US10608683B2 - Method for cancelling multi-path signals for frequency-modulated radio signal receiver - Google Patents

Method for cancelling multi-path signals for frequency-modulated radio signal receiver Download PDF

Info

Publication number
US10608683B2
US10608683B2 US16/489,742 US201816489742A US10608683B2 US 10608683 B2 US10608683 B2 US 10608683B2 US 201816489742 A US201816489742 A US 201816489742A US 10608683 B2 US10608683 B2 US 10608683B2
Authority
US
United States
Prior art keywords
complex
vector
complex weights
radio
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/489,742
Other versions
US20200067550A1 (en
Inventor
Gérald Soulier
Chao Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Continental Automotive France SAS
Original Assignee
Continental Automotive GmbH
Continental Automotive France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH, Continental Automotive France SAS filed Critical Continental Automotive GmbH
Assigned to CONTINENTAL AUTOMOTIVE FRANCE, CONTINENTAL AUTOMOTIVE GMBH reassignment CONTINENTAL AUTOMOTIVE FRANCE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIN, CHAO, SOULIER, Gérald
Publication of US20200067550A1 publication Critical patent/US20200067550A1/en
Application granted granted Critical
Publication of US10608683B2 publication Critical patent/US10608683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1081Reduction of multipath noise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H21/0043Adaptive algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/08Constructional details, e.g. cabinet
    • H04B1/082Constructional details, e.g. cabinet to be used in vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H21/0043Adaptive algorithms
    • H03H2021/0049Recursive least squares algorithm
    • H03H2021/0052Recursive least squares algorithm combined with stochastic gradient algorithm
    • H03H2021/0054Affine projection

Definitions

  • the invention relates to the field of the reception of frequency-modulated radio signals, in particular in mobile radio receivers exposed to the effect of multi-paths which is known to those skilled in the art.
  • the present invention relates to a method for removing reflected radio waves resulting from the multi-path effect in a receiver of frequency-modulated radio signals.
  • a radio receiver in particular in a multimedia system of a motor vehicle, is able to receive a radio signal, in particular an FM radio signal, FM being the acronym of “frequency modulation”.
  • Such an FM radio signal received in modulated form by a radio receiver, is subjected to various sensors and to suitable filtering so that the corresponding demodulated radio signal is able to be played back under good conditions, in particular in the passenger compartment of a motor vehicle.
  • a known problem that relates to the reception of an FM radio signal via a mobile radio receiver, in particular one incorporated into a motor vehicle, resides in the fact that the FM radio signal emitted by an emitter may be reflected by natural obstacles or buildings for example, before being received by an antenna of the radio receiver.
  • the emitted radio signal, before being received by an antenna of the receiver may have followed various paths, of relatively long or short length.
  • impulse response filters FIR aiming to remove the interference generated by the multiplicity of the received signals because of the multi-path effect, which was described above, have been developed.
  • These filters FIR implement CMA algorithms, SMA being the acronym of “Constant Modulus Algorithm”, that are configured to cancel out, from the set of the received signals y n , those signals corresponding to secondary signals generated by the multi-path effect, with a view to delivering a processed FM radio signal z n .
  • x n represents the signal emitted by the emitting antenna, which by definition has a constant modulus
  • y n represents the radio signal received by the receiving antenna of the radio receiver of the vehicle in question
  • C representing the transfer function of the transmission channel between said emitting antenna and said receiving antenna.
  • the received radio signal y n has a non-constant modulus because it is the result of the combination of a plurality of time-shifted received signals, i.e. signals resulting from various emitted signals x n that are delayed to a greater or lesser extent.
  • the processed radio signal z n is the radio signal reconstructed after application of the CMA algorithm.
  • CMA algorithms are iterative computational algorithms the objective of which is to determine the real and imaginary parts of complex weights to be applied to the FM radio signals received by an antenna of a radio receiver, with a view to combining them, so as to remove from the combined radio signal the interference due to multi-path.
  • the combined radio signal is written:
  • y n is the radio signal, in complex baseband, received by the antenna in question and w (n) is the complex weight attributed, via an impulse response filter, to said received radio signal.
  • R is a constant to be determined, corresponding to the constant modulus of the combined signal.
  • the vector W n of complex weights is considered to consist of linear complex numbers, said vector W n therefore having the following form:
  • this vector W n of complex weights forming the coefficients of an adaptive filter to be applied to the received radio signal, are independent of one another and the real and imaginary parts of each component are also.
  • the corresponding cost function may be decreased using the instantaneous gradient technique, in order to be written:
  • the antenna receives a plurality of radio signals, corresponding to the emitted radio signal having followed various paths, which are either direct or with one or more reflections, and a complex weight must be determined with a view to being applied to each of these radio signals.
  • the equation contains a high number of unknowns and the objective of the CMA algorithms is therefore to determine the best solutions, among a set of non-optimal solutions allowing a constant modulus of the combined radio signal to be ensured.
  • an aspect of the present invention is provided, with a view to allowing FM radio signals received by an antenna of a radio receiver to be combined, said signals being the product of a multi-path effect, using an improved technique aiming to remove interference due to multi-path.
  • an aspect of the present invention in particular makes provision to introduce, into the method aiming in fine to combine FM radio signals produced by a multi-path effect, which signals are received by an antenna of a radio receiver, a temporal correlation between said received signals.
  • an aspect of the present invention proposes a model that is adaptive from the temporal point of view in order to improve the performance of the radio receiver from the point of view of removal of interference due to multi-path.
  • the method for decreasing multi-path interference in an FM radio receiver thus incorporates a temporal correlation between the respective gains and phase shifts of the plurality of signals received by the antenna of a radio receiver, in order to decrease the degrees of freedom of the equation to be solved with the iterative algorithms implemented, which may be algorithms such as CMA algorithms.
  • the iterative algorithms implemented to determine the complex weights W n converge more rapidly and have an improved stability, by virtue of the decrease in the degrees of freedom, which decrease is obtained by introducing a temporal correlation inducing an interdependence in the update of the coefficients of said complex weights.
  • said iterative adaptation algorithm is a constant-modulus adaptation algorithm.
  • the method according to an aspect of the invention comprises determining a constant R corresponding to the modulus of the envelope of the frequency-modulated radio signal emitted, the implementation of the iterative adaptation algorithm consisting in determining G n , ⁇ n , able to minimize over time the cost function characterized by the following instantaneous gradient:
  • G n is a vector composed of the complex gains of each of the complex weights of the vector of complex weights at the time n
  • ⁇ n is the vector composed of the complex delays of each of the complex weights of the vector of complex weights at the time n
  • the operator “o” is defined as performing the multiplication of two vectors, component by component, the resultant being a vector.
  • the respective variations in G n , ⁇ n over time are computed by means of the following formulae:
  • G n is a vector composed of the complex gains of each of the complex weights of the vector of complex weights at the time n
  • ⁇ n is the vector composed of the complex delays of each of the complex weights of the vector of complex weights at the time n.
  • An aspect of the present invention also relates to a radio receiver comprising a microcontroller configured to implement the method such as briefly described above.
  • An aspect of the present invention also relates to a motor vehicle comprising a radio receiver such as briefly described above.
  • the method for adapting an FM radio signal according to an aspect of the invention is presented with a view to an implementation, principally, in a radio receiver of a multimedia system on board a motor vehicle.
  • an aspect of the present invention may be implemented in any other technical field, and in particular in any type of FM radio receiver.
  • An aspect of the present invention proposes to introduce an adaptive temporal model, in order to take into account the temporal correlation that exists, from the physical point of view, between the multi-path FM radio signals received by the antenna of the radio receiver in question.
  • the adaptive temporal model implemented in the world of radars is in fact based on the implementation of an impulse response filter able to apply, to the vector of received complex signals, a complex weight vector that is written:
  • This model does not allow multi-path signals to be removed in the field of FM radio reception because each path followed by each of the time-shifted, received multi-path signals has, in the case of an FM radio signal, a specific gain that is dependent on the distance traveled by the radio wave, said distance not being a linear frequency-dependent function, contrary to the case of radar reception.
  • the complex weights of the temporal adaptive model are thus stated in polar coordinates, so as to introduce, into the system, a strong temporal correlation between said complex weights, while taking into account the respective gain of each of the received multi-path signals.
  • the vector of complex weights, which forms an adaptive filter to be applied to the received radio signal, is therefore written:
  • R is a constant to be determined, corresponding to the modulus of the envelope of the FM radio signal, for example able to be obtained by averaging the power of the combined received signal.
  • K is the number of complex weights, i.e. the number of coefficients of the adaptive filter to be applied to the received radio signal.
  • G n is a vector composed of the complex gains of each of the complex weights of the vector of complex weights at the time n
  • ⁇ n is the vector composed of the complex delays of each of the complex weights of the vector of complex weights at the time n
  • the operator “o” is defined as performing the multiplication of two vectors, component by component, the resultant being a vector.
  • ⁇ h and ⁇ ⁇ are iterative steps chosen for the update of the gains and phases of each of the complex weights. It is known to those skilled in the art that the larger the size of the iterative steps p, the faster the algorithms converge, but with a lower precision. In contrast, for iterative steps p of small size, the convergence of the algorithms is slow, but with a higher precision. In practice, the final choice as to the value of the iterative steps p is often made in the field, empirically during campaigns of trials.
  • the CMA algorithms converge to a smaller subset of solutions, said subset being included in the set of possible solutions of the CMA algorithms such as implemented in the prior art.

Abstract

A method for decreasing multi-path interference, for the implementation thereof in a vehicle radio receiver including a radio reception antenna that receives a plurality of radio signals corresponding to an emitted radio signal, the plurality of signals received by the antenna being composed of time-shifted radio signals, the plurality of signals being intended to be combined in order to deliver a combined radio signal zn to be played, with zn=WnTYn, the method aiming to determine the complex components of the vector of complex weights and including: introducing a temporal correlation, between the real and imaginary parts of the complex weights, that is dependent on the time shift between said received signals, by the expression of the complex weights in polar coordinates, implementing an iterative adaptation algorithm in order to determine the gains and delays of said complex weights able to keep constant over time the modulus of zn.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is the U.S. National Phase Application of PCT International Application No. PCT/FR2018/051241, filed May 29, 2018, which claims priority to French Patent Application No. 1754861, filed Jun. 1, 2017, the contents of such applications being incorporated by reference herein.
FIELD OF THE INVENTION
The invention relates to the field of the reception of frequency-modulated radio signals, in particular in mobile radio receivers exposed to the effect of multi-paths which is known to those skilled in the art.
More precisely, the present invention relates to a method for removing reflected radio waves resulting from the multi-path effect in a receiver of frequency-modulated radio signals.
BACKGROUND OF THE INVENTION
As is known, a radio receiver, in particular in a multimedia system of a motor vehicle, is able to receive a radio signal, in particular an FM radio signal, FM being the acronym of “frequency modulation”.
Such an FM radio signal, received in modulated form by a radio receiver, is subjected to various sensors and to suitable filtering so that the corresponding demodulated radio signal is able to be played back under good conditions, in particular in the passenger compartment of a motor vehicle.
Those skilled in the art know the operating principle of an FM, that is to say frequency-modulated, radio signal received by a suitable radio receiver, with a view to being demodulated and then played to listeners.
A known problem that relates to the reception of an FM radio signal via a mobile radio receiver, in particular one incorporated into a motor vehicle, resides in the fact that the FM radio signal emitted by an emitter may be reflected by natural obstacles or buildings for example, before being received by an antenna of the radio receiver. In other words, the emitted radio signal, before being received by an antenna of the receiver, may have followed various paths, of relatively long or short length.
As a result thereof a selectivity is necessary, because a given radio signal may be received by one antenna several times, with various time shifts. This problem is known to those skilled in the art, who generally refer to it as “multi-path”.
With reference to the FIGURE, to partially mitigate the aforementioned drawbacks relative to multi-path, impulse response filters FIR aiming to remove the interference generated by the multiplicity of the received signals because of the multi-path effect, which was described above, have been developed. These filters FIR implement CMA algorithms, SMA being the acronym of “Constant Modulus Algorithm”, that are configured to cancel out, from the set of the received signals yn, those signals corresponding to secondary signals generated by the multi-path effect, with a view to delivering a processed FM radio signal zn.
Thus, again with reference to the FIGURE, xn represents the signal emitted by the emitting antenna, which by definition has a constant modulus, and yn represents the radio signal received by the receiving antenna of the radio receiver of the vehicle in question, C representing the transfer function of the transmission channel between said emitting antenna and said receiving antenna.
The received radio signal yn has a non-constant modulus because it is the result of the combination of a plurality of time-shifted received signals, i.e. signals resulting from various emitted signals xn that are delayed to a greater or lesser extent.
In the end, the processed radio signal zn is the radio signal reconstructed after application of the CMA algorithm.
In the prior art, algorithms for removing multi-path signals are generally of the “constant modulus” type. Specifically, the principle of frequency modulation ensures that the emitted radio signal has a constant modulus. Thus, computational algorithms called CMA algorithms have been developed and those skilled in the art are constantly seeking to improve them, with for main constraint to ensure, after computation, a substantially constant modulus of the radio signal combined within the receiver, after processing.
CMA algorithms are iterative computational algorithms the objective of which is to determine the real and imaginary parts of complex weights to be applied to the FM radio signals received by an antenna of a radio receiver, with a view to combining them, so as to remove from the combined radio signal the interference due to multi-path.
From a mathematical point of view, the principle presented above, in which complex weights are attributed to multiple radio signals received by an antenna of a radio receiver, including in particular signals received after reflection, which are a source of multi-path interference, with a view to forming a combined radio signal to be played, after canceling out the interference due to multi-path, may be expressed as follows.
The combined radio signal is written:
z n = W n T Y n = k = 0 K - 1 w ( k ) _ y ( n - k ) = k = 0 K - 1 ( a ( k ) + j b ( k ) ) _ y ( n - k )
where, at the time n, yn is the radio signal, in complex baseband, received by the antenna in question and w(n) is the complex weight attributed, via an impulse response filter, to said received radio signal.
In the prior art, CMA algorithms are implemented to determine the complex vector Wn able to minimize the following cost function:
H CMA =E{(|z n|2 −R 2)2},
where R is a constant to be determined, corresponding to the constant modulus of the combined signal.
In the prior art, the vector Wn of complex weights is considered to consist of linear complex numbers, said vector Wn therefore having the following form:
W n = [ a ( 0 ) + j b ( 0 ) a ( 1 ) + j b ( 1 ) a ( K - 1 ) + j b ( K - 1 ) ]
The components of this vector Wn of complex weights, forming the coefficients of an adaptive filter to be applied to the received radio signal, are independent of one another and the real and imaginary parts of each component are also.
The corresponding cost function may be decreased using the instantaneous gradient technique, in order to be written:
J C M A = 2 ( z n 2 - R 2 ) z n 2 = 2 ( z n 2 - R 2 ) ( z n z _ n ) = 2 ( z n 2 - R 2 ) ( z n z _ n + z _ n z n )
With
z n = z n W n = [ Y n - j Y n ]
and
z _ n = z _ n W n = [ Y n _ - j Y n _ ] ,
the following is obtained:
J C M A = 2 ( z n 2 - R 2 ) [ 2 Re ( z _ n Y n ) 2 j Im ( z _ n Y n ) ]
Namely:
J CMA=4(|z n|2 −R 2) z n Y n
The way in which the complex weights are updated is therefore expressed by the following formula:
W n+1 =W n−μ(|z n|2 −R 2) z n Y n
A major drawback of known adaptive filtering techniques and CMA algorithms such as they are applied at the present time, with a view to independently determining the complex weights to be applied to the signals received by the antenna of a mobile radio receiver in order to eliminate there from the interference due to multi-path, resides in the fact that they sometimes converge slowly, and above all in the fact that they sometimes converge wrongly. In other words, sometimes complex weights that meet the required conditions lead to a radio signal of poor quality being played.
Stability problems are thus particularly frequent.
As is known to those skilled in the art, this difficulty with rapidly converging to correct and stable solutions is particularly present in the field of FM radio reception, because the only certain constraint exploitable a priori by algorithms resides in the fact that the modulus of the envelope of the frequency-modulated radio signal remains constant.
However, on the other hand, the antenna receives a plurality of radio signals, corresponding to the emitted radio signal having followed various paths, which are either direct or with one or more reflections, and a complex weight must be determined with a view to being applied to each of these radio signals. The equation contains a high number of unknowns and the objective of the CMA algorithms is therefore to determine the best solutions, among a set of non-optimal solutions allowing a constant modulus of the combined radio signal to be ensured.
More particularly, in scenarios where the desired radio signals coexist with radio signals transmitted over adjacent frequency channels, this problem of convergence is more pronounced. It often occurs that the complex weights obtained with CMA algorithms privilege adjacent radio signals to the detriment of the desired radio signals.
SUMMARY OF THE INVENTION
It is to mitigate these drawbacks that an aspect of the present invention is provided, with a view to allowing FM radio signals received by an antenna of a radio receiver to be combined, said signals being the product of a multi-path effect, using an improved technique aiming to remove interference due to multi-path.
To this end, an aspect of the present invention in particular makes provision to introduce, into the method aiming in fine to combine FM radio signals produced by a multi-path effect, which signals are received by an antenna of a radio receiver, a temporal correlation between said received signals.
Thus, rather than considering the complex weights to be attributed to each of said signals received by said antenna as independent, an aspect of the present invention proposes a model that is adaptive from the temporal point of view in order to improve the performance of the radio receiver from the point of view of removal of interference due to multi-path.
The method for decreasing multi-path interference in an FM radio receiver, according to an aspect of the invention, thus incorporates a temporal correlation between the respective gains and phase shifts of the plurality of signals received by the antenna of a radio receiver, in order to decrease the degrees of freedom of the equation to be solved with the iterative algorithms implemented, which may be algorithms such as CMA algorithms.
In this way, said iterative algorithms implemented to determine the complex weights to be attributed to each of the received radio signals converge more rapidly and are more stable.
More precisely, one subject of an aspect of the present invention is a method for decreasing multi-path interference, for implementation thereof in a vehicle radio receiver, said radio receiver being intended to receive an emitted radio signal and comprising a radio reception antenna that receives a plurality of radio signals corresponding to said emitted radio signal, said plurality of signals received by said antenna being composed of time-shifted radio signals resulting from a multi-path effect, said plurality of radio signals being intended to be combined in order to deliver a combined radio signal zn to be played, with zn=Wn TYn at the time n, where Yn is a vector the components of which correspond to the plurality of received signals, expressed in complex baseband, and Wn is a vector the components of which correspond to complex weights intended to be attributed to each of the radio signals of said plurality of received radio signals, respectively, in order to form the combined radio signal zn in which a set of secondary radio signals resulting from the multi-path effect are canceled out, said method aiming to determine said complex components of said vector of complex weights and comprising the following steps:
    • introducing a temporal correlation between the real and imaginary parts of said complex weights, said correlation being dependent on the time shift between said signals of said plurality of received radio signals, by means of the expression of said complex weights in polar coordinates, so that
W n = [ g o exp ( j θ o ) g 1 exp ( j θ 1 ) g K - 1 exp ( j θ K - 1 ) ] ,
    •  so as to incorporate an interdependence between the real and imaginary parts of said complex weights, and
    • implementing an iterative adaptation algorithm in order to determine the g0, g1, . . . , gk-1 and θ0, θ1, . . . , θk-1 able to keep constant over time the modulus of zn.
By virtue of the method according to an aspect of the invention, the iterative algorithms implemented to determine the complex weights Wn converge more rapidly and have an improved stability, by virtue of the decrease in the degrees of freedom, which decrease is obtained by introducing a temporal correlation inducing an interdependence in the update of the coefficients of said complex weights.
Advantageously, said iterative adaptation algorithm is a constant-modulus adaptation algorithm.
According to one embodiment, the method according to an aspect of the invention comprises determining a constant R corresponding to the modulus of the envelope of the frequency-modulated radio signal emitted, the implementation of the iterative adaptation algorithm consisting in determining Gn, Θn, able to minimize over time the cost function characterized by the following instantaneous gradient:
J C M A = 2 ( z n 2 - R 2 ) [ 2 Re [ z n exp ( j Θ n ) ° Y n _ ] - 2 Im [ z n G n °exp ( j Θ n ) ° Y n _ ] ]
where Gn is a vector composed of the complex gains of each of the complex weights of the vector of complex weights at the time n, θn is the vector composed of the complex delays of each of the complex weights of the vector of complex weights at the time n and the operator “º” is defined as performing the multiplication of two vectors, component by component, the resultant being a vector.
According to one embodiment, the respective variations in Gn, Θn over time are computed by means of the following formulae:
G n + 1 = G n - μ g ( z n 2 - R 2 ) Re [ z n exp ( j Θ n ) ° Y n _ ] Θ n + 1 = Θ n + μ θ ( z n 2 - R 2 ) Im [ z n G n °exp ( j Θ n ) ° Y n _ ]
where Gn is a vector composed of the complex gains of each of the complex weights of the vector of complex weights at the time n, and Θn is the vector composed of the complex delays of each of the complex weights of the vector of complex weights at the time n.
An aspect of the present invention also relates to a radio receiver comprising a microcontroller configured to implement the method such as briefly described above.
An aspect of the present invention also relates to a motor vehicle comprising a radio receiver such as briefly described above.
BRIEF DESCRIPTION OF THE DRAWINGS
An aspect of the invention will be better understood on reading the following description, which is given solely by way of example, and with reference to the appended drawing which shows, in the FIGURE, a block diagram of a method for cancelling out multi-path radio signals.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The method for adapting an FM radio signal according to an aspect of the invention is presented with a view to an implementation, principally, in a radio receiver of a multimedia system on board a motor vehicle. However, an aspect of the present invention may be implemented in any other technical field, and in particular in any type of FM radio receiver.
An aspect of the present invention proposes to introduce an adaptive temporal model, in order to take into account the temporal correlation that exists, from the physical point of view, between the multi-path FM radio signals received by the antenna of the radio receiver in question.
It is known, in another technical field relative to radars, to use an adaptive temporal model to combine the signals received by a radar antenna. The techniques implemented in the field of radars are however not transposable as such to the field of FM radio reception.
The adaptive temporal model implemented in the world of radars is in fact based on the implementation of an impulse response filter able to apply, to the vector of received complex signals, a complex weight vector that is written:
W n = [ exp ( j 2 π F d 0 T ) exp ( j 2 π F d 1 T ) exp ( j 2 π F d ( K - 1 ) T ) ]
This model does not allow multi-path signals to be removed in the field of FM radio reception because each path followed by each of the time-shifted, received multi-path signals has, in the case of an FM radio signal, a specific gain that is dependent on the distance traveled by the radio wave, said distance not being a linear frequency-dependent function, contrary to the case of radar reception.
According to an aspect of the invention, the complex weights of the temporal adaptive model are thus stated in polar coordinates, so as to introduce, into the system, a strong temporal correlation between said complex weights, while taking into account the respective gain of each of the received multi-path signals. The vector of complex weights, which forms an adaptive filter to be applied to the received radio signal, is therefore written:
W n = [ g o exp ( j θ o ) g 1 exp ( j θ 1 ) g K - 1 exp ( j θ K - 1 ) ]
Hence, according to an aspect of the invention, an iterative algorithm is implemented to determine the values gk and θk able to minimize the following cost function:
J CMA =E{(|z n|2 −R 2)2}
where R is a constant to be determined, corresponding to the modulus of the envelope of the FM radio signal, for example able to be obtained by averaging the power of the combined received signal.
The computation of the instantaneous gradient of this cost function leads to:
J C M A = 2 ( z n 2 - R 2 ) z n 2 = 2 ( z n 2 - R 2 ) ( z n z _ n ) = 2 ( z n 2 - R 2 ) ( z n z _ n + z _ n z n )
Differently to the prior art, the model of the FM radio signals received is then written:
z n = W n T Y n = k = 0 K - 1 w ( k ) _ y ( n - k ) = k = 0 K - 1 g ( k ) exp ( j θ ( k ) ) _ y ( n - k )
where K is the number of complex weights, i.e. the number of coefficients of the adaptive filter to be applied to the received radio signal.
Therefore, writing the instantaneous gradient makes it possible to obtain:
z _ n = z _ n W n = [ exp ( j Θ n ) ° Y n _ j G n °exp ( j Θ n ) ° Y n _ ]
and
z n = z n W n = [ exp ( - j Θ n ) ° Y n - j G n °exp ( - j Θ n ) ° Y n ]
where Gn is a vector composed of the complex gains of each of the complex weights of the vector of complex weights at the time n, Θn is the vector composed of the complex delays of each of the complex weights of the vector of complex weights at the time n and the operator “º” is defined as performing the multiplication of two vectors, component by component, the resultant being a vector.
The following expression of the gradient of the cost function is obtained therefrom:
J C M A = 2 ( z n 2 - R 2 ) [ 2 Re [ z n exp ( j Θ n ) ° Y n _ ] - 2 Im [ z n G n °exp ( j Θ n ) ° Y n _ ] ]
The gains and phases of each of the complex weights to be determined are therefore updated over time by virtue of the following formulae:
{ G n + 1 = G n - μ g ( z n 2 - R 2 ) Re [ z n exp ( j Θ n ) ° Y n _ ] Θ n + 1 = Θ n + μ θ ( z n 2 - R 2 ) Im [ z n G n °exp ( j Θ n ) ° Y n _ ]
where μh and μθ are iterative steps chosen for the update of the gains and phases of each of the complex weights. It is known to those skilled in the art that the larger the size of the iterative steps p, the faster the algorithms converge, but with a lower precision. In contrast, for iterative steps p of small size, the convergence of the algorithms is slow, but with a higher precision. In practice, the final choice as to the value of the iterative steps p is often made in the field, empirically during campaigns of trials.
The strong interdependency between the real and imaginary parts of the complex weights to be determined will be evident from these formulae.
The implementation of iterative algorithms on these formulae, in particular CMA algorithms, with the constraint of minimizing the cost function described above, thus converges more efficiently than in the prior art. Specifically, the temporal correlation introduced above induces an interdependency in the update of the coefficients, decreasing the number of degrees of freedom, unlike CMA algorithms such as implemented in the prior art, with which the coefficients of the complex weights are independent linear cartesians.
By virtue of an aspect of the invention, the CMA algorithms converge to a smaller subset of solutions, said subset being included in the set of possible solutions of the CMA algorithms such as implemented in the prior art.
The implementation of the method according to an aspect of the invention, via an impulse response filter FIR, therefore allows secondary signals produced by the multi-path effect to be removed with a better stability than in the prior art.
It is furthermore specified that aspects of the present invention are not limited to the embodiment described above, making recourse to CMA algorithms, and has variants that will appear obvious to those skilled in the art. In particular, other types of iterative algorithms may indeed be implemented.

Claims (7)

The invention claimed is:
1. A method for decreasing multi-path interference, for implementation thereof in a vehicle radio receiver, said radio receiver being intended to receive an emitted radio signal and comprising a radio reception antenna that receives a plurality of radio signals corresponding to said emitted radio signal, said plurality of signals received by said antenna being composed of time-shifted radio signals resulting from a multi-path effect, said plurality of radio signals being intended to be combined in order to deliver a combined radio signal zn to be played, with zn=Wn TYn at the time n, where Yn is a vector the components of which correspond to the plurality of received signals, expressed in complex baseband, and Wn is a vector the components of which correspond to complex weights intended to be attributed to each of the radio signals of said plurality of received radio signals, respectively, in order to form the combined radio signal zn in which a set of secondary radio signals resulting from the multi-path effect are canceled out, said method aiming to determine said complex components of said vector of complex weights and comprising:
Introducing a temporal correlation between the real and imaginary parts of said complex weights, said correlation being dependent on the time shift between said signals of said plurality of received radio signals, by means of the expression of said complex weights in polar coordinates, so that
W n = [ g o exp ( j θ o ) g 1 exp ( j θ 1 ) g K - 1 exp ( j θ K - 1 ) ] ,
 so as to incorporate an interdependence between the real and imaginary parts of said complex weights, and
Implementing an iterative adaptation algorithm in order to determine the g0, g1, . . . , gk-1 and θ0, θ1, . . . , θk-1 able to keep constant over time the modulus of zn.
2. The method as claimed in claim 1, wherein said iterative adaptation algorithm is a constant-modulus adaptation algorithm.
3. The method as claimed in claim 2, comprising determining a constant R corresponding to the modulus of the envelope of the frequency-modulated radio signal emitted, the implementation of the iterative adaptation algorithm consisting in determining Gn, Θn able to minimize over time the cost function characterized by the following instantaneous gradient:
J C M A = 2 ( z n 2 - R 2 ) [ 2 Re [ z n exp ( j Θ n ) ° Y n _ ] - 2 Im [ z n G n °exp ( j Θ n ) ° Y n _ ] ]
where Gn is a vector composed of the complex gains of each of the complex weights of the vector of complex weights at the time n, Θn is the vector composed of the complex delays of each of the complex weights of the vector of complex weights of the time n and the operator “º” is defined as performing the multiplication of two vectors, component by component, the resultant being a vector.
4. The method as claimed in claim 1, comprising determining a constant R corresponding to the modulus of the envelope of the frequency-modulated radio signal emitted, the implementation of the iterative adaptation algorithm consisting in determining Gn, Θn able to minimize over time the cost function characterized by the following instantaneous gradient:
J C M A = 2 ( z n 2 - R 2 ) [ 2 Re [ z n exp ( j Θ n ) ° Y n _ ] - 2 Im [ z n G n °exp ( j Θ n ) ° Y n _ ] ]
where Gn is a vector composed of the complex gains of each of the complex weights of the vector of complex weights at the time n, Θn is the vector composed of the complex delays of each of the complex weights of the vector of complex weights of the time n and the operator “º” is defined as performing the multiplication of two vectors, component by component, the resultant being a vector.
5. The method as claimed in claim 4, wherein the respective variations in Gn and Θn over time are computed by means of the following formulae:
G n + 1 = G n - μ g ( z n 2 - R 2 ) Re [ z n exp ( j Θ n ) ° Y n _ ] Θ n + 1 = Θ n + μ θ ( z n 2 - R 2 ) Im [ z n G n °exp ( j Θ n ) ° Y n _ ]
where Gn is a vector composed of the complex gains of each of the complex weights of the vector of complex weights at the time n, and where Θn is the vector composed of the complex delays of each of the complex weights of the vector of complex weights at the time n, and where μg and μθ are the iterative steps chosen for the update of the gains and phases of each of the complex weights and where the operator “º” is defined as performing the multiplication of two vectors, component by component, the resultant being a vector.
6. A radio receiver comprising a microcontroller configured to implement the method as claimed in claim 1.
7. A motor vehicle comprising a radio receiver as claimed in claim 6.
US16/489,742 2017-06-01 2018-05-29 Method for cancelling multi-path signals for frequency-modulated radio signal receiver Active US10608683B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1754861 2017-06-01
FR1754861A FR3067186B1 (en) 2017-06-01 2017-06-01 METHOD FOR REMOVING MULTI-PATH SIGNALS FOR FREQUENCY MODULATED RADIO SIGNAL RECEIVER
PCT/FR2018/051241 WO2018220324A1 (en) 2017-06-01 2018-05-29 Method for cancelling multi-path signals for frequency-modulated radio signal receiver

Publications (2)

Publication Number Publication Date
US20200067550A1 US20200067550A1 (en) 2020-02-27
US10608683B2 true US10608683B2 (en) 2020-03-31

Family

ID=59521081

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/489,742 Active US10608683B2 (en) 2017-06-01 2018-05-29 Method for cancelling multi-path signals for frequency-modulated radio signal receiver

Country Status (4)

Country Link
US (1) US10608683B2 (en)
CN (1) CN110692201B (en)
FR (1) FR3067186B1 (en)
WO (1) WO2018220324A1 (en)

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853633B1 (en) * 2000-09-26 2005-02-08 Ericsson Inc. Methods of providing signal parameter information using delta-modulation and related systems and terminals
US20050031064A1 (en) * 2001-01-16 2005-02-10 Kolze Thomas J. System and method for canceling interference in a communication system
US20050239406A1 (en) * 1997-05-23 2005-10-27 Shattil Steve J Cancellation system for frequency reuse in microwave communications
US6961019B1 (en) * 2000-08-10 2005-11-01 Sirf Technology, Inc. Method and apparatus for reducing GPS receiver jamming during transmission in a wireless receiver
US20060126753A1 (en) * 2004-12-09 2006-06-15 Hye-Kyung Jwa Apparatus and method for detecting space-time multi-user signal of base station having array antenna
US7065162B1 (en) * 1999-04-16 2006-06-20 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same
US7127217B2 (en) * 2004-06-30 2006-10-24 Silicon Laboratories Inc. On-chip calibration signal generation for tunable filters for RF communications and associated methods
US20070030932A1 (en) 2005-08-05 2007-02-08 Freescale Semiconductor, Inc. Radio receiver with selectively disabled equalizer
US7319846B2 (en) * 2002-05-27 2008-01-15 Telafonaktiebolaget Lm Ericsson(Publ) Colored interference identification
US20080013617A1 (en) 2006-07-14 2008-01-17 Nec Electronics Corporation Adaptive equalizer with function of stopping adaptive equalization processing and receiver
US20080212722A1 (en) * 2003-09-10 2008-09-04 Nokia Corporation Method and apparatus providing an advanced mimo receiver that includes a signal-plus-residual interference (SPRI) detector
US20090061802A1 (en) 2007-09-03 2009-03-05 Tsuguhide Aoki Receiver having multipath equalizer
US20100189202A1 (en) * 2007-08-30 2010-07-29 Masataka Imao Radio signal demodulating device
US7899106B2 (en) * 2006-08-31 2011-03-01 Sony Ericsson Mobile Communications Ab Mitigating OFDM receiver interference caused by intermittent signal transmission
US20120134394A1 (en) * 2009-05-08 2012-05-31 Intersil Americas LLC Communicating with a self-clocking amplitude modulated signal
US8218422B2 (en) * 2008-06-03 2012-07-10 Nec Laboratories America, Inc. Coordinated linear beamforming in downlink multi-cell wireless networks
US8275324B2 (en) * 2001-11-02 2012-09-25 Qualcomm Incorporated Method and apparatus for predicting received signal strength in a communication system
US8634505B2 (en) * 2005-10-28 2014-01-21 Qualcomm Incorporated Method and apparatus for channel and noise estimation
US8649729B2 (en) * 2008-12-16 2014-02-11 Cobham Cts Limited System and method for providing broadband interference and allowing communication therethrough
US9184820B2 (en) * 1996-08-29 2015-11-10 Cisco Technology, Inc. Spatio-temporal processing for communication
US9246736B2 (en) * 1998-10-21 2016-01-26 Parkervision, Inc. Method and system for down-converting an electromagnetic signal
US9407303B2 (en) * 2012-03-14 2016-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Technique for generating a filter for data reception
US9432152B2 (en) * 1999-08-09 2016-08-30 Kamilo Feher Video multimode multimedia data communication systems
US10069712B2 (en) * 2015-09-17 2018-09-04 Zte Corporation Interference cancellation using non-linear filtering
US10243593B2 (en) * 2016-12-29 2019-03-26 Thales Method of combatting interference by spatial filtering or spatio-temporal filtering in a multi-channel receiver

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7076228B1 (en) * 1999-11-10 2006-07-11 Rilling Kenneth F Interference reduction for multiple signals
JP3714910B2 (en) * 2001-02-20 2005-11-09 株式会社エヌ・ティ・ティ・ドコモ Turbo receiving method and receiver thereof
US7127274B2 (en) * 2002-09-06 2006-10-24 Interdigital Ttechnology Corporation Method and system for reducing the effect of signal-interference in null areas caused by one or more antennas
US9160577B2 (en) * 2009-04-30 2015-10-13 Qualcomm Incorporated Hybrid SAIC receiver
CN101674112B (en) * 2009-09-29 2013-03-27 中兴通讯股份有限公司 Interference elimination receiver and method

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9184820B2 (en) * 1996-08-29 2015-11-10 Cisco Technology, Inc. Spatio-temporal processing for communication
US20050239406A1 (en) * 1997-05-23 2005-10-27 Shattil Steve J Cancellation system for frequency reuse in microwave communications
US9246736B2 (en) * 1998-10-21 2016-01-26 Parkervision, Inc. Method and system for down-converting an electromagnetic signal
US7065162B1 (en) * 1999-04-16 2006-06-20 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same
US9432152B2 (en) * 1999-08-09 2016-08-30 Kamilo Feher Video multimode multimedia data communication systems
US6961019B1 (en) * 2000-08-10 2005-11-01 Sirf Technology, Inc. Method and apparatus for reducing GPS receiver jamming during transmission in a wireless receiver
US6853633B1 (en) * 2000-09-26 2005-02-08 Ericsson Inc. Methods of providing signal parameter information using delta-modulation and related systems and terminals
US20050031064A1 (en) * 2001-01-16 2005-02-10 Kolze Thomas J. System and method for canceling interference in a communication system
US8275324B2 (en) * 2001-11-02 2012-09-25 Qualcomm Incorporated Method and apparatus for predicting received signal strength in a communication system
US7319846B2 (en) * 2002-05-27 2008-01-15 Telafonaktiebolaget Lm Ericsson(Publ) Colored interference identification
US20080212722A1 (en) * 2003-09-10 2008-09-04 Nokia Corporation Method and apparatus providing an advanced mimo receiver that includes a signal-plus-residual interference (SPRI) detector
US7127217B2 (en) * 2004-06-30 2006-10-24 Silicon Laboratories Inc. On-chip calibration signal generation for tunable filters for RF communications and associated methods
US20060126753A1 (en) * 2004-12-09 2006-06-15 Hye-Kyung Jwa Apparatus and method for detecting space-time multi-user signal of base station having array antenna
US20070030932A1 (en) 2005-08-05 2007-02-08 Freescale Semiconductor, Inc. Radio receiver with selectively disabled equalizer
US8634505B2 (en) * 2005-10-28 2014-01-21 Qualcomm Incorporated Method and apparatus for channel and noise estimation
US20080013617A1 (en) 2006-07-14 2008-01-17 Nec Electronics Corporation Adaptive equalizer with function of stopping adaptive equalization processing and receiver
US7899106B2 (en) * 2006-08-31 2011-03-01 Sony Ericsson Mobile Communications Ab Mitigating OFDM receiver interference caused by intermittent signal transmission
US20100189202A1 (en) * 2007-08-30 2010-07-29 Masataka Imao Radio signal demodulating device
US20090061802A1 (en) 2007-09-03 2009-03-05 Tsuguhide Aoki Receiver having multipath equalizer
US8218422B2 (en) * 2008-06-03 2012-07-10 Nec Laboratories America, Inc. Coordinated linear beamforming in downlink multi-cell wireless networks
US8649729B2 (en) * 2008-12-16 2014-02-11 Cobham Cts Limited System and method for providing broadband interference and allowing communication therethrough
US20120134394A1 (en) * 2009-05-08 2012-05-31 Intersil Americas LLC Communicating with a self-clocking amplitude modulated signal
US9407303B2 (en) * 2012-03-14 2016-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Technique for generating a filter for data reception
US10069712B2 (en) * 2015-09-17 2018-09-04 Zte Corporation Interference cancellation using non-linear filtering
US10243593B2 (en) * 2016-12-29 2019-03-26 Thales Method of combatting interference by spatial filtering or spatio-temporal filtering in a multi-channel receiver

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Biedka, T.E., et al., "Convergence Analysis of the Least Squares Constant Modulus Algorithm in Interference Cancellation Applications," Mar. 1, 2000, pp. 491-501, vol. 48(3), IEEE Transactions on Communications.
International Search Report and Written Opinion for International Application No. PCT/FR2018/051241, dated Jul. 25, 2018, 10 pages.

Also Published As

Publication number Publication date
CN110692201A (en) 2020-01-14
WO2018220324A1 (en) 2018-12-06
FR3067186A1 (en) 2018-12-07
US20200067550A1 (en) 2020-02-27
FR3067186B1 (en) 2019-06-21
CN110692201B (en) 2022-04-26

Similar Documents

Publication Publication Date Title
US10505620B2 (en) Receiving apparatus and receiving method, and program and recording medium
Colone et al. Space–time constant modulus algorithm for multipath removal on the reference signal exploited by passive bistatic radar
JP6314227B2 (en) Feedforward cancellation system and saturation exclusion method
EP0602615B1 (en) Sidelobe cancellation and diversity reception using a single array of auxiliary antennas
US9838100B2 (en) Beam forming with double-null-steering for in-band on-channel reception
US8022860B1 (en) Enchanced interference cancellation and telemetry reception in multipath environments with a single paraboic dish antenna using a focal plane array
US20170338900A1 (en) Receiver apparatus and reception method
US10608683B2 (en) Method for cancelling multi-path signals for frequency-modulated radio signal receiver
JP2001136115A (en) Method for eliminating sneak-path wave for antenna system for relay station
EP1198150B1 (en) Method of estimating a downlink channel
JP2008042663A (en) Wraparound canceler
US10608684B2 (en) Method for removing spatial and temporal multi-path interference for a receiver of frequency-modulated radio signals
US10567019B2 (en) Method for suppressing electromagnetic interference in an amplitude modulated radio signal, in particular received in an electric or hybrid vehicle
JP2007318349A (en) Fm receiver
KR102289882B1 (en) Method for improving position estimation performance by suppressing sidelobe clutter of random phase modulation signal and uwb radar system for preventing collision in multi-path envirionment
US20160036556A1 (en) Signal jamming suppression
JP2004350242A (en) Receiving apparatus
CN107204790B (en) Apparatus and method for providing background real-time second order input intercept point calibration
US10256927B2 (en) Method and device for determining power of at least one crosspolar interferer in frame
US9735949B2 (en) Receiving device and receiving method
JP4350020B2 (en) Receiver
Petri et al. The effects of DVB-T SFN data on passive radar signal processing
CN115616628B (en) GNSS antenna array receiver blind beam forming method based on angle tracking loop
US8467478B2 (en) Propagation channel estimation apparatus, receiver, and propagation channel estimation method
JP2007104570A (en) Sneak wave canceling method

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: CONTINENTAL AUTOMOTIVE FRANCE, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOULIER, GERALD;LIN, CHAO;REEL/FRAME:051218/0787

Effective date: 20191115

Owner name: CONTINENTAL AUTOMOTIVE GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOULIER, GERALD;LIN, CHAO;REEL/FRAME:051218/0787

Effective date: 20191115

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4