US10401094B2 - Brazed plate heat exchanger for water-cooled heat rejection in a refrigeration cycle - Google Patents
Brazed plate heat exchanger for water-cooled heat rejection in a refrigeration cycle Download PDFInfo
- Publication number
- US10401094B2 US10401094B2 US13/984,174 US201213984174A US10401094B2 US 10401094 B2 US10401094 B2 US 10401094B2 US 201213984174 A US201213984174 A US 201213984174A US 10401094 B2 US10401094 B2 US 10401094B2
- Authority
- US
- United States
- Prior art keywords
- cooled
- fluid
- heat exchanger
- water
- low temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/12—Elements constructed in the shape of a hollow panel, e.g. with channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/39—Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0043—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
- F28D9/005—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/082—Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
- F28F21/083—Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
-
- F25B2341/0662—
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
- F28D2021/0073—Gas coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/04—Fastening; Joining by brazing
Definitions
- the subject matter disclosed herein relates to a brazed plate water-cooled gas cooler/condenser.
- CRUs container refrigeration units
- the currently known water-cooled heat rejection heat exchanger design is the shell-and-tube type, with the water on the tube side, and the refrigerant on the shell side.
- the heat exchanger shell for these units is typically made of carbon steel to contain refrigerant and cupronickel tubes to contain water. Cupronickel is chosen for its excellent resistance to corrosion when exposed to sea water, as sea water in the past has been used as the water source. It has to be understood, that although this configuration is preferred for a number of reasons, refrigerant can be flown inside the tubes and water contained on the shell side. Also, other liquid coolants, such as glycol solutions, can be utilized in place of water.
- the population of CRUs made with the water-cooled heat rejection heat exchangers is about 20% of the total production volume.
- water-cooled heat rejection heat exchangers of CRUs operate as condensers, where refrigerant flown through the heat rejection heat exchanger is below the critical point and is condensing from vapor to liquid.
- refrigerants such as carbon dioxide
- a water-cooled heat rejection heat exchanger may operate as a condenser for a portion of the time, while operating as a gas cooler for another portion of the time. In the latter case, refrigerant flown through the heat rejection heat exchanger is above the critical point and, while cooled by water, is maintained in a single phase.
- the high operating pressures induced by refrigerants such as carbon dioxide require special structural design considerations for the heat rejection heat exchangers.
- other heat exchangers such as intercoolers positioned between the compression stages, may assist in the heat rejection process.
- a heat rejection heat exchanger includes a housing having first and second opposing end plates and sidewalls extending between the end plates to form an enclosure, at least the first end plate including first and second inlet/outlet pairs for first and second fluids, respectively, a plurality of plates disposed within the enclosure between the first and second end plates to define a first fluid pathway disposed in fluid communication with the first inlet/outlet pair and a second fluid pathway disposed in fluid communication with the second inlet/outlet pair and a plurality of brazed formations disposed between adjacent ones of the first end plate, the plurality of plates and the second end plate to isolate the first fluid pathway from the second fluid pathway.
- a heat rejection heat exchanger includes a housing having first and second opposing end plates and sidewalls extending between the end plates to form an enclosure, at least the first end plate including high and low temperature inlet/outlet pairs for high and low temperature fluids, respectively, a plurality of plates disposed within the enclosure between the first and second end plates to define a high temperature fluid pathway disposed in fluid communication with the high temperature inlet/outlet pair and a low temperature fluid pathway disposed in fluid communication with the low temperature inlet/outlet pair and a plurality of brazed formations disposed between adjacent ones of the first end plate, the plurality of plates and the second end plate to isolate the high temperature fluid pathway from the low temperature fluid pathway.
- a refrigeration unit includes a vapor compression cycle including an evaporator, an air-cooled heat rejection heat exchanger and a compressor operably disposed between the evaporator and the condenser, and a water-cooled brazed plate heat rejection heat exchanger operably disposed between the compressor and the evaporator receiving high temperature fluid from the compressor and low temperature fluid from an external source, whereby the high temperature fluid is cooled via thermal communication with the low temperature fluid and is flown from the compressor to the evaporator, the water-cooled brazed plate heat rejection heat exchanger being formed to define high and low temperature fluid pathways and including a plurality of brazed formations to isolate the high temperature fluid pathway from the low temperature fluid pathway.
- FIG. 1 is a schematic illustration of a refrigeration unit
- FIG. 2 is a perspective view of a container refrigeration unit incorporating the vapor compression cycle unit of FIG. 1 ;
- FIG. 3 and 4 are foreground and background cross sectional views, respectively, of a brazed plate water-cooled heat rejection heat exchanger for use within the spatial constraints of the container refrigeration unit of FIG. 2 .
- a container refrigeration unit 10 incorporates a vapor compression cycle unit 12 .
- the vapor compression cycle unit 12 includes an evaporator 20 , an air-cooled heat rejection heat exchanger 30 and a compressor 40 .
- the compressor 40 is operably disposed between the evaporator 20 and the air-cooled heat rejection heat exchanger 30 .
- Both the evaporator 20 and the air-cooled heat rejection heat exchanger 30 may have typical configurations whereby respective fans blow air over respective heat exchange surfaces or coils for heat transfer communication, while the refrigerant fluid is flown inside the tubes or coils referenced hereabove.
- the vapor compression cycle unit 12 may further include a heat rejection heat exchanger 13 , such as a water-cooled brazed plate heat rejection heat exchanger 50 .
- the water-cooled brazed plate heat rejection heat exchanger 50 is operably disposed between the compressor 40 and the evaporator 20 and is configured to be in fluid communication with the air-cooled heat rejection heat exchanger 30 and sources of high temperature fluid (e.g. compressor) and low temperature fluid (e.g. water tank), respectively.
- high temperature fluid e.g. compressor
- low temperature fluid e.g. water tank
- the water-cooled brazed plate heat rejection heat exchanger 50 is formed to define high and low temperature fluid pathways 501 and 502 and includes a plurality of brazed formations 503 to isolate the high temperature fluid pathway 501 from the low temperature fluid pathway 502 .
- the high temperature fluid is flown from the high temperature fluid source (typically compressor) to the air-cooled heat rejection heat exchanger 30 in thermal communication with ambient air, when an associate fan 140 is operational, through the water-cooled brazed plate heat rejection heat exchanger 50 in thermal communication with the low temperature fluid (when in operation) flown from the low temperature source (such as water tank) and then to the evaporator 20 .
- the high temperature fluid source typically compressor
- the air-cooled heat rejection heat exchanger 30 in thermal communication with ambient air, when an associate fan 140 is operational
- the water-cooled brazed plate heat rejection heat exchanger 50 in thermal communication with the low temperature fluid (when in operation) flown from the low temperature source (such as water tank) and then to the evaporator 20 .
- the high temperature fluid may include conventional refrigerants operating below the critical point and condensing during heat transfer interaction in the air-cooled heat rejection heat exchanger 30 and the water-cooled brazed plate heat rejection heat exchanger 50 (while in operation) or refrigerants, such carbon dioxide, operating below the critical point, at least for a portion of the time and above the critical point for another portion of the time, and the low temperature fluid may include water or glycol solutions. While operating above the critical point, refrigerant remains in a single phase.
- other fluids and/or gases may be used interchangeably within the scope of the description provided herein.
- the compressor 40 may include at least a first stage compressor 41 and a second stage compressor 42 while the air-cooled heat rejection heat exchanger 30 may include a condenser/gas cooler 31 , which is operably disposed downstream from the second stage compressor 42 , and an intercooler 32 .
- the intercooler 32 is operably disposed downstream from the first stage compressor 41 .
- Compressed intermediate pressure refrigerant vapor from the first stage compressor 41 is flown to the intercooler 32 for first cooling communication and compressed high pressure refrigerant vapor from the second stage compressor 42 is flown to the condenser/gas cooler 31 for second cooling communication.
- the air-cooled heat rejection heat exchanger 30 may operate as a condenser when the refrigerant thermodynamic state is below the critical point and as a gas cooler when the refrigerant thermodynamic state is above the critical point.
- the water-cooled brazed plate heat rejection heat exchanger 50 is operably disposed downstream from the condenser/gas cooler 31 . Refrigerant leaving the condenser/gas cooler 31 is transmitted to the water-cooled brazed plate heat rejection heat exchanger 50 for further cooling operations therein, when each heat exchanger is actively engaged in the heat transfer interaction, with ambient air and a source of the cold fluid respectively.
- the condenser/gas cooler 31 and the water-cooled brazed plate heat rejection heat exchanger 50 can be used interchangeably depending on availability of the ambient air and cold fluid source. For instance, while onboard a ship, only a cold fluid source may be available, rendering only water-cooled brazed plate heat rejection heat exchanger 50 operational.
- a secondary water-cooled brazed plate heat rejection heat exchanger 60 may be operably interposed between the intercooler 32 and the second stage compressor 42 . Cooled refrigerant vapor from the intercooler 32 may be flown to the second stage compressor 42 passing through the secondary water-cooled brazed plate heat rejection heat exchanger 60 for further cooling communication therein. Similar to the condenser/gas cooler 31 and the water-cooled brazed plate heat rejection heat exchanger 50 , intercooler 32 and secondary water-cooled brazed plate heat rejection heat exchanger 60 may operate simultaneously or alternately with one another depending on the low temperature source availability.
- the water-cooled brazed plate heat rejection heat exchanger 50 and the secondary water-cooled brazed plate heat rejection heat exchanger 60 may both be disposed upstream of the condenser/gas cooler 31 and the intercooler 32 , respectively.
- the water-cooled brazed plate heat rejection heat exchanger 50 and the secondary water-cooled brazed plate heat rejection heat exchanger 60 may be two separate units, as depicted on FIG. 2 , or they can be combined in a single unit, with four pairs of inlets/outlets, two for the cold fluid such as water or glycol solution and two for the hot fluid such as carbon dioxide or other refrigerant.
- the vapor compression cycle unit 12 may further include a flash tank 70 , a high pressure regulating valve 80 , which is operably interposed between the water-cooled brazed plate heat rejection heat exchanger 50 and the flash tank 70 , and an evaporator expansion valve 90 .
- the evaporator expansion valve 90 is operably interposed between the flash tank 70 and the evaporator 20 .
- the high pressure regulating valve 80 conveys the cooled high temperature fluid in the 2-phase thermodynamic state to the flash tank 70 , which is configured to separate the gaseous phase from the liquid phase.
- the flash tank 70 communicates the gaseous phase to the compressor 40 by way of a shutoff valve and check valve combination 95 and directs the liquid phase to the evaporator 20 via the evaporator expansion valve 90 .
- the evaporator expansion valve 90 communicates the further expanded high temperature fluid in the 2-phase thermodynamic state to the evaporator 20 .
- a probe 100 such as a pressure gage or a thermocouple, may be operably interposed between the high pressure regulating valve 80 and the flash tank 70 .
- the container refrigeration unit 10 and/or the vapor compression cycle unit 12 may further include a motor 110 to drive the compressor 40 and a variable frequency drive 120 .
- the variable frequency drive 120 serves to actuate the motor 110 to drive the compressor 40 at varying speeds.
- the variable frequency drive 120 may be disposed at one or more of multiple positions including, but not limited to, a position # 1 proximate to the evaporator 20 , a central position # 2 , a position # 3 proximate to the flash tank 70 , a position # 4 proximate to the secondary water-cooled brazed plate heat rejection heat exchanger 60 , a position # 5 proximate to the water-cooled brazed plate heat rejection heat exchanger 50 and an external position # 6 .
- the container refrigeration unit 10 includes a structural isolating frame 130 and the associate fan 140 .
- the structural isolating frame 130 is formed to define an enclosure that encompasses and incorporates the vapor compression cycle unit 12 . That is, the evaporator 20 is contained behind the structural isolating frame 130 and the air-cooled heat rejection heat exchanger 30 is contained behind the associate fan 140 .
- the flash tank 70 , the compressor 40 and the variable frequency drive 120 are disposed within the accessible portion of the enclosure, with the variable frequency drive 120 provided in the external position # 6 , for example. With this construction, space available for the water-cooled brazed plate heat rejection heat exchanger 50 is defined between the flash tank 70 and the compressor 40 and is thereby limited.
- the water-cooled brazed plate heat rejection heat exchanger 50 must be small enough to fit in the available space but still capable of providing for the necessary amount of heat transfer between the high and low temperature fluids. This is not generally possible with conventional container refrigeration units using shell and tube heat exchangers.
- the water-cooled brazed plate heat rejection heat exchanger 50 is shown as a water-cooled heat rejection heat exchanger that can operate as a gas cooler and/or condenser, as explained above in relation to the air-cooled heat rejection heat exchanger 30 .
- the water-cooled brazed plate heat rejection heat exchanger 50 includes a housing 51 and a plurality of plates 52 .
- the housing 51 has first and second opposing end plates 511 and 512 and sidewalls 513 formed from the ends of plates 52 .
- the sidewalls 513 extend between the first and second opposing end plates 511 and 512 to form an enclosure.
- the first end plate 511 includes a first inlet/outlet pair 53 for the first or high temperature fluid (i.e., carbon dioxide or other refrigerant) and a second inlet/outlet pair 54 for the second or low temperature fluid (i.e., water or glycol solution).
- first or high temperature fluid i.e., carbon dioxide or other refrigerant
- second inlet/outlet pair 54 for the second or low temperature fluid (i.e., water or glycol solution).
- the plurality of plates 52 along with the other components of the water-cooled brazed plate heat rejection heat exchanger 50 are typically formed of stainless steel or another similar material.
- the plurality of plates 52 is disposed within the enclosure formed between the first and second end plates 511 and 512 to define the high and low temperature fluid pathways 501 and 502 with the high temperature fluid pathway 501 being disposed in fluid communication with the first inlet/outlet pair 53 and the low temperature fluid pathway 502 being disposed in fluid communication with the second inlet/outlet pair 54 .
- the plurality of brazed formations 503 is formed between adjacent ones of the first end plate 511 , the plurality of plates 52 and the second end plate 512 to isolate the first fluid pathway 501 from the second fluid pathway 502 and vice versa.
- the high temperature fluid enters the inlet of the first inlet/outlet pair 53 and is permitted to flow into the high temperature fluid pathway 501 but prevented from flowing into the low temperature fluid pathway 502 by brazed joints 5020 .
- the low temperature fluid enters the inlet of the second inlet/outlet pair 54 and is permitted to flow into the low temperature fluid pathway 502 but prevented from flowing into the high temperature fluid pathway 501 by brazed joints 5010 .
- the brazed joints 5010 and 5020 cooperatively form a honeycomb pattern or another similar pattern.
- each of the inlet and outlet connections for the high temperature fluid and for the low temperature fluid may be located on either side of the water-cooled brazed plate heat rejection heat exchanger 50 , and all these configurations are within the scope of the invention.
- the water-cooled brazed plate heat rejection heat exchanger 50 may be oriented, vertically, horizontally, positioned on its side or at any inclination angle.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/984,174 US10401094B2 (en) | 2011-02-08 | 2012-01-31 | Brazed plate heat exchanger for water-cooled heat rejection in a refrigeration cycle |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161440662P | 2011-02-08 | 2011-02-08 | |
US13/984,174 US10401094B2 (en) | 2011-02-08 | 2012-01-31 | Brazed plate heat exchanger for water-cooled heat rejection in a refrigeration cycle |
PCT/US2012/023334 WO2012109057A2 (en) | 2011-02-08 | 2012-01-31 | Water-cooled heat rejection heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130319036A1 US20130319036A1 (en) | 2013-12-05 |
US10401094B2 true US10401094B2 (en) | 2019-09-03 |
Family
ID=45571811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/984,174 Active 2033-08-18 US10401094B2 (en) | 2011-02-08 | 2012-01-31 | Brazed plate heat exchanger for water-cooled heat rejection in a refrigeration cycle |
Country Status (6)
Country | Link |
---|---|
US (1) | US10401094B2 (en) |
EP (1) | EP2673585B1 (en) |
CN (1) | CN103370592A (en) |
DK (1) | DK2673585T3 (en) |
SG (1) | SG192616A1 (en) |
WO (1) | WO2012109057A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190128568A1 (en) * | 2016-04-27 | 2019-05-02 | Carrier Corporation | Water-Cooled Refrigerated Transport System |
US20230175784A1 (en) * | 2020-04-06 | 2023-06-08 | Vahterus Oy | Device for use in refrigeration or heat pump system, and refrigeration or heat pump system |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10036580B2 (en) * | 2012-10-30 | 2018-07-31 | Lennox Industries Inc. | Multi-stage system for cooling a refrigerant |
WO2015132966A1 (en) * | 2014-03-07 | 2015-09-11 | 三菱電機株式会社 | Refrigeration cycle device |
EP3023712A1 (en) * | 2014-11-19 | 2016-05-25 | Danfoss A/S | A method for controlling a vapour compression system with a receiver |
WO2016118895A1 (en) * | 2015-01-23 | 2016-07-28 | Lingelbach John | Shell and plate condenser, method for condensing a refrigerant, and method for cooling a liquid |
US10767906B2 (en) * | 2017-03-02 | 2020-09-08 | Heatcraft Refrigeration Products Llc | Hot gas defrost in a cooling system |
PL3628942T3 (en) | 2018-09-25 | 2021-10-04 | Danfoss A/S | A method for controlling a vapour compression system at a reduced suction pressure |
PL3628940T3 (en) | 2018-09-25 | 2022-08-22 | Danfoss A/S | A method for controlling a vapour compression system based on estimated flow |
US11209199B2 (en) * | 2019-02-07 | 2021-12-28 | Heatcraft Refrigeration Products Llc | Cooling system |
KR20200137837A (en) * | 2019-05-31 | 2020-12-09 | 현대자동차주식회사 | Gas-liquid separation device for vehicle |
EP4397925A3 (en) | 2019-06-06 | 2024-09-18 | Carrier Corporation | Refrigerant vapor compression system |
CN114165936A (en) * | 2021-12-28 | 2022-03-11 | 江苏苏净集团有限公司 | Water heating system for transcritical carbon dioxide single-stage and double-stage compression and control method thereof |
US20240151437A1 (en) * | 2022-11-04 | 2024-05-09 | Hill Phoenix, Inc. | Co2 refrigeration system with convertible compressors |
Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2218794A (en) | 1988-05-16 | 1989-11-22 | Atomic Energy Authority Uk | Plate heat exchanger |
US5717609A (en) | 1996-08-22 | 1998-02-10 | Emv Technologies, Inc. | System and method for energy measurement and verification with constant baseline reference |
US5931219A (en) | 1995-03-31 | 1999-08-03 | Behr Gmbh & Co. | Plate heat exchanger |
US20010047861A1 (en) * | 2000-05-10 | 2001-12-06 | Akihiro Maeda | Brazing method, brazement, method of production of corrosion-resistant heat exchanger, and corrosion-resistant heat exchanger |
JP2002107074A (en) | 2000-09-29 | 2002-04-10 | Sanyo Electric Co Ltd | Plate type heat exchanger and heat pump hot water supply apparatus using the same |
US20030010488A1 (en) | 2001-07-12 | 2003-01-16 | Toshiharu Watanabe | Cooling cycle |
CN1399117A (en) | 2001-07-25 | 2003-02-26 | 袁士操 | Plate heat exchanger with shaped strip and welded structure |
WO2003019085A1 (en) | 2001-08-31 | 2003-03-06 | Mærsk Container Industri A/S | A vapour-compression-cycle device |
US6643567B2 (en) | 2002-01-24 | 2003-11-04 | Carrier Corporation | Energy consumption estimation using real time pricing information |
FR2850740A1 (en) | 2003-01-31 | 2004-08-06 | Valeo Thermique Moteur Sa | Heat exchanger e.g. carbondioxide/carbondioxide internal exchanger, for motor vehicle, has passage ducts constituted by ring washers disposed between electric plates, where washers include tape ends superimposed to each other |
US20050279127A1 (en) * | 2004-06-18 | 2005-12-22 | Tao Jia | Integrated heat exchanger for use in a refrigeration system |
US20060010899A1 (en) * | 2004-07-14 | 2006-01-19 | Alexander Lifson | Flash tank for heat pump in heating and cooling modes of operation |
US20060053833A1 (en) * | 2002-10-31 | 2006-03-16 | Carlos Martins | Condenser, in particular for a motor vehicle air conditioning circuit, and circuit comprising same |
WO2007022777A1 (en) | 2005-08-25 | 2007-03-01 | Knudsen Køling A/S | A heat exchanger |
WO2007036963A1 (en) | 2005-09-30 | 2007-04-05 | Gianni Candio | Method for manufacturing a plate heat exchanger having plates connected through melted contact points and heat exchanger obtained using said method |
US7272180B2 (en) | 2002-10-01 | 2007-09-18 | Avocent Corporation | Video compression system |
US20080229226A1 (en) | 2007-03-09 | 2008-09-18 | Lutron Electronics Co., Inc. | System and method for graphically displaying energy consumption and savings |
US20080310850A1 (en) | 2000-11-15 | 2008-12-18 | Federal Law Enforcement Development Services, Inc. | Led light communication system |
CN101371085A (en) | 2006-01-17 | 2009-02-18 | 大金工业株式会社 | Gas-liquid separator and refrigeration device with the gas-liquid separator |
US7567844B2 (en) | 2006-03-17 | 2009-07-28 | Honeywell International Inc. | Building management system |
WO2009105092A1 (en) | 2008-02-19 | 2009-08-27 | Carrier Corporation | Refrigerant vapor compression system |
US20100058248A1 (en) | 2008-08-29 | 2010-03-04 | Johnson Controls Technology Company | Graphical user interfaces for building management systems |
WO2010047650A1 (en) | 2008-10-20 | 2010-04-29 | Toeroek Vilmos | Heat pump apparatus |
US7774101B2 (en) | 2006-08-30 | 2010-08-10 | Ballate Orlando E | System and method for managing buildings |
US20100258288A1 (en) * | 2007-12-21 | 2010-10-14 | Alfa Laval Corporate Ab | Heat Exchanger |
US20100258284A1 (en) * | 2007-12-21 | 2010-10-14 | Alfa Laval Corporate Ab | Heat Exchanger |
US20100258285A1 (en) * | 2007-10-23 | 2010-10-14 | Tokyo Roki Co. Ltd. | Plate stacking type heat exchanger |
US20100274366A1 (en) | 2009-04-15 | 2010-10-28 | DiMi, Inc. | Monitoring and control systems and methods |
US20100274408A1 (en) | 2009-04-23 | 2010-10-28 | Stiles Jr Robert W | Energy production and consumption matching system |
US20100286937A1 (en) | 2009-05-08 | 2010-11-11 | Jay Hedley | Building energy consumption analysis system |
CN101936613A (en) | 2010-08-02 | 2011-01-05 | 李洲 | Integrated heat exchange system |
US20110024097A1 (en) | 2008-04-04 | 2011-02-03 | Alfa Laval Corporate Ab | Plate Heat Exchanger |
US20110036110A1 (en) | 2008-05-02 | 2011-02-17 | Daikin Industries, Ltd. | Refrigeration apparatus |
US20110220337A1 (en) * | 2008-10-16 | 2011-09-15 | Alfa Laval Corporate Ab | Heat exchanger |
WO2011136425A1 (en) | 2010-04-28 | 2011-11-03 | 한국과학기술정보연구원 | Device and method for resource description framework networking using an ontology schema having a combined named dictionary and combined mining rules |
WO2011139425A2 (en) | 2010-04-29 | 2011-11-10 | Carrier Corporation | Refrigerant vapor compression system with intercooler |
US20120000237A1 (en) * | 2009-03-13 | 2012-01-05 | Daikin Industries, Ltd. | Heat pump system |
-
2012
- 2012-01-31 US US13/984,174 patent/US10401094B2/en active Active
- 2012-01-31 WO PCT/US2012/023334 patent/WO2012109057A2/en active Application Filing
- 2012-01-31 CN CN2012800081775A patent/CN103370592A/en active Pending
- 2012-01-31 DK DK12703396.7T patent/DK2673585T3/en active
- 2012-01-31 SG SG2013059282A patent/SG192616A1/en unknown
- 2012-01-31 EP EP12703396.7A patent/EP2673585B1/en active Active
Patent Citations (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2218794A (en) | 1988-05-16 | 1989-11-22 | Atomic Energy Authority Uk | Plate heat exchanger |
US5931219A (en) | 1995-03-31 | 1999-08-03 | Behr Gmbh & Co. | Plate heat exchanger |
US5717609A (en) | 1996-08-22 | 1998-02-10 | Emv Technologies, Inc. | System and method for energy measurement and verification with constant baseline reference |
US20010047861A1 (en) * | 2000-05-10 | 2001-12-06 | Akihiro Maeda | Brazing method, brazement, method of production of corrosion-resistant heat exchanger, and corrosion-resistant heat exchanger |
JP2002107074A (en) | 2000-09-29 | 2002-04-10 | Sanyo Electric Co Ltd | Plate type heat exchanger and heat pump hot water supply apparatus using the same |
US20080310850A1 (en) | 2000-11-15 | 2008-12-18 | Federal Law Enforcement Development Services, Inc. | Led light communication system |
US20030010488A1 (en) | 2001-07-12 | 2003-01-16 | Toshiharu Watanabe | Cooling cycle |
CN1399117A (en) | 2001-07-25 | 2003-02-26 | 袁士操 | Plate heat exchanger with shaped strip and welded structure |
WO2003019085A1 (en) | 2001-08-31 | 2003-03-06 | Mærsk Container Industri A/S | A vapour-compression-cycle device |
US6643567B2 (en) | 2002-01-24 | 2003-11-04 | Carrier Corporation | Energy consumption estimation using real time pricing information |
US7272180B2 (en) | 2002-10-01 | 2007-09-18 | Avocent Corporation | Video compression system |
US20060053833A1 (en) * | 2002-10-31 | 2006-03-16 | Carlos Martins | Condenser, in particular for a motor vehicle air conditioning circuit, and circuit comprising same |
FR2850740A1 (en) | 2003-01-31 | 2004-08-06 | Valeo Thermique Moteur Sa | Heat exchanger e.g. carbondioxide/carbondioxide internal exchanger, for motor vehicle, has passage ducts constituted by ring washers disposed between electric plates, where washers include tape ends superimposed to each other |
US20050279127A1 (en) * | 2004-06-18 | 2005-12-22 | Tao Jia | Integrated heat exchanger for use in a refrigeration system |
US20060010899A1 (en) * | 2004-07-14 | 2006-01-19 | Alexander Lifson | Flash tank for heat pump in heating and cooling modes of operation |
WO2007022777A1 (en) | 2005-08-25 | 2007-03-01 | Knudsen Køling A/S | A heat exchanger |
WO2007036963A1 (en) | 2005-09-30 | 2007-04-05 | Gianni Candio | Method for manufacturing a plate heat exchanger having plates connected through melted contact points and heat exchanger obtained using said method |
CN101371085A (en) | 2006-01-17 | 2009-02-18 | 大金工业株式会社 | Gas-liquid separator and refrigeration device with the gas-liquid separator |
US20100154467A1 (en) | 2006-01-17 | 2010-06-24 | Shuuji Fujimoto | Gas-Liquid Separator and Refrigeration System With Gas-Liquid Seperator |
US7567844B2 (en) | 2006-03-17 | 2009-07-28 | Honeywell International Inc. | Building management system |
US7774101B2 (en) | 2006-08-30 | 2010-08-10 | Ballate Orlando E | System and method for managing buildings |
US20080229226A1 (en) | 2007-03-09 | 2008-09-18 | Lutron Electronics Co., Inc. | System and method for graphically displaying energy consumption and savings |
US20100258285A1 (en) * | 2007-10-23 | 2010-10-14 | Tokyo Roki Co. Ltd. | Plate stacking type heat exchanger |
US20100258288A1 (en) * | 2007-12-21 | 2010-10-14 | Alfa Laval Corporate Ab | Heat Exchanger |
US20100258284A1 (en) * | 2007-12-21 | 2010-10-14 | Alfa Laval Corporate Ab | Heat Exchanger |
WO2009105092A1 (en) | 2008-02-19 | 2009-08-27 | Carrier Corporation | Refrigerant vapor compression system |
US20100326100A1 (en) | 2008-02-19 | 2010-12-30 | Carrier Corporation | Refrigerant vapor compression system |
US20110024097A1 (en) | 2008-04-04 | 2011-02-03 | Alfa Laval Corporate Ab | Plate Heat Exchanger |
US20110036110A1 (en) | 2008-05-02 | 2011-02-17 | Daikin Industries, Ltd. | Refrigeration apparatus |
US20100058248A1 (en) | 2008-08-29 | 2010-03-04 | Johnson Controls Technology Company | Graphical user interfaces for building management systems |
US20110220337A1 (en) * | 2008-10-16 | 2011-09-15 | Alfa Laval Corporate Ab | Heat exchanger |
WO2010047650A1 (en) | 2008-10-20 | 2010-04-29 | Toeroek Vilmos | Heat pump apparatus |
US20120000237A1 (en) * | 2009-03-13 | 2012-01-05 | Daikin Industries, Ltd. | Heat pump system |
US20100274366A1 (en) | 2009-04-15 | 2010-10-28 | DiMi, Inc. | Monitoring and control systems and methods |
US20100274408A1 (en) | 2009-04-23 | 2010-10-28 | Stiles Jr Robert W | Energy production and consumption matching system |
US20100286937A1 (en) | 2009-05-08 | 2010-11-11 | Jay Hedley | Building energy consumption analysis system |
WO2011136425A1 (en) | 2010-04-28 | 2011-11-03 | 한국과학기술정보연구원 | Device and method for resource description framework networking using an ontology schema having a combined named dictionary and combined mining rules |
WO2011139425A2 (en) | 2010-04-29 | 2011-11-10 | Carrier Corporation | Refrigerant vapor compression system with intercooler |
CN101936613A (en) | 2010-08-02 | 2011-01-05 | 李洲 | Integrated heat exchange system |
Non-Patent Citations (7)
Title |
---|
Chinese Office Action issued in Chinese Application No. 201280008177.5 dated Oct. 27, 2015; 3 pages. |
Chinese Office Action issued in CN Application No. 2012800021777.5; dated Feb. 3, 2015, 4 pages. |
International Search Report issued for corresponding application No. PCT/US2012/023334 filed on Jan. 31, 2012, dated Aug. 16, 2012, pp. 1-7. |
Office Action, dated Dec. 20, 2016, Chinese Patent Application No. 201280008177.5, 24 pages. |
Search Report issued in Singapore Applicaiton No. 2013059282; dated May 5, 2015; 5 pages. |
Written Opinion issued for corresponding application No. PCT/US2012/023334 filed Jan. 31, 2012, dated Aug. 16, 2012, pp. 1-10. |
Written Opinion issued in Singapore Applicaiton No. 2013059282; dated May 5, 2015; 7 pages. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190128568A1 (en) * | 2016-04-27 | 2019-05-02 | Carrier Corporation | Water-Cooled Refrigerated Transport System |
US20230175784A1 (en) * | 2020-04-06 | 2023-06-08 | Vahterus Oy | Device for use in refrigeration or heat pump system, and refrigeration or heat pump system |
Also Published As
Publication number | Publication date |
---|---|
DK2673585T3 (en) | 2019-03-25 |
CN103370592A (en) | 2013-10-23 |
US20130319036A1 (en) | 2013-12-05 |
EP2673585A2 (en) | 2013-12-18 |
WO2012109057A3 (en) | 2012-10-11 |
SG192616A1 (en) | 2013-09-30 |
EP2673585B1 (en) | 2018-11-28 |
WO2012109057A2 (en) | 2012-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10401094B2 (en) | Brazed plate heat exchanger for water-cooled heat rejection in a refrigeration cycle | |
EP3088830B1 (en) | Heat-pump-type outdoor device with plate heat exchanger | |
KR101633781B1 (en) | Chiller | |
US20080184731A1 (en) | Multi-Part Heat Exchanger | |
US20100115984A1 (en) | Dual-circuit series counterflow chiller with intermediate waterbox | |
JP2012116462A (en) | Condenser for vehicle | |
KR101755456B1 (en) | Heat exchanger | |
EP3073218A1 (en) | Water cooled microchannel condenser | |
KR101173157B1 (en) | Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling | |
US20170176065A1 (en) | Heat exchange device | |
US9920999B2 (en) | Heat exchanger and integrated air-conditioning assembly including such exchanger | |
CN202928188U (en) | Integral heat exchanging type double-unit double-level screw refrigeration compression system | |
US20190323769A1 (en) | Mixed Refrigerant Liquefaction System and Method with Pre-Cooling | |
JP3911604B2 (en) | Heat exchanger and refrigeration cycle | |
CN104748592B (en) | Brazed heat exchanger with fluid flow to heat exchange in series with different refrigerant circuits | |
CN104697232A (en) | A heat pump system | |
JP5540816B2 (en) | Evaporator unit | |
US9903663B2 (en) | Brazed heat exchanger with fluid flow to serially exchange heat with different refrigerant circuits | |
WO2018061185A1 (en) | Refrigeration cycle device | |
KR100805424B1 (en) | Condenser having double refrigerant pass and refrigerating plant used the condenser | |
JP7410335B2 (en) | Refrigeration circuit and refrigeration equipment | |
JP3256856B2 (en) | Refrigeration system | |
WO2007123041A1 (en) | Internal heat exchanger | |
JP5555212B2 (en) | Turbo refrigerator | |
KR20160012397A (en) | Air conditioner system for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CARRIER CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TARAS, MICHAEL F.;PERKOVICH, MARK J.;WOLDESEMAYAT, MEL;SIGNING DATES FROM 20110210 TO 20110216;REEL/FRAME:030962/0251 |
|
STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |