US10589331B2 - Method and device for separating wound tubes having welded parts - Google Patents

Method and device for separating wound tubes having welded parts Download PDF

Info

Publication number
US10589331B2
US10589331B2 US14/419,783 US201314419783A US10589331B2 US 10589331 B2 US10589331 B2 US 10589331B2 US 201314419783 A US201314419783 A US 201314419783A US 10589331 B2 US10589331 B2 US 10589331B2
Authority
US
United States
Prior art keywords
wound tube
windings
welding
laser beam
axial region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/419,783
Other versions
US20150217352A1 (en
Inventor
Torsten Kappenstein
Gerald Kolbe
Stefan Schnell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Witzenmann GmbH
Original Assignee
Witzenmann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Witzenmann GmbH filed Critical Witzenmann GmbH
Assigned to WITZENMANN GMBH reassignment WITZENMANN GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAPPENSTEIN, Torsten, KOLBE, GERALD, SCHNELL, STEFAN
Publication of US20150217352A1 publication Critical patent/US20150217352A1/en
Application granted granted Critical
Publication of US10589331B2 publication Critical patent/US10589331B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/12Making tubes or metal hoses with helically arranged seams
    • B21C37/122Making tubes or metal hoses with helically arranged seams with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/12Making tubes or metal hoses with helically arranged seams
    • B21C37/127Tube treating or manipulating combined with or specially adapted for use in connection with tube making machines, e.g. drawing-off devices, cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • B23K26/282Seam welding of curved planar seams of tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/027Making tubes with soldering or welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/14Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics
    • F16L11/16Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics wound from profiled strips or bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes

Definitions

  • the invention relates to a method and a device for separating wound tubes and/or cutting them to length.
  • Metal tubes are called wound tubes, which are formed by windings comprising a metal strip, which windings are connected to each other relatively loosely in a form-fitting fashion.
  • Typical forms of the connection are hooked profiles (so-called LIH-liners) and crimped profiles (Agrafe-profile, so-called LIS-liner).
  • Wound tubes with hooked profiles are characterized in a particularly high flexibility. Wound tubes with crimped profiles are relatively stiff overall. Based on the high flexibility particularly wound tubes with a hooked profile are hard to weld, because here no defined welding geometry develops.
  • a particularly preferred application of the above-mentioned wound tubes is the gas conduction in the exhaust field of passenger vehicles and utility vehicles. Additional applications are e.g., protective tubes for fiberglass, telephone lines, lines of measuring devices, or alarm systems.
  • wound tubes A particular problem is given in wound tubes in the fact that they may also unwind after being cut to length. Then their assembly is no longer possible or only possible with increased expenses, which is undesired in production.
  • the above-mentioned wound tubes are cut, e.g., using a melting cut-off saw, and subsequently the loose end is fixed via a manually placed welding spot.
  • This is work-intensive and accordingly costly and therefore less suitable for serial production.
  • particles are undesired when wound tubes are used in exhaust systems, here particles are undesired, which may however develop when cutting a wound tube with a mechanical saw.
  • Such particles or chips can destroy filters or other downstream arranged components, particularly components for cleaning exhaust gas. Therefore, increasingly laser cutting methods are used.
  • three axially off-set laser beams are used, guided circumferentially around the tube.
  • a first and a second beam each place a circumferential seam for fixing the material of the wound tube, with the two seams being arranged axially off-set in reference to each other.
  • the wound tube is severed between the two seams via a third laser beam.
  • the two seams are embodied in a relatively undefined fashion in case of wound tubes, because a wound tube exhibits, based on its general design as described above, only relatively little material and a relatively large clear space located therebetween.
  • the risk is given that during the attempt of forming a laser welding seam the wound tube is here rather severed than fixed.
  • the objective of the present invention is therefore to provide a method and a device for severing wound tubes which allow a clean and reliable cutting of wound tubes.
  • a method for severing a wound tube which comprises windings of a metal strip engaging each other, with the wound tube in a predetermined axial region being welded and then severed in a radial plane within a predetermined region, with the wound tube prior to the welding process being axially compressed in the predetermined region so that the windings come to rest on each other in said region, with then the welding being performed along a predetermined number of windings in the region.
  • the predetermined number is greater or equivalent 2, preferably the predetermined number is precisely 2.
  • the welding occurs advantageously as a preliminary adhesion via individual, spaced apart welding spots or as a continuous welding seam in or next to the fillet or groove formed by the windings.
  • severing process it is further advantageous for the severing process to occur with the use of a (second) laser beam.
  • a mechanical severing device may also be used instead of a second laser beam without here leaving the scope of the invention.
  • first laser beam and/or the second laser beam and/or the wound tube be automatically positioned in reference to each other, particularly with the use of a camera or another optic device.
  • first laser beam and/or the second laser beam to be automatically guided to the windings to be welded with the use of geometric information regarding the winding profile of the wound tube, such as its pitch or the like.
  • the wound tube may also be clamped at two edges of this region in order to compress it.
  • the invention also relates to a device for severing a wound tube, which comprises mutually engaging windings of a metal strip: first means, which are embodied to weld the wound tube in a predetermined axial region along a predetermined number of windings, and second means, which are embodied to sever the wound tube within the predetermined region in a radial plane, with furthermore third means being provided, which are embodied for the axial compression of the wound tube in a predetermined region, so that here the individual windings come to rest on each other.
  • first and the second means comprise laser devices.
  • a fourth means is provided, which is embodied to move the wound tube in reference to the first and/or the second means.
  • a fifth means is provided, which is embodied for positioning the first means and/or the second means in reference to the wound tube.
  • a cameras or the like and/or a touch sensor and/or additional means may be provided, and here the latter may be embodied for accessing an electronic database in order to determine known specification data of the wound tube.
  • additional means may be provided for clamping the wound tube at two ends, in order to compress it.
  • the invention also provides the advantage that at the final product in a simple, potentially automatic fashion a rectangular final severing surface is yielded in the sense of a high-quality cut without this resulting in any risk for the tube to unwind. Due to the potential automation here high production numbers can be yielded when using the present invention with correspondingly low clock times and costs.
  • FIG. 1 the use of the method according to the invention based on the example of a wound tube with a hooked profile (LIH-liner);
  • FIG. 2 the use of the method according to the invention based on the example of a wound tube with a crimped profile (Agrafe-profile, so-called LIS-liner).
  • FIG. 1 shows the use of the method according to the invention based on the example of a wound tube 1 , with its casing 3 being formed by a spirally wound metal strip 2 .
  • a single complete rotation of the metal strip 2 about the axis 4 of the wound tube 1 is called a winding.
  • FIG. 1 shows the windings 11 , 12 , 13 , 14 , and 15 .
  • the first winding 11 (virtually) begins at the point 7 and ends at the point 8 .
  • the second winding 12 begins at the point 8 and ends at the point 9 , etc.
  • the metal strip 2 and/or the windings define a fillet 5 (in the present case also called groove), which also extends spirally on and/or in the casing 3 .
  • connection of the metal strip 2 at its edges is realized by a loose interlocking of the neighboring windings with each other (so-called LIH-liner). Due to the fact that the connection is relatively loosely, the groove 5 is variable in its width over the casing 2 .
  • the wound tube 1 For severing the wound tube 1 to a desired length, according to the invention the wound tube 1 is clamped at both sides of the axial point 6 at which the severing shall occur. Then the axial region 10 between the points, at which the wound tube 1 is clamped, is impinged with an axially acting force F and compressed “to block” so that in this region 10 a defined contacting of the individual windings 11 , 12 , 13 , 14 with each other occurs, resulting in the helically extending groove 5 to be minimal and constant with regards to its width and subsequently it can be easily welded with good quality.
  • a welding laser is appropriately positioned for the welding process, namely manually or preferably automatically, for example with the use of a camera or the like. Then, following the pitch of the helical groove 5 in the compressed region 10 of the wound tube 1 , the laser follows this path and here welds it (temporarily). Here a relative motion occurs between the wound tube and the laser. Thus, either the tube can be moved in reference to the stationary laser or the laser can be moved in reference to the stationary wound tube. Of course, both the laser as well as the wound tube 1 may be moved.
  • the welding of the two windings 11 , 12 is advantageously performed via two laser beams, arranged axially off-set in reference to each other, so that every laser beam only travels on the length of one winding 11 and/or 12 and welds, which speeds up the processing.
  • the wound tube 1 is severed at the predetermined point in the radial plane extending through the center 6 (thus perpendicular in reference to the casing 3 and also perpendicular in reference to the axis 4 of the wound tube 1 ).
  • the severing occurs advantageously via a laser.
  • a second laser beam is used for this purpose.
  • the scope of the invention also includes using the very same laser or laser beam (with an appropriate adjustment of the power) first for welding together the windings and subsequently for severing the tube.
  • this may be embodied as a punctual connection, as already mentioned, or also as a continuous welding seam.
  • FIG. 2 shows the use of the method according to the invention based on the example of a winding tube 1 with a crimped profile (Agrafe-profile, so-called US-liner).
  • the method is similar to the one described in connection with FIG. 1 , with the difference here being the fact that the welding variant “next to the flute” was used.
  • the device according to the invention for severing a wound tube according to the method described here is equipped as follows.
  • Means are provided for welding the wound tube in a predetermined axial region along a predetermined number of windings.
  • These means include preferably two lasers. These lasers are arranged axially off set from each other (in reference to the wound tube to be severed), namely by the difference of one convolution of one winding of the wound tube 1 to be severed.
  • the scope of the invention also includes using only one laser, which then welds successively preferably two windings of the wound tube 1 to each other, after they had been compressed to block.
  • means are provided for severing the wound tube within the predetermined region in a radial plane.
  • These means include another laser device, which may represent the same laser device which was used for welding the windings.
  • clamping means are provided for the axial compression of the wound tube in the above-mentioned region, which engage this wound tube and compress it “to block” such that in this region the individual windings come to contact each other.
  • means are provided for moving the wound tube in reference to the welding means.
  • these means may also be embodied such that they move the welding means in reference to the wound tube.
  • the means may comprise one or more cameras or the like, which provide images of the wound tube to an evaluation and control unit, which controls and monitors the function of the entire equipment.
  • the cameras may support the guidance of the welding means along the groove to be welded. From the images of the camera then information is determined regarding the progression of the groove on the circumference of the wound tube. If necessary, information may also be determined regarding the type of connection, thus the winding profile.
  • tactile sensors may also be provided by which the progression of the groove is scanned. These sensors may also forward the determined data to the evaluation and control unit.
  • the information regarding the type and progression of the groove may be obtained by accessing an electronically saved data collection which includes the specifications of the wound tube to be severed.
  • This data collection may be provided in the form of a database, for example provided by the manufacturer of the wound tube and accessed by the evaluation and control unit. Then the control of the welding means can occur in a purely calculated fashion, thus without any optic or mechanical scanning of the actual wound tube to be severed.
  • the entire device acts in the manner described in connection with FIGS. 1 and 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)

Abstract

A method and a device for separating a wound tube (1) which includes interlocking windings (11, 12, 13, 14) of a metal strip (2) are provided, the wound tube (1) is welded in a predetermined axial region (10) and is then severed within the region (10) in a radial plane (6). The method furthermore defines that the wound tube (1) is axially compressed in the predetermined region prior to welding, such that the windings (11, 12, 13, 14) bear against one another in the region (10), and the welding is carried out along a predetermined number of turns (11, 12) in the region (10).

Description

BACKGROUND
The invention relates to a method and a device for separating wound tubes and/or cutting them to length.
Metal tubes are called wound tubes, which are formed by windings comprising a metal strip, which windings are connected to each other relatively loosely in a form-fitting fashion. Typical forms of the connection are hooked profiles (so-called LIH-liners) and crimped profiles (Agrafe-profile, so-called LIS-liner).
Wound tubes with hooked profiles are characterized in a particularly high flexibility. Wound tubes with crimped profiles are relatively stiff overall. Based on the high flexibility particularly wound tubes with a hooked profile are hard to weld, because here no defined welding geometry develops.
A particularly preferred application of the above-mentioned wound tubes is the gas conduction in the exhaust field of passenger vehicles and utility vehicles. Additional applications are e.g., protective tubes for fiberglass, telephone lines, lines of measuring devices, or alarm systems.
A particular problem is given in wound tubes in the fact that they may also unwind after being cut to length. Then their assembly is no longer possible or only possible with increased expenses, which is undesired in production.
According to prior art, the above-mentioned wound tubes are cut, e.g., using a melting cut-off saw, and subsequently the loose end is fixed via a manually placed welding spot. This is work-intensive and accordingly costly and therefore less suitable for serial production. In addition, there is the fact that particles are undesired when wound tubes are used in exhaust systems, here particles are undesired, which may however develop when cutting a wound tube with a mechanical saw. Such particles or chips can destroy filters or other downstream arranged components, particularly components for cleaning exhaust gas. Therefore, increasingly laser cutting methods are used.
For this purpose, three axially off-set laser beams are used, guided circumferentially around the tube. A first and a second beam each place a circumferential seam for fixing the material of the wound tube, with the two seams being arranged axially off-set in reference to each other.
Subsequently, the wound tube is severed between the two seams via a third laser beam. Here it has proven disadvantageous that the two seams are embodied in a relatively undefined fashion in case of wound tubes, because a wound tube exhibits, based on its general design as described above, only relatively little material and a relatively large clear space located therebetween. Here the risk is given that during the attempt of forming a laser welding seam the wound tube is here rather severed than fixed.
Additionally, in the above-mentioned method relatively large tolerances develop due to the inherent mobility of the wound tube. In the past, this has resulted in the fact that during the actual severing process via the third laser beam the previously generated seams themselves were damaged as well. Here, repeatedly an unwinding of the wound tube occurs so that the assembly is at least aggravated.
SUMMARY
The objective of the present invention is therefore to provide a method and a device for severing wound tubes which allow a clean and reliable cutting of wound tubes.
The objective is attained in a method and a device according to the invention. Additional further developments of the invention are defined in the dependent claims.
Thus, a method is provided according to the invention for severing a wound tube, which comprises windings of a metal strip engaging each other, with the wound tube in a predetermined axial region being welded and then severed in a radial plane within a predetermined region, with the wound tube prior to the welding process being axially compressed in the predetermined region so that the windings come to rest on each other in said region, with then the welding being performed along a predetermined number of windings in the region.
By the winding tube, prior to welding, initially being compressed in the region in which it shall be severed, and then being welded along the windings, here clean cutting areas develop during the severing process and any unwinding of the tube is securely prevented. Due to the fact that the welding along the windings (preferably along a fillet or groove between the windings) rather than perpendicular in reference to the axis of the wound tube, this fillet or groove shows here a constantly narrow width, which increases the precision of this cut-off process.
Advantageously the predetermined number is greater or equivalent 2, preferably the predetermined number is precisely 2.
The welding occurs advantageously as a preliminary adhesion via individual, spaced apart welding spots or as a continuous welding seam in or next to the fillet or groove formed by the windings.
Further advantageously, the welding process occurs with the use of a laser beam.
It is further advantageous for the severing process to occur with the use of a (second) laser beam. Alternatively, however in all cases, including the following one, a mechanical severing device may also be used instead of a second laser beam without here leaving the scope of the invention.
The wound tube may be moved in reference to the first laser beam and/or the second laser beam.
However, the first laser beam and/or the second laser beam may also be moved in reference to the wound tube.
It is advantageous for the first laser beam and/or the second laser beam and/or the wound tube to be automatically positioned in reference to each other, particularly with the use of a camera or another optic device.
It is further advantageous for the first laser beam and/or the second laser beam to be automatically guided to the windings to be welded with the use of geometric information regarding the winding profile of the wound tube, such as its pitch or the like.
For this purpose, the above-mentioned information can be determined with the use of a camera or another optic device and/or a touch sensor and/or from known specification data of the wound tube.
The wound tube may also be clamped at two edges of this region in order to compress it.
The invention also relates to a device for severing a wound tube, which comprises mutually engaging windings of a metal strip: first means, which are embodied to weld the wound tube in a predetermined axial region along a predetermined number of windings, and second means, which are embodied to sever the wound tube within the predetermined region in a radial plane, with furthermore third means being provided, which are embodied for the axial compression of the wound tube in a predetermined region, so that here the individual windings come to rest on each other.
It is advantageous for the first and the second means to comprise laser devices.
It is further advantageous for a fourth means to be provided, which is embodied to move the wound tube in reference to the first and/or the second means.
The fourth means can also be embodied for moving the first and/or the second means in reference to the wound tube, though.
It is further advantageous that initially a fifth means is provided, which is embodied for positioning the first means and/or the second means in reference to the wound tube.
The fifth means may particularly be embodied to guide the first means following along the windings to be welded, using information regarding the winding profile of the wound tube.
In order to determine geometric information regarding the wound tube a cameras or the like and/or a touch sensor and/or additional means may be provided, and here the latter may be embodied for accessing an electronic database in order to determine known specification data of the wound tube.
Further advantageously additional means may be provided for clamping the wound tube at two ends, in order to compress it.
The invention also provides the advantage that at the final product in a simple, potentially automatic fashion a rectangular final severing surface is yielded in the sense of a high-quality cut without this resulting in any risk for the tube to unwind. Due to the potential automation here high production numbers can be yielded when using the present invention with correspondingly low clock times and costs.
In general, laser-based severing methods can be used for the severing as well as mechanical methods (e.g., sawing). The severing via laser beams is advantageous in that here no residual particles develop and the cutting surface is clean over its entire length.
BRIEF DESCRIPTION OF THE DRAWINGS
Additional features and advantages of the present invention are discernible from the following description of exemplary embodiments based on the drawing; shown are:
FIG. 1 the use of the method according to the invention based on the example of a wound tube with a hooked profile (LIH-liner); and
FIG. 2 the use of the method according to the invention based on the example of a wound tube with a crimped profile (Agrafe-profile, so-called LIS-liner).
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 shows the use of the method according to the invention based on the example of a wound tube 1, with its casing 3 being formed by a spirally wound metal strip 2. In the following, a single complete rotation of the metal strip 2 about the axis 4 of the wound tube 1 is called a winding. FIG. 1 shows the windings 11, 12, 13, 14, and 15. Here, the first winding 11 (virtually) begins at the point 7 and ends at the point 8. The second winding 12 begins at the point 8 and ends at the point 9, etc. The metal strip 2 and/or the windings define a fillet 5 (in the present case also called groove), which also extends spirally on and/or in the casing 3. The connection of the metal strip 2 at its edges is realized by a loose interlocking of the neighboring windings with each other (so-called LIH-liner). Due to the fact that the connection is relatively loosely, the groove 5 is variable in its width over the casing 2.
For severing the wound tube 1 to a desired length, according to the invention the wound tube 1 is clamped at both sides of the axial point 6 at which the severing shall occur. Then the axial region 10 between the points, at which the wound tube 1 is clamped, is impinged with an axially acting force F and compressed “to block” so that in this region 10 a defined contacting of the individual windings 11, 12, 13, 14 with each other occurs, resulting in the helically extending groove 5 to be minimal and constant with regards to its width and subsequently it can be easily welded with good quality.
A welding laser is appropriately positioned for the welding process, namely manually or preferably automatically, for example with the use of a camera or the like. Then, following the pitch of the helical groove 5 in the compressed region 10 of the wound tube 1, the laser follows this path and here welds it (temporarily). Here a relative motion occurs between the wound tube and the laser. Thus, either the tube can be moved in reference to the stationary laser or the laser can be moved in reference to the stationary wound tube. Of course, both the laser as well as the wound tube 1 may be moved.
Due to the fact that the tubular geometry is known, a theoretic angle of the pitch can be assumed for the relative motion of the wound tube and the laser and considered by the control technology. The data of the wound tube 1 can respectively be obtained from an electronically saved database. It is also possible to detect the progression of the groove 5 via a camera or the like, optically or via tactile sensors, in order to ensure that the welding seam precisely develops in the groove (“in the fillet”), as shown in FIG. 1.
It has shown particularly beneficial and sufficient to weld the groove 5 over two windings 11, 12, and to sever the wound tube 1 in the middle 6 of the two windings 11, 12 (in reference to the axial direction). Then a sufficiently long region 10 develops with a precisely defined and homogenous groove 5, and a clean subsequent severing is possible without any projecting ends. At both ends of the severing line securely fixed tubular ends remain, which cannot unwind.
The welding of the two windings 11, 12 is advantageously performed via two laser beams, arranged axially off-set in reference to each other, so that every laser beam only travels on the length of one winding 11 and/or 12 and welds, which speeds up the processing.
Based on the compression of the wound tube 1 that has occurred, it results that relatively much material is available for the welding process in the groove 5 in the region 10. This relates particularly to the hooked profile; the crimped profile (Agrafe profile) cannot be completely nested, for geometric reasons. However, the above-mentioned effect still develops here, as well.
Finally, the wound tube 1 is severed at the predetermined point in the radial plane extending through the center 6 (thus perpendicular in reference to the casing 3 and also perpendicular in reference to the axis 4 of the wound tube 1). The severing occurs advantageously via a laser. Advantageously a second laser beam is used for this purpose. However, the scope of the invention also includes using the very same laser or laser beam (with an appropriate adjustment of the power) first for welding together the windings and subsequently for severing the tube.
With regards to the type of welding seam, this may be embodied as a punctual connection, as already mentioned, or also as a continuous welding seam.
FIG. 2 shows the use of the method according to the invention based on the example of a winding tube 1 with a crimped profile (Agrafe-profile, so-called US-liner). The method is similar to the one described in connection with FIG. 1, with the difference here being the fact that the welding variant “next to the flute” was used.
The device according to the invention for severing a wound tube according to the method described here is equipped as follows. Means are provided for welding the wound tube in a predetermined axial region along a predetermined number of windings. These means include preferably two lasers. These lasers are arranged axially off set from each other (in reference to the wound tube to be severed), namely by the difference of one convolution of one winding of the wound tube 1 to be severed. However the scope of the invention also includes using only one laser, which then welds successively preferably two windings of the wound tube 1 to each other, after they had been compressed to block.
Further, means are provided for severing the wound tube within the predetermined region in a radial plane. These means include another laser device, which may represent the same laser device which was used for welding the windings. Here, clamping means are provided for the axial compression of the wound tube in the above-mentioned region, which engage this wound tube and compress it “to block” such that in this region the individual windings come to contact each other.
Furthermore, means are provided for moving the wound tube in reference to the welding means. Alternatively these means may also be embodied such that they move the welding means in reference to the wound tube.
Furthermore, other means are provided which are embodied for positioning the welding means in reference to the wound tube. These means serve to find the starting position on the wound tube, from which point on the welding of the groove is being performed. The means may comprise one or more cameras or the like, which provide images of the wound tube to an evaluation and control unit, which controls and monitors the function of the entire equipment.
The cameras may support the guidance of the welding means along the groove to be welded. From the images of the camera then information is determined regarding the progression of the groove on the circumference of the wound tube. If necessary, information may also be determined regarding the type of connection, thus the winding profile.
Alternatively or additionally, here tactile sensors may also be provided by which the progression of the groove is scanned. These sensors may also forward the determined data to the evaluation and control unit.
Also alternatively or additionally, the information regarding the type and progression of the groove may be obtained by accessing an electronically saved data collection which includes the specifications of the wound tube to be severed. This data collection may be provided in the form of a database, for example provided by the manufacturer of the wound tube and accessed by the evaluation and control unit. Then the control of the welding means can occur in a purely calculated fashion, thus without any optic or mechanical scanning of the actual wound tube to be severed. The entire device acts in the manner described in connection with FIGS. 1 and 2.
LIST OF REFERENCE CHARACTERS
  • 1 Wound tube
  • 2 Metal strip
  • 3 Casing
  • 4 Axis of the wound tube
  • 5 Fillet, groove
  • 6 Center of the region, severing site, radial plane
  • 7 Point (start/end of the winding)
  • 8 Point (start/end of the winding)
  • 9 Point (start/end of the winding)
  • 10 Axial region of the wound tube
  • 11 Winding
  • 12 Winding
  • 13 Winding
  • 14 Winding
  • F Force

Claims (14)

The invention claimed is:
1. A method for severing a wound tube (1) comprising mutually engaging windings (11, 12, 13, 14) of a metal strip (2), axially compressing the wound tube (1) to be welded in a defined axial region (10) prior to welding, welding the wound tube in the defined axial region that is axially compressed, and then severing the wound tube within the defined axial region (10) in a radial plane (6), wherein the wound tube (1) is axially compressed in the defined axial region prior to welding so that in the defined axial region (10) a contacting of the windings (11, 12, 13, 14) with each other occurs, and the welding is performed along a defined number of the windings (11, 12) in the defined axial region (10).
2. The method according to claim 1, wherein the defined number is greater than or equal to 2.
3. The method according to claim 1, wherein the welding occurs as a temporary connection or as a continuous welding seam next to a groove or fillet (5) formed in an area of the windings (11, 12, 13, 14).
4. The method according to claim 1, wherein the welding is performed with the use of a first laser beam.
5. The method according to claim 4, wherein the severing is performed with the use of a second laser beam or via a mechanical cutter.
6. The method according to claim 5, further comprising moving the wound tube (1) in reference to at least one of the first laser beam or the second laser beam.
7. The method according to claim 5, further comprising moving at least one of the first laser beam or the second laser beam in reference to the wound tube (1).
8. The method according to claim 5, further comprising positioning at least one of the first laser beam or the second laser beam or the wound tube (1) automatically in reference to each other, using an optic device.
9. The method according to claim 5, further comprising at least one of the first laser beam or the second laser beam automatically follows the windings (11, 12) to be welded using geometric information concerning a winding profile of the wound tube (1).
10. The method according to claim 9, further comprising determining the geometric information using at least one of a camera, a touch sensor, or based on specification data of the wound tube (1).
11. The method according to claim 1, further comprising clamping the wound tube at two edges of the predetermined axial region (10) in order to be compressed.
12. A wound tube (1) produced according to the method of claim 1.
13. A device for severing a wound tube (1), comprising mutually engaging windings (11, 12, 13, 14) of a metal strip (2), including:
a laser welder configured to weld the wound tube (1) in a defined axial region (10) along a defined number of the windings (11, 12) and
a laser or mechanical cutter that is adapted to sever the wound tube (1) within the defined axial region (10) in a radial plane (6),
a clamp that is adapted to axially compress the wound tube (1) in the defined axial region (10) such that the windings (11, 12, 13, 14) come to contact each other in the region (10).
14. The device according to claim 13, further comprising at least one of a sensor or camera that guides the welding laser to follow in reference to the wound tube (1).
US14/419,783 2012-08-08 2013-06-07 Method and device for separating wound tubes having welded parts Active 2036-08-31 US10589331B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102012214044 2012-08-08
DE102012214044.1A DE102012214044A1 (en) 2012-08-08 2012-08-08 Method and device for separating winding tubes
DE102012214044.1 2012-08-08
PCT/EP2013/061821 WO2014023452A1 (en) 2012-08-08 2013-06-07 Method and device for separating wound tubes having welded parts

Publications (2)

Publication Number Publication Date
US20150217352A1 US20150217352A1 (en) 2015-08-06
US10589331B2 true US10589331B2 (en) 2020-03-17

Family

ID=48607247

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/419,783 Active 2036-08-31 US10589331B2 (en) 2012-08-08 2013-06-07 Method and device for separating wound tubes having welded parts

Country Status (5)

Country Link
US (1) US10589331B2 (en)
EP (1) EP2882565B1 (en)
CN (1) CN104520058B (en)
DE (1) DE102012214044A1 (en)
WO (1) WO2014023452A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013105678B4 (en) 2013-06-03 2023-07-27 Witzenmann Gmbh Process for separating coiled hoses
DE102013107540A1 (en) 2013-07-16 2015-01-22 Witzenmann Gmbh Winding hose with molded end sleeves
US9989255B2 (en) * 2014-07-25 2018-06-05 General Electric Company Liner assembly and method of turbulator fabrication
DE102019102404B4 (en) * 2019-01-28 2020-08-20 Boekels Maschinenbau GmbH Device for cutting a hose provided with a reinforcing element
DE102021123277A1 (en) 2021-09-08 2023-03-09 Witzenmann Gmbh Winding hose and device and method for producing a winding hose
DE102022131375A1 (en) 2022-11-28 2024-05-29 Witzenmann Gmbh Wound hose made of a profiled metal strip and method for modifying such a

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3073944A (en) * 1961-03-28 1963-01-15 American Mach & Foundry Helically formed tubing welding and cutting same into sections
US4570055A (en) * 1984-05-07 1986-02-11 Raychem Corporation Electrically heat-recoverable assembly
US4840303A (en) * 1986-02-28 1989-06-20 Kawasaki Steel Corporation Method and apparatus for cutting and welding steel strips
US5226596A (en) * 1991-02-19 1993-07-13 Mold-Masters Kabushiki Kaisha Heated nozzle for plastic injection and manufacturing method therefor
DE19851173C1 (en) 1998-11-06 2000-05-04 Iwk Regler Kompensatoren Manufacturing connection ends at metal tube part, fixing overlapping metal layers of tube pieces through laser welding before separating
US6125889A (en) * 1998-05-09 2000-10-03 Witzenmann Gmbh, Metallschlauch-Fabrik Pforzheim Flexible conveying element
US6508277B1 (en) * 1999-07-27 2003-01-21 Donaldson Company, Inc. Flexible pipe with compressed ends
EP1703187A1 (en) 2005-03-18 2006-09-20 Max Streicher GmbH & Co. Kommanditgesellschaft auf Aktien Device for axial alignment of pipe sections
US7111770B2 (en) * 2003-09-12 2006-09-26 Iwka Balg- U. Kompensatoren-Technologie Gmbh Method for producing connecting ends on metal tubes and tube piece comprising such connecting ends
DE202006003138U1 (en) 2006-02-24 2006-11-09 Simona Ag Welding equipment for joining plastic pipe sections comprises a pipe clamping unit connected to a housing with control system, pipe end planer, pipe end face heater and hydraulic system for pressing together heated pipe ends
US7248940B2 (en) * 2001-06-01 2007-07-24 Thyssen Laser-Technik Gmbh Method and device for the robot-controlled cutting of workpieces to be assembled by means of laser radiation
US20080012297A1 (en) * 2003-02-19 2008-01-17 Witzenmann Gmbh Flexible pipe element
EP2062689A1 (en) 2007-11-22 2009-05-27 Karl Hamacher Vertriebs GmbH Pipe connection device
US20100206850A1 (en) * 2007-06-26 2010-08-19 V & M Deutschland Gmbh Method and device for connecting thick-walled metal workpieces by welding
US20120103051A1 (en) * 2010-10-29 2012-05-03 Sjm Co. Ltd. Method For Manufacturing A Flexible Piping Device For An Exhaust Gas System Of A Motor Vehicle
US20120264596A1 (en) * 2011-04-13 2012-10-18 Ibiden Co., Ltd. Honeycomb structure and method of manufacturing honeycomb structure
US10016847B2 (en) * 2013-06-03 2018-07-10 Witzenmann Gmbh Method and device for cutting wound hoses

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100364A (en) * 1993-09-17 1995-03-22 Kmk卡尔马格勒利森茨股份公司 Method for joining the overlapping edges of a multi-layer foil and a tube produced by the use of the method
DE4439218A1 (en) * 1994-11-03 1996-05-09 Witzenmann Metallschlauchfab Connection end of a line element
CN102059455B (en) * 2011-01-31 2013-04-10 哈尔滨工业大学 Laser double-side synchronous welding system with skin-skeleton structure

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3073944A (en) * 1961-03-28 1963-01-15 American Mach & Foundry Helically formed tubing welding and cutting same into sections
US4570055A (en) * 1984-05-07 1986-02-11 Raychem Corporation Electrically heat-recoverable assembly
US4840303A (en) * 1986-02-28 1989-06-20 Kawasaki Steel Corporation Method and apparatus for cutting and welding steel strips
US5226596A (en) * 1991-02-19 1993-07-13 Mold-Masters Kabushiki Kaisha Heated nozzle for plastic injection and manufacturing method therefor
US6125889A (en) * 1998-05-09 2000-10-03 Witzenmann Gmbh, Metallschlauch-Fabrik Pforzheim Flexible conveying element
DE19851173C1 (en) 1998-11-06 2000-05-04 Iwk Regler Kompensatoren Manufacturing connection ends at metal tube part, fixing overlapping metal layers of tube pieces through laser welding before separating
US6380509B1 (en) * 1998-11-06 2002-04-30 Iwka Balg- Und Kompensatorentechnologie Gmbh Method and device for the manufacture of connection ends on metal hoses
US6508277B1 (en) * 1999-07-27 2003-01-21 Donaldson Company, Inc. Flexible pipe with compressed ends
US7248940B2 (en) * 2001-06-01 2007-07-24 Thyssen Laser-Technik Gmbh Method and device for the robot-controlled cutting of workpieces to be assembled by means of laser radiation
US20080012297A1 (en) * 2003-02-19 2008-01-17 Witzenmann Gmbh Flexible pipe element
US7111770B2 (en) * 2003-09-12 2006-09-26 Iwka Balg- U. Kompensatoren-Technologie Gmbh Method for producing connecting ends on metal tubes and tube piece comprising such connecting ends
EP1703187A1 (en) 2005-03-18 2006-09-20 Max Streicher GmbH & Co. Kommanditgesellschaft auf Aktien Device for axial alignment of pipe sections
DE202006003138U1 (en) 2006-02-24 2006-11-09 Simona Ag Welding equipment for joining plastic pipe sections comprises a pipe clamping unit connected to a housing with control system, pipe end planer, pipe end face heater and hydraulic system for pressing together heated pipe ends
US20100206850A1 (en) * 2007-06-26 2010-08-19 V & M Deutschland Gmbh Method and device for connecting thick-walled metal workpieces by welding
EP2062689A1 (en) 2007-11-22 2009-05-27 Karl Hamacher Vertriebs GmbH Pipe connection device
US20120103051A1 (en) * 2010-10-29 2012-05-03 Sjm Co. Ltd. Method For Manufacturing A Flexible Piping Device For An Exhaust Gas System Of A Motor Vehicle
US20120264596A1 (en) * 2011-04-13 2012-10-18 Ibiden Co., Ltd. Honeycomb structure and method of manufacturing honeycomb structure
US10016847B2 (en) * 2013-06-03 2018-07-10 Witzenmann Gmbh Method and device for cutting wound hoses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Translation EP 0674964 (Year: 2019). *

Also Published As

Publication number Publication date
US20150217352A1 (en) 2015-08-06
CN104520058A (en) 2015-04-15
WO2014023452A1 (en) 2014-02-13
DE102012214044A1 (en) 2014-05-22
CN104520058B (en) 2017-07-25
EP2882565B1 (en) 2017-03-22
EP2882565A1 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
US10589331B2 (en) Method and device for separating wound tubes having welded parts
US10016847B2 (en) Method and device for cutting wound hoses
EP2470324B1 (en) Device and method for automatic multiple-bead welding
CN1042706C (en) Dual bias weld for continuous coiled tubing
CN101927395B (en) Weld joint tracking detection equipment and method
JP5649015B1 (en) Laser welding apparatus and laser welding method
WO2010144594A1 (en) Weld defect detection systems and methods for laser hybrid welding
EP3090830B1 (en) Laser welding method
US7753083B2 (en) Method for producing connecting ends on metal hoses and hose piece comprising such connecting ends
JPWO2014188468A1 (en) Bending press apparatus, bending press method, steel pipe manufacturing apparatus, and steel pipe manufacturing method
US9441487B2 (en) Method for welding rotors for power generation
KR200475230Y1 (en) Auto welding apparatus including weding assistance part
US3731041A (en) Method and apparatus for making a tube from a metal strip
KR101360562B1 (en) Welding apparatus and operating method thereof
Mombo-Caristan et al. Seam geometry monitoring for tailored welded blanks
WO2020165916A1 (en) Methods and systems for repairing crossings of railway tracks
JPH10296490A (en) Automatic butt welding method
RU2611462C1 (en) Pipe manufacturing processes on continuous tube-welding units
JP2804399B2 (en) Spiral steel pipe inner surface welding method and equipment
US20190300220A1 (en) Method and apparatus for releasing a binding element in the form of a metallic strap from a sheet metal roll
CN110494247B (en) Method for producing solder ring
JPH1024366A (en) Circumferential welding method
JP2010036192A (en) Bead cutting method and apparatus of resistance welded tube
CN1389324A (en) Method for forming welding joint
SU1136911A1 (en) Method of arc welding of pipe butt joints by fusion

Legal Events

Date Code Title Description
AS Assignment

Owner name: WITZENMANN GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAPPENSTEIN, TORSTEN;KOLBE, GERALD;SCHNELL, STEFAN;SIGNING DATES FROM 20150114 TO 20150115;REEL/FRAME:034897/0811

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4