control unit 9 conveys the workpiece W while floating the workpiece W over the floating-type conveying stage 3 by gas ejected from the floating-type conveying stage 3 toward the workpiece W.
  • the workpiece W includes a glass substrate and an amorphous silicon film.
  • control unit 9 emits a laser beam L toward the amorphous silicon film of the workpiece W, which is being conveyed, by controlling the laser oscillator 4 and the optical system 5 (S 110 ).
  • the amorphous silicon film is crystallized and a polysilicon film is thereby formed.
  • the workpiece W is carried out from the carrying-out port 2 b for the next process.
  • the control unit 9 detaches the detachable part 12 of the floating-type conveying stage 3 by controlling the vertical actuator 13 (S 120 ). As a result, an opening S extending from the conveying surface 3 a to the bottom surface 3 b is formed in a part of the floating-type conveying stage 3 .
  • control unit 9 further controls the horizontal actuator 14 so that the detachable part 12 moves in the horizontal direction ( ⁇ X direction).
  • control unit 9 moves the beam profiler 7 to the position of the opening S by controlling the inserting/removing actuator 8 a . Then, the control unit 9 measures the beam profile of the laser beam L at the focal point F thereof through the opening S (step S 130 ).
  • the control unit 9 measures the beam profile of the laser beam L at the focal point F thereof while moving the beam profiler 7 in the width direction (Y direction) by controlling the scanning actuator 8 b shown in FIG. 8 .
  • FIG. 9 shows an example of a measurement result by the beam profiler 7 .
  • FIG. 9 is a graph showing a beam profile at the focal point F of the laser beam L, in which a horizontal axis represents positions in the width direction (Y direction) and a vertical axis represents relative intensities.
  • the control unit 9 corrects the operation of the laser oscillator 4 and/or the optical system 5 so that the beam profile of the laser beam L at the focal point F thereof becomes the desired beam profile.
  • control unit 9 removes the beam profiler 7 from the opening S by controlling the profiler actuator 8 , and inserts and attaches the detachable part 12 in the opening S by controlling the attaching/detaching actuator 6 (S 140 ).
  • step S 100 to S 140 it is possible to measure the beam profile of the laser beam L through the opening S formed by removing a part of the floating-type conveying stage 3 .
  • the laser annealing apparatus 1 which serves as a laser irradiation apparatus, includes at least the laser oscillator 4 , the floating-type conveying stage 3 , and the beam profiler 7 .
  • a laser annealing apparatus to which a laser irradiation apparatus according to a second embodiment is applied is described hereinafter with reference to FIG. 11 .
  • differences of the second embodiment from the above-described first embodiment are mainly explained and redundant descriptions are omitted.
  • the detachable part 12 is configured so that it can be attached to and detached from the floating-type conveying stage 3 .
  • a part of the floating-type conveying stage 3 that is positioned on the optical axis of the laser beam L is formed by a lens 20 .
  • the lens 20 is designed so that it projects the focal point of the laser beam L onto the beam profiler 7 disposed below the floating-type conveying stage 3 .
  • a laser annealing apparatus to which a laser irradiation apparatus according to a third embodiment is applied is described hereinafter with reference to FIG. 12 .
  • differences of the third embodiment from the above-described first embodiment are mainly explained and redundant descriptions are omitted.
  • the detachable part 12 is configured so that it can be attached to and detached from the floating-type conveying stage 3 . Further, the beam profiler 7 is disposed below the floating-type conveying stage 3 .
  • the beam profiler 7 is disposed above the floating-type conveying stage 3 .
  • an optical element 21 that reflects or bends the optical axis of the laser beam L such as a mirror, is disposed on the optical axis of the laser beam L, so that the laser beam L emitted from the optical system 5 is guided to the beam profiler 7 .
  • the semiconductor device is a semiconductor device including TFTs (Thin Film Transistors).
  • TFTs Thin Film Transistors
  • the polysilicon film constitutes the TFTs.
  • FIG. 13 is a cross section for explaining an example of a method for manufacturing a semiconductor device.
  • the laser irradiation apparatus according to the above-described embodiment is suitable for manufacturing a TFT array substrate.
  • a method for manufacturing a semiconductor device including a TFT is described hereinafter.
  • a gate electrode 202 is formed on a glass substrate 201 .
  • a metal thin film containing aluminum or the like can be used for the gate electrode 202 .
  • a gate insulating film 203 is formed on the gate electrode 202 .
  • the gate insulating film 203 is formed so as to cover the gate electrode 202 .
  • an amorphous silicon film 204 is formed on the gate insulating film 203 .
  • the amorphous silicon film 204 is disposed so as to be placed over the gate electrode 202 with the gate insulating film 203 interposed therebetween.
  • the gate insulating film 203 is, for example, a silicon nitride film (SiN x ), a silicon oxide film (SiO 2 film), or a laminated film thereof. Specifically, the gate insulating film 203 and the amorphous silicon film 204 are successively formed by a CVD (Chemical Vapor Deposition) method.
  • CVD Chemical Vapor Deposition
  • a polysilicon film 205 is formed by applying a laser beam to the amorphous silicon film 204 by using the above-described laser irradiation apparatus and thereby crystallizing the amorphous silicon film 204 .
  • the polysilicon film 205 in which silicon is crystallized is formed on the gate insulating film 203 .
  • an inter-layer insulating film 206 , a source electrode 207 a , and a drain electrode 207 b are formed on the polysilicon film 205 .
  • the inter-layer insulating film 206 , the source electrode 207 a , and the drain electrode 207 b can be formed by an ordinary photolithography method or an ordinary film forming method.
  • FIG. 14 is a cross section for explaining an outline of an organic EL display device, in which pixel circuits of the organic EL display device are illustrated in a simplified manner.
  • the organic EL display device 300 shown in FIG. 14 is an active-matrix-type display device in which a TFT is disposed in each pixel PX.
  • the organic EL display device 300 includes a substrate 310 , a TFT layer 311 , an organic layer 312 , a color filter layer 313 , and a sealing substrate 314 .
  • FIG. 14 shows a top-emission-type organic EL display device, in which the side of the sealing substrate 314 is located on the viewing side. Note that the following description is given to show an example of a configuration of an organic EL display device and this embodiment is not limited to the below-described configuration. For example, a semiconductor device according to this embodiment may be used for a bottom-emission-type organic EL display device.
  • the substrate 310 is a glass substrate or a metal substrate.
  • the TFT layer 311 is provided on the substrate 310 .
  • the TFT layer 311 includes TFTs 311 a disposed in the respective pixels PX. Further, the TFT layer 311 includes wiring lines connected to the TFTs 311 a , and the like.
  • the TFTs 311 a , the wirings, and the like constitute pixel circuits. Note that the TFT layer 311 corresponds to the TFT described above with reference to FIG. 13 , and includes gate electrodes 202 , a gate insulating film 203 , a polysilicon film 205 , an inter-layer insulating film 206 , source electrodes 207 a , and drain electrodes 207 b.
  • the organic layer 312 is provided on the TFT layer 311 .
  • the organic layer 312 includes an organic EL light-emitting element 312 a disposed in each pixel PX.
  • the organic EL light-emitting element 312 a has, for example, a laminated structure in which an anode, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and a cathode are laminated.
  • the anode is a metal electrode and the cathode is a transparent conductive film made of ITO (Indium Tin Oxide) or the like.
  • separation walls 312 b for separating organic EL light-emitting elements 312 a are provided between pixels PX.
  • the color filter layer 313 is provided on the organic layer 312 .
  • the color filter layer 313 includes color filters 313 a for performing color displaying. That is, in each pixel PX, a resin layer colored in R (red), G (green), or B (blue) is provided as the color filter 313 a .
  • the color filter layer 313 may be unnecessary.
  • the sealing substrate 314 is provided on the color filter layer 313 .
  • the sealing substrate 314 is a transparent substrate such as a glass substrate and is provided to prevent deterioration of the organic EL light-emitting elements of the organic layer 312 .
  • Electric currents flowing through the organic EL light-emitting elements 312 a of the organic layer 312 are changed by display signals supplied to the pixel circuits. Therefore, it is possible to control an amount of light emitted in each pixel PX by supplying a display signal corresponding to a display image to each pixel PX. As a result, it is possible to display a desired image.
  • the semiconductor device including TFTs is used to control the organic EL display device.
  • the semiconductor device including TFTs may be used to control a liquid crystal display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Recrystallisation Techniques (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A laser annealing apparatus (1) according to an embodiment includes a laser oscillator (4) configured to generate a laser beam (L), a floating-type conveying stage (3) configured to float and convey a workpiece (W) to be irradiated with the laser beam (L), and a beam profiler (7) configured to measure a beam profile of the laser beam (L). The floating-type conveying stage (3) includes a conveying surface (3a) opposed to the workpiece (W), and a bottom surface (3b) on the side opposite to the conveying surface (3a). The beam profiler (7) is positioned below the bottom surface (3b) of the floating-type conveying stage (3). The floating-type conveying stage (3) includes a detachable part (12) in a part of it. An opening (S) is formed by detaching the detachable part (12) from the floating-type conveying stage (3), the opening (3) extending from the conveying surface (3a) to the bottom surface (3b). The beam profiler (7) is configured to measure the beam profile of the laser beam (L) through the opening (S).

Description

TECHNICAL FIELD
The present invention relates to a laser irradiation apparatus, a method for manufacturing a semiconductor device, and a method for operating the laser irradiation apparatus. For example, the present invention relates to measurement of a beam profile of a laser beam.
BACKGROUND ART
Patent Literature 1 discloses a laser annealing apparatus that conveys an object to be processed in a floated state and applies a laser beam to the object to be processed.
CITATION LIST Patent Literature
Patent Literature 1: International Patent Publication No. WO2015/174347
SUMMARY OF INVENTION Technical Problem
However, Patent Literature 1 does not mention measurement of a beam profile of a laser beam at all.
Other problems to be solved and novel features will become apparent from descriptions in this specification and accompanying drawings.
Solution to Problem
In order to solve the above-described problem, a laser irradiation apparatus is configured so that a part of a conveying stage can be removed.
Advantageous Effects of Invention
By the above-described configuration, it is possible to measure a beam profile of a laser beam through an opening that is formed by removing the part of the conveying stage.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a side cross section for explaining a laser annealing apparatus according to a first embodiment;
FIG. 2 is a plan view for explaining the laser annealing apparatus according to the first embodiment;
FIG. 3 is a plan view for explaining the laser annealing apparatus according to the first embodiment;
FIG. 4 is a flowchart showing a manufacturing method according to the first embodiment;
FIG. 5 is a side cross section for explaining the laser annealing apparatus according to the first embodiment;
FIG. 6 is a side cross section for explaining the laser annealing apparatus according to the first embodiment;
FIG. 7 is a side cross section for explaining the laser annealing apparatus according to the first embodiment;
FIG. 8 is a side cross section for explaining the laser annealing apparatus according to the first embodiment;
FIG. 9 is a graph showing an example of a measurement result of beam profiles of laser beams;
FIG. 10 is a side cross section for explaining the laser annealing apparatus according to the first embodiment;
FIG. 11 is a side cross section for explaining a laser annealing apparatus according to a second embodiment;
FIG. 12 is a side cross section for explaining a laser annealing apparatus according to a third embodiment;
FIG. 13 shows cross sections showing processes in a method for manufacturing a semiconductor device;
FIG. 14 is a cross section showing a configuration of an organic EL display device in a simplified manner;
FIG. 15 is a side cross section for explaining a laser annealing apparatus according to a Comparative Example 1; and
FIG. 16 is a side cross section for explaining a laser annealing apparatus according to a Comparative Example 2.
DESCRIPTION OF EMBODIMENTS Comparative Example 1
Firstly, a laser annealing apparatus 400 according to a Comparative Example 1 is described with reference to FIG. 15. The laser annealing apparatus 400 is an apparatus that forms, for example, a polysilicon film by applying a laser beam to an amorphous silicon film provided over a silicon substrate or a glass substrate. The laser annealing apparatus 400 includes a processing chamber 401, a movable conveying stage unit 402, an optical system 403, and a laser oscillator 404.
In the processing chamber 401, a carrying-in port 401 a for carrying a workpiece W, which is an object to be processed, into the processing chamber 401 and a carrying-out port 401 b for carrying out an annealed workpiece W from the processing chamber 401 are provided.
The mobile conveying stage unit 402 is configured so that it can be moved from the carrying-in port 401 a toward the carrying-out port 401 b in the +X direction in the processing chamber 401. The movable conveying stage unit 402 includes a stage main body 402 a for supporting a workpiece W and a beam profiler 402 b. The beam profiler 402 b is fixed to the stage main body 402 a and is movable in the +X direction together with the stage main body 402 a in the processing chamber 401.
The optical system 403 is formed by using a mirror or a lens. The optical system 403 concentrates and shapes a laser beam L generated by the laser oscillator 404 into a predetermined shape, and directs the shaped laser beam L into the processing chamber 401.
Then, a workpiece W is annealed by applying the laser beam L to the workpiece W while moving the movable conveying stage unit 402 from the carrying-in port 401 a toward the carrying-out port 401 b in the +X direction.
At this point, it is possible to measure a beam profile of the laser beam L by using the beam profiler 402 b disposed in the movable conveying stage unit 402. The beam profiler 402 b is fixed to, for example, a side of the stage main body 402 a.
Although the above-described laser annealing apparatus 400 according to the Comparative Example 1 is superior because it can measure the beam profile of the laser beam L without problems, there are still some problems to be solved. That is, firstly, it takes wasteful time when a workpiece W placed on the stage main body 402 a is replaced. Secondly, when a workpiece W is peeled from the stage main body 402 a, the workpiece W may be electrostatically charged due to the peeling. Thirdly, when a workpiece W is supported on the stage main body 402 a, the workpiece W may be contaminated due to the contact with the stage main body 402 a. Fourthly, a cycle time tends to increase to alleviate the aforementioned second and third problems, thus raising a possibility that productivity may deteriorate.
Comparative Example 2
Next, a laser annealing apparatus 405 according to a Comparative Example 2 is described with reference to FIG. 16. The laser annealing apparatus 405 is an apparatus that forms, for example, a polysilicon film by applying a laser beam to an amorphous silicon film provided over a silicon substrate or a glass substrate. The laser annealing apparatus 405 includes a processing chamber 406, a floating-type conveying stage 407, an optical system 408, a laser oscillator 409, and a workpiece conveying unit (not shown).
In the processing chamber 406, a carrying-in port 406 a for carrying a workpiece W, which is an object to be processed, into the processing chamber 406 and a carrying-out port 406 b for carrying out an annealed workpiece W from the processing chamber 406 are provided.
The floating-type conveying stage 407 is immovably disposed in the processing chamber 406 and is configured so that it can float and convey a workpiece W.
The optical system 408 is formed by using a mirror or a lens. The optical system 408 concentrates and shapes a laser beam L generated by the laser oscillator 409 into a predetermined shape, and directs the shaped laser beam L into the processing chamber 406.
Then, a workpiece W is annealed by applying the laser beam L to the workpiece W while floating the workpiece W over the floating-type conveying stage 407 and moving it from the carrying-in port 406 a toward the carrying-out port 406 b in the +X direction by the above-described workpiece conveying unit.
The Comparative Example 2 solves three problems in the above-described Comparative Example 1 because the workpiece W is moved in the +X direction in the processing chamber 406 while being floated over the floating-type conveying stage 407.
However, it is impossible to dispose the beam profiler in a position suitable for measuring the beam profile of the laser beam L in the configuration of the Comparative Example 2.
First Embodiment
A laser annealing apparatus to which a laser irradiation apparatus according to a first embodiment is applied is described hereinafter with reference to FIGS. 1 to 3. Note that the laser irradiation apparatus according to the first embodiment may be applied to a laser peeling apparatus as well as to the laser annealing apparatus.
(Configuration of Laser Irradiation Apparatus)
As shown in FIGS. 1 and 2, a laser annealing apparatus 1 according to the first embodiment may be, for example, an apparatus for forming a polysilicon film by applying a laser beam to an amorphous silicon film provided over a silicon substrate or a glass substrate and thereby crystallizing the amorphous silicon film. The laser annealing apparatus 1 includes a processing chamber 2, a floating-type conveying stage 3 as a conveying stage, a laser oscillator 4, an optical system 5, an attaching/detaching actuator 6, a beam profiler 7 as a measuring instrument, a profiler actuator 8, and a control unit 9. Note that in FIG. 2, illustration of the laser oscillator 4, the optical system 5, and the control unit 9 is omitted for convenience of explanation.
As shown in FIG. 1, in the processing chamber 2, a carrying-in port 2 a for carrying a workpiece W, which is an object to be processed, into the processing chamber 2 and a carrying-out port 2 b for carrying out an annealed workpiece W from the processing chamber 2 are provided. In the first embodiment, the carrying-in port 2 a and the carrying-out port 2 b are disposed on a pair of side walls opposed to each other. A workpiece W is carried into the processing chamber 2 through the carrying-in port 2 a, annealed in the processing chamber 2, and carried out from the processing chamber 2 through the carrying-out port 2 b. Note that for convenience of explanation, a direction from the carrying-in port 2 a toward the carrying-out port 2 b is defined as a conveying direction (+X direction) in the first embodiment. Further, a vertically upward direction is defined as a +Z direction and a direction orthogonal to the X and Z directions is defined as a Y direction.
The floating-type conveying stage 3 is a conveying stage for floating and conveying a workpiece W to be irradiated with a laser beam L. Specifically, the workpiece W is floated by gas ejected from the floating-type conveying stage 3 toward the workpiece W. The floating-type conveying stage 3 has a conveying surface 3 a, which is opposed to the workpiece W, and a bottom surface 3 b on the side opposite to the conveying surface 3 a. A plurality of ejecting holes H through which gas is ejected upward are formed on the conveying surface 3 a.
Further, the floating-type conveying stage 3 includes a conveying stage main body 11 with an opening S opened in the vertical direction (Z direction), and a detachable part 12 that can be attached in and detached from the opening S of the conveying stage main body 11. That is, the floating-type conveying stage 3 includes, in a part thereof, the detachable part 12 that can be detached therefrom. Further, the opening S that extends from the conveying surface 3 a to the bottom surface 3 b is formed in the floating-type conveying stage 3 by detaching the detachable part 12 from the floating-type conveying stage 3. The opening S and the detachable part 12 are located on an optical axis of the laser beam L. That is, the detachable part 12 is a part of the floating-type conveying stage 3 to which the laser beam L is applied.
The laser oscillator 4 generates the laser beam L. In the first embodiment, the laser beam L generated by the laser oscillator 4 is not limited to any particular type. Examples of the laser beam L include an excimer laser beam.
The optical system 5 is formed by using a mirror or a lens. As shown in FIG. 3, the optical system 5 concentrates and shapes the laser beam L generated by the laser oscillator 4 into a predetermined shape, and directs the shaped laser beam L into the processing chamber 2. In the first embodiment, the predetermined shape of the laser beam L at a focal point F of the laser beam L is a rectangle. That is, a planar shape of the laser beam L is a rectangle extending in a direction orthogonal to the conveying direction, and has a long axis and a short axis.
Referring to FIG. 1 again, the attaching/detaching actuator 6 is an actuator for moving the detachable part 12. Specifically, the attaching/detaching actuator 6 is an actuator for attaching/detaching the detachable part 12 in/from the opening S of the conveying stage main body 11. The attaching/detaching actuator 6 is fixed to the conveying stage main body 11 of the floating-type conveying stage 3. The attaching/detaching actuator 6 includes a vertical actuator 13 for moving the detachable part 12 attached in the opening S of the conveying stage main body 11 in the vertical direction (Z direction) and a horizontal actuator 14 for moving the detachable part 12 in the horizontal direction (X direction) after the movement thereof by the vertical actuator 13. The vertical actuator 13 is an actuator including a shaft 13 a connected to the detachable part 12 and a drive source 13 b for moving the shaft 13 a forward or backward in the vertical direction (Z direction). The horizontal actuator 14 is an actuator including a shaft 14 a connected to the drive source 13 b of the vertical actuator 13 and a drive source 14 b for moving the shaft 14 a forward or backward in the horizontal direction (X direction). The vertical actuator 13 and the horizontal actuator 14 are, for example, air cylinders.
The beam profiler 7 is a measuring instrument for measuring a beam profile of the laser beam L. In the first embodiment, the beam profiler 7 is positioned below the bottom surface 3 b of the floating-type conveying stage 3. The beam profiler 7 is disposed directly below the detachable part 12 attached in the opening S of the conveying stage main body 11. The beam profiler 7 is positioned on the optical axis of the laser beam L.
The profiler actuator 8 is an actuator for moving the beam profiler 7. The profiler actuator 8 is fixed to the processing chamber 2. The profiler actuator 8 includes an inserting/removing actuator 8 a and a scanning actuator 8 b. The inserting/removing actuator 8 a is an actuator for moving the beam profiler 7 in the vertical direction (Z direction). The inserting/removing actuator 8 a is an actuator for inserting/removing the beam profiler 7 into/from the opening S of the conveying stage main body 11. The inserting/removing actuator 8 a includes a shaft and a drive source for moving this shaft forward or backward. The inserting/removing actuator 8 a is, for example, an air cylinder. By the inserting/removing actuator 8 a, the beam profiler 7 can be moved from a position below the bottom surface 3 b of the floating-type conveying stage 3 to a position of the opening S. In this way, the beam profiler 7 can measure the beam profile of the laser beam L at the focal point F thereof. The scanning actuator 8 b is an actuator for moving the beam profiler 7 in a width direction (Y direction). Specifically, the scanning actuator 8 b is an actuator for moving the beam profiler 7 along the long axis of the planar shape of the laser beam L shown in FIG. 3. Therefore, the beam profiler 7 can be moved along the long axis of the planar shape of the laser beam L.
The control unit 9 is a control unit for controlling operations of the attaching/detaching actuator 6 and the profiler actuator 8, and controlling an output of the laser oscillator 4. In particular, the control unit 9 controls attaching/detaching operations of the detachable part 12 to/from the conveying stage main body 11, up/down movements of the beam profiler 7, and so on. The control unit 9 includes a CPU (Central Processing Unit) as a central processing unit, a readable/writable RAM (Random Access Memory), and a read-only ROM (Read Only Memory). A control program(s) that can be loaded and executed by the CPU is stored in the ROM.
In addition, the laser annealing apparatus 1 includes a conveying unit (not shown) for holding and conveying the workpiece W floated over the floating-type conveying stage 3. Examples of the holding of the workpiece W by the conveying unit include holding by grasping, holding by adsorption, etc.
By the above-described configuration, when the beam profile of the laser beam L is measured by the beam profiler 7, the detachable part 12 is removed from the floating-type conveying stage 3. As a result, the opening S extending from the conveying surface 3 a to the bottom surface 3 b is formed in the floating-type conveying stage 3, so that the beam profiler 7 can measure the beam profile of the laser beam L through the opening S. Therefore, when the beam profile of the laser beam L is measured by using the beam profiler 7, the presence of the floating-type conveying stage 3 does not act as an obstacle. Meanwhile, when the workpiece W is conveyed over the floating-type conveying stage 3, it is only necessary to attach the detachable part 12 to the floating-type conveying stage 3.
(Operation of Laser Irradiation Apparatus)
Next, a method for manufacturing a semiconductor device by using the laser annealing apparatus 1 is described in detail with reference to FIGS. 4 to 10. FIG. 4 shows a flowchart of a method for operating the laser annealing apparatus 1.
Firstly, as shown in FIG. 5, the control unit 9 conveys a workpiece W, which has been carried into the processing chamber 2 through the carrying-in port 2 a, in the +X direction while floating the workpiece W by controlling a workpiece conveying unit (not shown) (S100). That is, the control unit 9 conveys the workpiece W while floating the workpiece W over the floating-type conveying stage 3 by gas ejected from the floating-type conveying stage 3 toward the workpiece W. In the first embodiment, the workpiece W includes a glass substrate and an amorphous silicon film.
Then, the control unit 9 emits a laser beam L toward the amorphous silicon film of the workpiece W, which is being conveyed, by controlling the laser oscillator 4 and the optical system 5 (S110). As a result, the amorphous silicon film is crystallized and a polysilicon film is thereby formed. After that, the workpiece W is carried out from the carrying-out port 2 b for the next process.
Next, as shown in FIG. 6, the control unit 9 detaches the detachable part 12 of the floating-type conveying stage 3 by controlling the vertical actuator 13 (S120). As a result, an opening S extending from the conveying surface 3 a to the bottom surface 3 b is formed in a part of the floating-type conveying stage 3.
In the first embodiment, as shown in FIG. 7, the control unit 9 further controls the horizontal actuator 14 so that the detachable part 12 moves in the horizontal direction (−X direction).
Next, as shown in FIG. 8, the control unit 9 moves the beam profiler 7 to the position of the opening S by controlling the inserting/removing actuator 8 a. Then, the control unit 9 measures the beam profile of the laser beam L at the focal point F thereof through the opening S (step S130).
Note that, as shown in FIG. 3, the planar shape of the laser beam L is shaped into a rectangle extending in the width direction (Y direction) in the first embodiment. Therefore, the control unit 9 measures the beam profile of the laser beam L at the focal point F thereof while moving the beam profiler 7 in the width direction (Y direction) by controlling the scanning actuator 8 b shown in FIG. 8. FIG. 9 shows an example of a measurement result by the beam profiler 7. FIG. 9 is a graph showing a beam profile at the focal point F of the laser beam L, in which a horizontal axis represents positions in the width direction (Y direction) and a vertical axis represents relative intensities. In the first embodiment, as the beam profile of the laser beam L at the focal point F thereof, attention is paid, for example, to the relative intensity of the laser beam L at the focal point F of the laser beam L. Further, when the beam profile of the laser beam L at the focal point F thereof is not a desired beam profile, the control unit 9 corrects the operation of the laser oscillator 4 and/or the optical system 5 so that the beam profile of the laser beam L at the focal point F thereof becomes the desired beam profile.
Next, as shown in FIG. 10, the control unit 9 removes the beam profiler 7 from the opening S by controlling the profiler actuator 8, and inserts and attaches the detachable part 12 in the opening S by controlling the attaching/detaching actuator 6 (S140).
According to the above-described method for manufacturing a semiconductor device (steps S100 to S140), it is possible to measure the beam profile of the laser beam L through the opening S formed by removing a part of the floating-type conveying stage 3.
The first embodiment has been described above. In the above-described first embodiment, the laser annealing apparatus 1, which serves as a laser irradiation apparatus, includes at least the laser oscillator 4, the floating-type conveying stage 3, and the beam profiler 7.
Second Embodiment
A laser annealing apparatus to which a laser irradiation apparatus according to a second embodiment is applied is described hereinafter with reference to FIG. 11. In the following description, differences of the second embodiment from the above-described first embodiment are mainly explained and redundant descriptions are omitted.
In the above-described first embodiment, the detachable part 12 is configured so that it can be attached to and detached from the floating-type conveying stage 3. In contrast to this, in the second embodiment, a part of the floating-type conveying stage 3 that is positioned on the optical axis of the laser beam L is formed by a lens 20. The lens 20 is designed so that it projects the focal point of the laser beam L onto the beam profiler 7 disposed below the floating-type conveying stage 3. By the above-described configuration, it is possible to measure the beam profile of the laser beam L at the focal point F thereof by using the beam profiler 7 disposed below the floating-type conveying stage 3.
Third Embodiment
A laser annealing apparatus to which a laser irradiation apparatus according to a third embodiment is applied is described hereinafter with reference to FIG. 12. In the following description, differences of the third embodiment from the above-described first embodiment are mainly explained and redundant descriptions are omitted.
In the above-described first embodiment, the detachable part 12 is configured so that it can be attached to and detached from the floating-type conveying stage 3. Further, the beam profiler 7 is disposed below the floating-type conveying stage 3.
In contrast, in the third embodiment, the beam profiler 7 is disposed above the floating-type conveying stage 3. Further, an optical element 21 that reflects or bends the optical axis of the laser beam L, such as a mirror, is disposed on the optical axis of the laser beam L, so that the laser beam L emitted from the optical system 5 is guided to the beam profiler 7. By the above-described configuration, it is possible to measure the beam profile of the laser beam L at the focal point thereof.
Other Embodiments
Next, as other embodiments, a method for manufacturing a semiconductor device by using the laser irradiation apparatus described in the first, second, or third embodiment, and such a semiconductor device are described with reference to FIGS. 13 and 14.
(Method for Manufacturing Semiconductor Device)
Firstly, a method for manufacturing a semiconductor device by using the above-described laser irradiation apparatus is described. In this embodiment, by using the laser annealing apparatus as a laser irradiation apparatus, it is possible to crystallize an amorphous film formed on a substrate by applying a laser beam to the amorphous film. For example, the semiconductor device is a semiconductor device including TFTs (Thin Film Transistors). In this case, it is possible to form a polysilicon film by applying a laser beam to an amorphous silicon film and thereby crystallizing the amorphous silicon film. The polysilicon film constitutes the TFTs.
FIG. 13 is a cross section for explaining an example of a method for manufacturing a semiconductor device. The laser irradiation apparatus according to the above-described embodiment is suitable for manufacturing a TFT array substrate. A method for manufacturing a semiconductor device including a TFT is described hereinafter.
Firstly, as shown in FIG. 13(a), a gate electrode 202 is formed on a glass substrate 201. For example, a metal thin film containing aluminum or the like can be used for the gate electrode 202. Next, as shown in FIG. 13(b), a gate insulating film 203 is formed on the gate electrode 202. The gate insulating film 203 is formed so as to cover the gate electrode 202. After that, as shown in FIG. 13(c), an amorphous silicon film 204 is formed on the gate insulating film 203. The amorphous silicon film 204 is disposed so as to be placed over the gate electrode 202 with the gate insulating film 203 interposed therebetween.
The gate insulating film 203 is, for example, a silicon nitride film (SiNx), a silicon oxide film (SiO2 film), or a laminated film thereof. Specifically, the gate insulating film 203 and the amorphous silicon film 204 are successively formed by a CVD (Chemical Vapor Deposition) method.
Then, as shown in FIG. 13(d), a polysilicon film 205 is formed by applying a laser beam to the amorphous silicon film 204 by using the above-described laser irradiation apparatus and thereby crystallizing the amorphous silicon film 204. As a result, the polysilicon film 205 in which silicon is crystallized is formed on the gate insulating film 203.
After that, as shown in FIG. 13(e), an inter-layer insulating film 206, a source electrode 207 a, and a drain electrode 207 b are formed on the polysilicon film 205. The inter-layer insulating film 206, the source electrode 207 a, and the drain electrode 207 b can be formed by an ordinary photolithography method or an ordinary film forming method.
It is possible to manufacture a semiconductor device including TFTs by using the above-described method for manufacturing a semiconductor device. Note that the subsequent manufacturing process will vary depending on the device that is eventually manufactured, and therefore its description is omitted.
(Organic EL Display)
Next, as an example of a device using a semiconductor device including TFTs, an organic EL display device is described. FIG. 14 is a cross section for explaining an outline of an organic EL display device, in which pixel circuits of the organic EL display device are illustrated in a simplified manner. The organic EL display device 300 shown in FIG. 14 is an active-matrix-type display device in which a TFT is disposed in each pixel PX.
The organic EL display device 300 includes a substrate 310, a TFT layer 311, an organic layer 312, a color filter layer 313, and a sealing substrate 314. FIG. 14 shows a top-emission-type organic EL display device, in which the side of the sealing substrate 314 is located on the viewing side. Note that the following description is given to show an example of a configuration of an organic EL display device and this embodiment is not limited to the below-described configuration. For example, a semiconductor device according to this embodiment may be used for a bottom-emission-type organic EL display device.
The substrate 310 is a glass substrate or a metal substrate. The TFT layer 311 is provided on the substrate 310. The TFT layer 311 includes TFTs 311 a disposed in the respective pixels PX. Further, the TFT layer 311 includes wiring lines connected to the TFTs 311 a, and the like. The TFTs 311 a, the wirings, and the like constitute pixel circuits. Note that the TFT layer 311 corresponds to the TFT described above with reference to FIG. 13, and includes gate electrodes 202, a gate insulating film 203, a polysilicon film 205, an inter-layer insulating film 206, source electrodes 207 a, and drain electrodes 207 b.
The organic layer 312 is provided on the TFT layer 311. The organic layer 312 includes an organic EL light-emitting element 312 a disposed in each pixel PX. The organic EL light-emitting element 312 a has, for example, a laminated structure in which an anode, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and a cathode are laminated. In the case of the top emission type, the anode is a metal electrode and the cathode is a transparent conductive film made of ITO (Indium Tin Oxide) or the like. Further, in the organic layer 312, separation walls 312 b for separating organic EL light-emitting elements 312 a are provided between pixels PX.
The color filter layer 313 is provided on the organic layer 312. The color filter layer 313 includes color filters 313 a for performing color displaying. That is, in each pixel PX, a resin layer colored in R (red), G (green), or B (blue) is provided as the color filter 313 a. When white light emitted from the organic layer 312 passes through the color filters 313 a, the white light is converted into light having RGB colors. Note that in the case of a three-color system in which organic EL light-emitting elements capable of emitting each color of RGB are provided in the organic layer 312, the color filter layer 313 may be unnecessary.
The sealing substrate 314 is provided on the color filter layer 313. The sealing substrate 314 is a transparent substrate such as a glass substrate and is provided to prevent deterioration of the organic EL light-emitting elements of the organic layer 312.
Electric currents flowing through the organic EL light-emitting elements 312 a of the organic layer 312 are changed by display signals supplied to the pixel circuits. Therefore, it is possible to control an amount of light emitted in each pixel PX by supplying a display signal corresponding to a display image to each pixel PX. As a result, it is possible to display a desired image.
Note that it has been assumed that the above-described semiconductor device including TFTs is used to control the organic EL display device. However, instead of this purpose, the semiconductor device including TFTs may be used to control a liquid crystal display device.
The present invention made by the inventors of the present application has been explained above in a concrete manner based on embodiments. However, the present invention is not limited to the above-described embodiments, and needless to say, various modifications can be made without departing from the spirit and scope of the present invention.
This application is based upon and claims the benefit of priority from Japanese patent application No. 2016-196491, filed on Oct. 4, 2016, the disclosure of which is incorporated herein in its entirety by reference.
REFERENCE SIGNS LIST
  • 1 LASER ANNEALING APPARATUS
  • 2 PROCESSING CHAMBER
  • 3 FLOATING-TYPE CONVEYING STAGE
  • 4 LASER OSCILLATOR
  • 5 OPTICAL SYSTEM
  • 6 ATTACHING/DETACHING ACTUATOR
  • 7 BEAM PROFILER
  • 8 PROFILER ACTUATOR
  • 9 CONTROL UNIT
  • 10 CONVEYING SURFACE
  • 11 CONVEYING STAGE MAIN BODY
  • 12 DETACHABLE PART
  • L LASER BEAM
  • S OPENING
  • W WORKPIECE

Claims (19)

The invention claimed is:
1. A laser irradiation apparatus comprising:
a laser oscillator configured to generate a laser beam;
a conveying stage configured to float and convey a workpiece to be irradiated with the laser beam; and
a measuring instrument configured to measure a beam profile of the laser beam, wherein
the conveying stage includes a conveying surface opposed to the workpiece, and a bottom surface on the side opposite to the conveying surface,
the measuring instrument is positioned below the bottom surface of the conveying stage,
the conveying stage includes a detachable part in a part of the conveying stage, the detachable part being configured to be detachable from the conveying stage,
an opening is formed in the conveying stage by detaching the detachable part from the conveying stage, the opening extending from the conveying surface to the bottom surface, and
the measuring instrument is configured to measure the beam profile of the laser beam through the opening.
2. The laser irradiation apparatus according to claim 1, wherein the detachable part is positioned on an optical axis of the laser beam.
3. The laser irradiation apparatus according to claim 1, wherein the measuring instrument is configured to move to a position of the opening.
4. The laser irradiation apparatus according to claim 1, wherein the measuring instrument is configured to measure the beam profile of the laser beam at a focal point thereof.
5. The laser irradiation apparatus according to claim 1, wherein the opening and the measuring instrument are positioned on an optical axis of the laser beam.
6. The laser irradiation apparatus according to claim 1, wherein
a planar shape of the laser beam is a rectangle having a long axis and a short axis, and
the measuring instrument is configured to move along the long axis.
7. The laser irradiation apparatus according to claim 1, wherein the workpiece is floated by gas ejected from the conveying stage toward the workpiece.
8. The laser irradiation apparatus according to claim 1, wherein the workpiece includes an amorphous semiconductor film, and a polycrystalline semiconductor film is formed by applying the laser beam to the amorphous semiconductor film.
9. A method for manufacturing a semiconductor device, comprising the steps of:
(a) floating and conveying a workpiece including an amorphous semiconductor film over a conveying stage;
(b) applying a laser beam to the amorphous semiconductor film and thereby forming a polycrystalline semiconductor film;
(c) removing a detachable part of the conveying stage and thereby forming an opening in a part of the conveying stage; and
(d) measuring a beam profile of the laser beam through the opening.
10. The method for manufacturing a semiconductor device according to claim 9, further comprising, between the steps (c) and (d), a step of moving a measuring instrument to a position of the opening, the measuring instrument being configured to measure the beam profile of the laser beam.
11. The method for manufacturing a semiconductor device according to claim 9, wherein the opening and a measuring instrument configured to measure the beam profile of the laser beam are positioned on an optical axis of the laser beam.
12. The method for manufacturing a semiconductor device according to claim 9, wherein in the step (a), the workpiece is floated by gas ejected from the conveying stage toward the workpiece.
13. The method for manufacturing a semiconductor device according to claim 9, wherein the workpiece includes a glass substrate.
14. The method for manufacturing a semiconductor device according to claim 9, wherein the polycrystalline semiconductor film forms a thin-film transistor.
15. The method for manufacturing a semiconductor device according to claim 14, wherein the thin-film transistor is used to control a liquid crystal display device or an organic EL display device.
16. A method for operating a laser irradiation apparatus, comprising the steps of:
(a) floating and conveying a workpiece over a conveying stage;
(b) applying a laser beam to the workpiece;
(c) removing a detachable part of the conveying stage and thereby forming an opening in a part of the conveying stage; and
(d) measuring a beam profile of the laser beam through the opening.
17. The method for operating the laser irradiation apparatus according to claim 16, further comprising, between the steps (c) and (d), a step of moving a measuring instrument to a position of the opening, the measuring instrument being configured to measure the beam profile of the laser beam.
18. The method for operating the laser irradiation apparatus according to claim 16, wherein the opening and a measuring instrument configured to measure the beam profile of the laser beam are positioned on an optical axis of the laser beam.
19. The method for operating the laser irradiation apparatus according to claim 16, wherein in the step (a), the workpiece is floated by gas ejected from the conveying stage toward the workpiece.
US16/330,759 2016-10-04 2017-06-02 Laser irradiation apparatus, method for manufacturing semiconductor device, and method for operating laser irradiation apparatus Active US10658185B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-196491 2016-10-04
JP2016196491A JP6764305B2 (en) 2016-10-04 2016-10-04 Laser irradiation device, semiconductor device manufacturing method, and laser irradiation device operation method
PCT/JP2017/020638 WO2018066172A1 (en) 2016-10-04 2017-06-02 Laser irradiation device, method for manufacturing semiconductor device, and method for operating laser irradiation device

Publications (2)

Publication Number Publication Date
US20190189449A1 US20190189449A1 (en) 2019-06-20
US10658185B2 true US10658185B2 (en) 2020-05-19

Family

ID=61832095

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/330,759 Active US10658185B2 (en) 2016-10-04 2017-06-02 Laser irradiation apparatus, method for manufacturing semiconductor device, and method for operating laser irradiation apparatus

Country Status (5)

Country Link
US (1) US10658185B2 (en)
JP (1) JP6764305B2 (en)
CN (1) CN109804457B (en)
TW (1) TWI716608B (en)
WO (1) WO2018066172A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6887234B2 (en) * 2016-09-21 2021-06-16 株式会社日本製鋼所 Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
WO2019215829A1 (en) * 2018-05-09 2019-11-14 堺ディスプレイプロダクト株式会社 Method and apparatus for manufacturing flexible light-emitting device
JP7306860B2 (en) * 2019-04-11 2023-07-11 Jswアクティナシステム株式会社 Laser processing equipment
JP7474579B2 (en) * 2019-11-07 2024-04-25 Jswアクティナシステム株式会社 Laser processing device and laser beam profile measuring method
KR102276004B1 (en) * 2019-12-16 2021-07-13 세메스 주식회사 Apparatus for treating substrate and method for treating apparatus
CN111975191B (en) * 2020-08-17 2023-01-24 北京中科镭特电子有限公司 Processing cavity assembly and laser processing device
WO2023079648A1 (en) * 2021-11-04 2023-05-11 Jswアクティナシステム株式会社 Laser irradiation device, laser irradiation method, and method for manufacturing display

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176008A (en) 2000-12-08 2002-06-21 Mitsubishi Electric Corp Method and apparatus for measuring illuminating laser beam
US6437357B1 (en) * 1998-10-30 2002-08-20 Photon Dynamics Canada Inc. Glass inspection system including bright field and dark field illumination
US20040240608A1 (en) * 2003-03-26 2004-12-02 Schrock Todd H. Apparatus and method for non-destructive inspection of material in containers
US20070030953A1 (en) * 2004-03-01 2007-02-08 Sommer Edward J Jr Method and apparatus for sorting materials according to relative composition
JP2007150245A (en) 2005-11-04 2007-06-14 Advanced Lcd Technologies Development Center Co Ltd Light irradiation device, method of regulating light irradiation device, crystallization apparatus, crystallization method, and device
US20090111244A1 (en) 2007-10-10 2009-04-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20090115028A1 (en) 2007-11-01 2009-05-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate, semiconductor device and electronic device
WO2015174347A1 (en) 2014-05-12 2015-11-19 株式会社日本製鋼所 Laser annealing device, serial conveyance path for laser annealing, laser beam radiation means, and laser annealing method
US20160279736A9 (en) * 2009-06-03 2016-09-29 V Technology Co., Ltd. Laser annealing method and laser annealing apparatus
US20180038679A1 (en) * 2016-08-04 2018-02-08 Sick Ag Conveying apparatus
US20180315633A1 (en) * 2015-10-27 2018-11-01 The Japan Steel Works, Ltd. Workpiece conveyance apparatus, semiconductor manufacturing apparatus, and workpiece conveyance method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044037A (en) * 2008-08-08 2010-02-25 Top Engineering Co Ltd Position detection apparatus and method for detecting position of nozzle orifice and optical point of laser displacement sensor of paste dispenser
US8198564B2 (en) * 2008-09-09 2012-06-12 Electro Scientific Industries, Inc. Adaptive optic beamshaping in laser processing systems

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437357B1 (en) * 1998-10-30 2002-08-20 Photon Dynamics Canada Inc. Glass inspection system including bright field and dark field illumination
JP2002176008A (en) 2000-12-08 2002-06-21 Mitsubishi Electric Corp Method and apparatus for measuring illuminating laser beam
US20040240608A1 (en) * 2003-03-26 2004-12-02 Schrock Todd H. Apparatus and method for non-destructive inspection of material in containers
US20070030953A1 (en) * 2004-03-01 2007-02-08 Sommer Edward J Jr Method and apparatus for sorting materials according to relative composition
JP2007150245A (en) 2005-11-04 2007-06-14 Advanced Lcd Technologies Development Center Co Ltd Light irradiation device, method of regulating light irradiation device, crystallization apparatus, crystallization method, and device
JP2009135430A (en) 2007-10-10 2009-06-18 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US20090111244A1 (en) 2007-10-10 2009-04-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20090115028A1 (en) 2007-11-01 2009-05-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate, semiconductor device and electronic device
JP2009135437A (en) 2007-11-01 2009-06-18 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor substrate, semiconductor device, and electronic device
US20160279736A9 (en) * 2009-06-03 2016-09-29 V Technology Co., Ltd. Laser annealing method and laser annealing apparatus
WO2015174347A1 (en) 2014-05-12 2015-11-19 株式会社日本製鋼所 Laser annealing device, serial conveyance path for laser annealing, laser beam radiation means, and laser annealing method
US20180315633A1 (en) * 2015-10-27 2018-11-01 The Japan Steel Works, Ltd. Workpiece conveyance apparatus, semiconductor manufacturing apparatus, and workpiece conveyance method
US20180038679A1 (en) * 2016-08-04 2018-02-08 Sick Ag Conveying apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report from International Patent Application No. PCT/JP2017/020638, dated Aug. 29, 2017.

Also Published As

Publication number Publication date
CN109804457B (en) 2022-10-25
US20190189449A1 (en) 2019-06-20
JP2018060888A (en) 2018-04-12
TWI716608B (en) 2021-01-21
TW201825218A (en) 2018-07-16
WO2018066172A1 (en) 2018-04-12
CN109804457A (en) 2019-05-24
JP6764305B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
US10658185B2 (en) Laser irradiation apparatus, method for manufacturing semiconductor device, and method for operating laser irradiation apparatus
CN108122928B (en) Organic light emitting display device including multi-type thin film transistors
US10229965B2 (en) Method fabricating organic light emitting diode display device
US10446636B2 (en) Organic light emitting diode display device and method for manufacturing the same
US9627283B2 (en) Display device
US20190115561A1 (en) A method of manufacturing an oled panel and an oled panel
US7915103B2 (en) Method for fabricating a flat panel display
US11446762B2 (en) Laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
US11114300B2 (en) Laser annealing apparatus, inspection method of substrate with crystallized film, and manufacturing method of semiconductor device
US20060178072A1 (en) Method of manufacturing array substrate and method of manufacturing organic EL display device
US20160013256A1 (en) Active matrix organic light-emitting diode array substrate, manufacturing method thereof and display device including the same
US12011777B2 (en) Laser processing apparatus, laser processing method, and method for manufacturing semiconductor device
US9391098B2 (en) Method of manufacturing a display device
US20070241671A1 (en) Organic electro-luminescent display device and manufacturing method thereof
EP2881213A1 (en) Laser crystallization apparatus and organic light-emitting diode (oled) display manufactured using the same
US10553794B2 (en) Display device and method of manufacturing display device
CN109690739B (en) Laser irradiation apparatus, laser irradiation method, and semiconductor device manufacturing method
US10026623B2 (en) Thin film transistor substrate, display panel, and laser annealing method
JP7425837B2 (en) Laser irradiation device and semiconductor device manufacturing method
WO2018037756A1 (en) Laser anneal device, method for inspecting substrate with attached crystallized film, and semiconductor device manufacturing method
JP2009128374A (en) Active matrix display device

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE JAPAN STEEL WORKS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHIMIZU, RYO;SATO, RYOSUKE;SHIMOJI, TERUAKI;REEL/FRAME:048511/0201

Effective date: 20190123

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: JSW AKTINA SYSTEM CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE JAPAN STEEL WORKS, LTD.;REEL/FRAME:059418/0794

Effective date: 20220324

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4