US10310364B2 - Light source device and projection display apparatus - Google Patents

Light source device and projection display apparatus Download PDF

Info

Publication number
US10310364B2
US10310364B2 US15/944,451 US201815944451A US10310364B2 US 10310364 B2 US10310364 B2 US 10310364B2 US 201815944451 A US201815944451 A US 201815944451A US 10310364 B2 US10310364 B2 US 10310364B2
Authority
US
United States
Prior art keywords
light
polarized light
light source
linearly polarized
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/944,451
Other versions
US20180335685A1 (en
Inventor
Manabu OKUNO
Takaaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018029692A external-priority patent/JP2018194819A/en
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Assigned to PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. reassignment PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OKUNO, MANABU, TANAKA, TAKAAKI
Publication of US20180335685A1 publication Critical patent/US20180335685A1/en
Application granted granted Critical
Publication of US10310364B2 publication Critical patent/US10310364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S10/00Lighting devices or systems producing a varying lighting effect
    • F21S10/007Lighting devices or systems producing a varying lighting effect using rotating transparent or colored disks, e.g. gobo wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present disclosure relates to a light source device equipped with a laser light source, and a projection display apparatus including the light source device.
  • Patent Literature 1 Japanese Unexamined Patent Application Publication No. 2013-615257 discloses a projector that prevents luminance unevenness and speckle noise in projected images by applying light from laser elements to a flat rotating wheel mounted with a diffusion layer such as a diffuser.
  • Patent Literature 2 Japanese Unexamined Patent Application Publication No. 2016-180818 discloses a projector that prevents speckle noise by applying light from laser elements to a multiple reflection element inclined with respect to the laser elements.
  • the multiple reflection element has two parallel sides with different reflectances.
  • Patent Literature 1 Japanese Unexamined Patent Application Publication No. 2013-61525
  • Patent Literature 2 Japanese Unexamined Patent Application Publication No. 2016-180818
  • the present disclosure provides a light source device that prevents luminance unevenness and speckle noise in projected images when a laser light source is used as the light source device, and further provides a projection display apparatus including the light source device.
  • the light source device and the projection display apparatus include a solid-state light source unit, a dichroic mirror, a fluorescent plate, a first wave plate, and a multi-reflection mirror.
  • the solid-state light source unit is configured to emit a first linearly polarized light ray and a second linearly polarized light ray at a predetermined ratio, the first linearly polarized light ray and the second linearly polarized light ray being orthogonal to each other.
  • the dichroic mirror is configured to separate the first linearly polarized light ray and the second linearly polarized light ray, and to combine blue light with yellow light.
  • the fluorescent plate is configured to emit the yellow light to the dichroic mirror when the fluorescent plate is excited by the first linearly polarized light ray separated by the dichroic mirror.
  • the first wave plate is configured to convert the second linearly polarized light ray separated by the dichroic mirror, into circularly polarized light.
  • the multi-reflection mirror is configured to reflect the circularly polarized light to the dichroic mirror as the blue light.
  • the light source device is effective to prevent luminance unevenness and speckle noise in projected images even when the light source device is composed of a simple laser light source.
  • FIG. 1 shows the structure of a light source device according to an exemplary embodiment
  • FIG. 2 shows a phosphor wheel included in the light source device according to the exemplary embodiment
  • FIG. 3 shows transmittances at different wavelengths of a dichroic mirror included in the light source device according to the exemplary embodiment
  • FIG. 4 shows the structure of a projection display apparatus mounted with the light source device according to the exemplary embodiment
  • FIG. 5 shows light rays reflected by a multi-reflection mirror in the exemplary embodiment
  • FIG. 6 shows effects of the multi-reflection mirror in the exemplary embodiment.
  • FIG. 1 shows the structure of the optical system of light source device 10 including phosphor wheel 15 .
  • an XYZ rectangular coordinate system is defined in FIG. 1 .
  • Device 10 includes excitation light sources, which are composed of a plurality of laser light sources 101 to achieve high luminance.
  • Laser light sources 101 are blue semiconductor lasers that emit blue linearly polarized light with wavelengths in the range of 447 to 462 nm.
  • FIG. 1 shows only five of the blue semiconductor lasers arranged in a line, the lasers are actually arranged in a matrix in a plane. In FIG. 1 the lasers are so arranged that their light is polarized in the y-axis direction (s-polarized).
  • the laser light emitted as excitation light from the semiconductor lasers is collimated by respective collimator lenses 102 .
  • Collimator lenses 102 emit approximately parallel light.
  • the light is collected by lens 103 , is again approximately paralleled by lens 104 , and passes through diffuser 105 .
  • the light from diffuser 105 is applied to quarter-wave plate 106 , which is inclined at an angle with respect to the x axis.
  • quarter-wave plate 106 emits the incident light by converting its polarization state at a predetermined intensity ratio of the s-polarized and p-polarized components (e.g., 80% s-polarized component and 20% p-polarized component).
  • Laser light sources 101 , collimator lenses 102 , lenses 103 and 104 , diffuser 105 , and quarter-wave plate 106 together compose an example of a solid-state light source unit.
  • Laser light sources 101 are an example of a semiconductor laser light source.
  • Quarter-wave plate 106 is an example of a second wave plate, which converts the polarization state of the light from laser light sources 101 and emits two orthogonal linearly polarized light rays at a predetermined ratio.
  • Diffuser 105 is a flat glass with a micro-rough diffusing surface.
  • the light that has passed quarter-wave plate 106 strikes dichroic mirror 107 inclined at approximately 45 degrees with respect to the optical axis.
  • FIG. 3 shows the spectral transmittance of dichroic mirror 107 .
  • Dichroic mirror 107 has a wavelength of 465 nm for s-polarized light and a wavelength of 442 nm for p-polarized light when the transmittance is 50%. Therefore, the blue light with wavelengths of 447 to 462 nm is split, depending on its polarization state, into two rays: one passing through dichroic mirror 107 and the other being reflected by dichroic mirror 107 .
  • dichroic mirror 107 reflects the s-polarized component of the blue light and allows the p-polarized component of the blue light to pass through it.
  • Dichroic mirror 107 has the property of transmitting at least 96% of yellow light containing green and red components. Thus, dichroic mirror 107 splits the light from the solid-state light source unit depending on its polarization state and combines the blue light with yellow light containing the green and red components as will be described later.
  • the s-polarized component which is one of the two linearly polarized light rays incident on dichroic mirror 107 in the negative X direction, is reflected by dichroic mirror 107 and is emitted in the negative Z direction.
  • the p-polarized component which is the other linearly polarized light ray, passes through dichroic mirror 107 and propagates along the negative X direction.
  • the laser light emitted in the negative Z direction is collected by lenses 108 and 109 , and then excites the phosphor on phosphor wheel 15 .
  • phosphor wheel 15 is composed of motor 201 ; rotating substrate 202 , which is a disk rotating about the shaft of motor 201 ; and yellow phosphor 203 , which is formed on rotating substrate 202 .
  • yellow phosphor 203 on rotating substrate 202 is shaped like a ring with a predetermined width W.
  • the middle of the width W is distant by a distance R 1 from the axial rotation center A of the phosphor wheel.
  • the side of rotating substrate 202 that has yellow phosphor 203 thereon functions a reflective surface.
  • yellow phosphor 203 is excited and emits yellow light containing green and red components.
  • Phosphor wheel 15 is an example of a fluorescent plate that is excited by one of the linearly polarized light rays separated from the other ray by dichroic mirror 107 and that emits yellow light (containing green and red components).
  • Lenses 108 and 109 are an example of a first light-condensing element.
  • the yellow light emitted from phosphor wheel 15 propagates along the positive Z direction.
  • the fluorescence emitted in the negative Z direction from yellow phosphor 203 is reflected by the reflective surface of rotating substrate 202 and is emitted in the positive Z direction.
  • These yellow light rays, which are unpolarized light, are paralleled by lenses 109 and 108 and then pass through dichroic mirror 107 .
  • the p-polarized light of the blue light emitted by the blue semiconductor lasers and then passed through dichroic mirror 107 is collected by lens 110 , passes through quarter-wave plate 111 to be converted into circularly polarized light, and strikes multi-reflection mirror 112 , which is placed near the focus of lens 110 .
  • the blue light incident on multi-reflection mirror 112 is reflected by multi-reflection mirror 112 , again passes through quarter-wave plate 111 to be s-polarized, is collected by lens 110 into approximately parallel light, and is reflected by dichroic mirror 107 .
  • Lens 110 is an example of a second light-condensing element
  • quarter-wave plate 111 is an example of a first wave plate.
  • dichroic mirror 107 combines the yellow light (containing the green and red components) from phosphor wheel 15 with the blue light from multi-reflection mirror 112 , and then emits white light.
  • FIG. 4 shows projection display apparatus 300 , which operates with the white light emitted from light source device 10 .
  • the white light from light source device 10 strikes first lens array plate 301 , which is composed of a plurality of lens elements.
  • the rays of light incident on first lens array plate 301 are split into a larger number of rays of light.
  • the larger number of rays of light are converged by second lens array plate 302 composed of a plurality of lenses.
  • the lens elements of first lens array plate 301 are open similar to liquid crystal panels 311 , 312 , and 313 .
  • the focal length of the lens elements of second lens array plate 302 is determined such that first lens array plate 301 and liquid crystal panels 311 to 313 are in approximate conjugate relation.
  • the light from second lens array plate 302 strikes polarization converter 303 .
  • Polarization converter 303 which is composed of a polarizing prism and a half-wave plate, converts natural light from the light source into light in one direction of polarization (s-polarized light).
  • the yellow light as fluorescence is natural light, and therefore, is converted in one direction of polarization. Meanwhile, the blue light, which strikes as s-polarized light, is not subjected to conversion.
  • the light from polarization converter 303 strikes superimposing lens 304 .
  • Superimposing lens 304 is used to superimpose the light from each lens element of second lens array plate 302 upon liquid crystal panels 311 , 312 , and 313 .
  • First lens array plate 301 , second lens array plate 302 , polarization converter 303 , and superimposing lens 304 together compose an illumination optical system, which collects the light from light source device 10 and applies it to an area to be illuminated.
  • the light from superimposing lens 304 is split into blue, green, and red light by blue-reflecting dichroic mirror 305 and green-reflecting dichroic mirror 306 , which are color separating means.
  • the green light passes through field lens 307 and incident-side polarizing plate 308 , and then strikes liquid crystal panel 311 .
  • the blue light is reflected by reflective mirror 318 , then passes through field lens 319 and incident-side polarizing plate 310 , and strikes liquid crystal panel 313 .
  • the red light passes through (refracted by) relay lenses 320 and 322 , reflected by reflective mirrors 321 and 323 , passes through field lens 324 and incident-side polarizing plate 309 , and strikes liquid crystal panel 312 .
  • Three liquid crystal panels 311 , 312 , and 313 produce green, red, and blue images, respectively as follows. These panels change the polarization state of incident light by controlling the voltage applied to the image pixels according to the video signals. In other words, the light is modulated by combining incident-side polarizing plates 308 , 309 , and 310 with emission-side polarizing plates 314 , 315 , and 316 . Incident-side polarizing plates 308 to 310 are placed on one side of liquid crystal panels 311 to 313 , respectively, whereas emission-side polarizing plates 314 to 316 are placed on the other side of liquid crystal panels 311 to 313 , respectively.
  • incident-side polarizing plates 308 to 310 and emission-side polarizing plates 314 to 316 are orthogonal to their respective transmission axis.
  • emission-side polarizing plates 314 to 316 After passing through emission-side polarizing plates 314 to 316 , the red light and the blue light are reflected by a red-reflecting dichroic mirror and a blue-reflecting dichroic mirror, respectively through color combining prism 317 , and then are combined with green light.
  • the resulting light strikes projection lens 325 as video light, which is an image produced by the liquid crystal panels.
  • the light incident on projection lens 325 is projected in an enlarged scale on the screen (not shown).
  • Multi-reflection mirror 112 is a reflector plate placed near the focus of lens 110 (i.e., the focal point of the second light-condensing element).
  • FIG. 6 shows the structure of multi-reflection mirror 112 .
  • Multi-reflection mirror 112 has a first surface which the blue light strikes, and a second surface, which is the reverse side of multi-reflection mirror 112 from the first surface.
  • the first surface is mounted with partial reflection coating 112 a
  • the second surface is mounted with total reflection coating 112 b .
  • Partial reflection coating 112 a is a dielectric multilayer coating with 30% reflectance and 70% transmittance
  • total reflection coating 112 b is a dielectric multilayer coating with 98 to 100% reflectance.
  • Partial reflection coating 112 a reflects 30% of the incident light and allows 70% of the light to pass through it. The 70% of the passed light is reflected by total reflection coating 112 b formed on the reverse side. Next, partial reflection coating 112 a reflects 30% of the 70% light and allows 70% of the 70% light, that is, 49% of the light to pass through it. Multi-reflection mirror 112 repeats the reflection and transmission in the same manner, emitting the light of 14.7%, 4.4%, . . . . As shown in FIG.
  • the rays of light from multi-reflection mirror 112 are split into a larger number of rays of light at the above-mentioned intensity ratio, are approximately paralleled by lens 110 , and are reflected by dichroic mirror 107 .
  • partial reflection coating 112 a has 30% reflectance; however, the reflectance can alternatively be selected from the range of 20% to 50% to optimize the separation of the rays of light.
  • multi-reflection mirror 112 can split a plurality of blue rays of light into a larger number of rays of light. Furthermore, placing multi-reflection mirror 112 near the focus of lens 110 can miniaturize the optical system. The rays of light split by multi-reflection mirror 112 are applied uniformly to first lens array plate 301 . These features reduce luminance unevenness and speckle noise in the projected images and also miniaturize the light source device.
  • the above-described exemplary embodiment has described a case in which quarter-wave plate 106 converts the polarization state of the blue light from laser light sources 101 to the intensity ratio of 80% s-polarized component and 20% p-polarized component.
  • the intensity ratio is not limited to this and can be determined to optimize the distribution of wavelengths of the white light emitted from light source device 10 .
  • the first light-condensing element is composed of two lenses 108 and 109 , but may alternatively be composed of one, three, or more lenses.
  • the second light-condensing element is composed of lens 110 alone, but may alternatively be composed of a plurality of lenses.
  • lens 110 as an example of the second light-condensing element is placed between dichroic mirror 107 and quarter-wave plate 111 as an example of the first wave plate.
  • quarter-wave plate 111 may be placed between dichroic mirror 107 and lens 110 .
  • Light source device 10 in the above-described exemplary embodiment can further include a diffuser between dichroic mirror 107 and multi-reflection mirror 112 .
  • the diffuser can be placed, for example, between dichroic mirror 107 and lens 110 , which is the second light-condensing element, or between lens 110 and quarter-wave plate 111 , which is the first wave plate. Providing the diffuser further homogenizes the blue light reflected by multi-reflection mirror 112 .
  • the present disclosure is applicable to a light source device or a projection display apparatus such as a projector.

Abstract

The light source device and the projection display apparatus include a solid-state light source unit, a dichroic mirror, a fluorescent plate, a first wave plate, and a multi-reflection mirror. The solid-state light source unit emits first and second linearly polarized light rays at a predetermined ratio, the first and the second linearly polarized light rays being orthogonal to each other. The dichroic mirror separates the first and the second linearly polarized light rays, and combines blue light with yellow light. The fluorescent plate emits the yellow light to the dichroic mirror when the fluorescent plate is excited by the first linearly polarized light ray separated by the dichroic mirror. The first wave plate converts the second linearly polarized light ray separated by the dichroic mirror, into circularly polarized light. The multi-reflection mirror reflects the circularly polarized light to the dichroic mirror as the blue light.

Description

BACKGROUND Technical Field
The present disclosure relates to a light source device equipped with a laser light source, and a projection display apparatus including the light source device.
Description of the Related Art
Patent Literature 1 (Japanese Unexamined Patent Application Publication No. 2013-61525) discloses a projector that prevents luminance unevenness and speckle noise in projected images by applying light from laser elements to a flat rotating wheel mounted with a diffusion layer such as a diffuser.
Meanwhile, Patent Literature 2 (Japanese Unexamined Patent Application Publication No. 2016-180818) discloses a projector that prevents speckle noise by applying light from laser elements to a multiple reflection element inclined with respect to the laser elements. The multiple reflection element has two parallel sides with different reflectances.
CITATION LIST Patent Literature
Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2013-61525
Patent Literature 2: Japanese Unexamined Patent Application Publication No. 2016-180818
SUMMARY
The present disclosure provides a light source device that prevents luminance unevenness and speckle noise in projected images when a laser light source is used as the light source device, and further provides a projection display apparatus including the light source device.
The light source device and the projection display apparatus according to the present disclosure include a solid-state light source unit, a dichroic mirror, a fluorescent plate, a first wave plate, and a multi-reflection mirror. The solid-state light source unit is configured to emit a first linearly polarized light ray and a second linearly polarized light ray at a predetermined ratio, the first linearly polarized light ray and the second linearly polarized light ray being orthogonal to each other. The dichroic mirror is configured to separate the first linearly polarized light ray and the second linearly polarized light ray, and to combine blue light with yellow light. The fluorescent plate is configured to emit the yellow light to the dichroic mirror when the fluorescent plate is excited by the first linearly polarized light ray separated by the dichroic mirror. The first wave plate is configured to convert the second linearly polarized light ray separated by the dichroic mirror, into circularly polarized light. The multi-reflection mirror is configured to reflect the circularly polarized light to the dichroic mirror as the blue light.
The light source device according to the present disclosure is effective to prevent luminance unevenness and speckle noise in projected images even when the light source device is composed of a simple laser light source.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 shows the structure of a light source device according to an exemplary embodiment;
FIG. 2 shows a phosphor wheel included in the light source device according to the exemplary embodiment;
FIG. 3 shows transmittances at different wavelengths of a dichroic mirror included in the light source device according to the exemplary embodiment;
FIG. 4 shows the structure of a projection display apparatus mounted with the light source device according to the exemplary embodiment;
FIG. 5 shows light rays reflected by a multi-reflection mirror in the exemplary embodiment; and
FIG. 6 shows effects of the multi-reflection mirror in the exemplary embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Exemplary embodiments will be described in detail as follows with reference to the accompanying drawings. In the exemplary embodiment, the description of well-known matter and of substantially the same configuration as described earlier may be omitted to avoid redundancy and help those skilled in the art understand them easily.
Note that the attached drawings and the following description are provided to make those skilled in the art fully understand the present disclosure and are not intended to limit the claimed subject matter.
Exemplary Embodiment
The exemplary embodiment will now be described with reference to FIGS. 1 to 6.
1-1 Structure of Light Source Device
1-1-1 Overall Structure of Light Source Device
FIG. 1 shows the structure of the optical system of light source device 10 including phosphor wheel 15. For convenience of explanation, an XYZ rectangular coordinate system is defined in FIG. 1.
First, light source device 10 will be described. Device 10 includes excitation light sources, which are composed of a plurality of laser light sources 101 to achieve high luminance. Laser light sources 101 are blue semiconductor lasers that emit blue linearly polarized light with wavelengths in the range of 447 to 462 nm. Although FIG. 1 shows only five of the blue semiconductor lasers arranged in a line, the lasers are actually arranged in a matrix in a plane. In FIG. 1 the lasers are so arranged that their light is polarized in the y-axis direction (s-polarized). The laser light emitted as excitation light from the semiconductor lasers is collimated by respective collimator lenses 102. Collimator lenses 102 emit approximately parallel light. The light is collected by lens 103, is again approximately paralleled by lens 104, and passes through diffuser 105. The light from diffuser 105 is applied to quarter-wave plate 106, which is inclined at an angle with respect to the x axis.
Thus, the inclination of quarter-wave plate 106 with respect to the optical axis along the x axis is adjusted such that quarter-wave plate 106 can emit the incident light as elliptically-polarized light. To be more specific, quarter-wave plate 106 emits the incident light by converting its polarization state at a predetermined intensity ratio of the s-polarized and p-polarized components (e.g., 80% s-polarized component and 20% p-polarized component).
Laser light sources 101, collimator lenses 102, lenses 103 and 104, diffuser 105, and quarter-wave plate 106 together compose an example of a solid-state light source unit. Laser light sources 101 are an example of a semiconductor laser light source. Quarter-wave plate 106 is an example of a second wave plate, which converts the polarization state of the light from laser light sources 101 and emits two orthogonal linearly polarized light rays at a predetermined ratio.
Diffuser 105 is a flat glass with a micro-rough diffusing surface.
The light that has passed quarter-wave plate 106 strikes dichroic mirror 107 inclined at approximately 45 degrees with respect to the optical axis.
FIG. 3 shows the spectral transmittance of dichroic mirror 107. Dichroic mirror 107 has a wavelength of 465 nm for s-polarized light and a wavelength of 442 nm for p-polarized light when the transmittance is 50%. Therefore, the blue light with wavelengths of 447 to 462 nm is split, depending on its polarization state, into two rays: one passing through dichroic mirror 107 and the other being reflected by dichroic mirror 107. To be more specific, dichroic mirror 107 reflects the s-polarized component of the blue light and allows the p-polarized component of the blue light to pass through it. Dichroic mirror 107 has the property of transmitting at least 96% of yellow light containing green and red components. Thus, dichroic mirror 107 splits the light from the solid-state light source unit depending on its polarization state and combines the blue light with yellow light containing the green and red components as will be described later.
Referring back to FIG. 1, the s-polarized component, which is one of the two linearly polarized light rays incident on dichroic mirror 107 in the negative X direction, is reflected by dichroic mirror 107 and is emitted in the negative Z direction. Meanwhile, the p-polarized component, which is the other linearly polarized light ray, passes through dichroic mirror 107 and propagates along the negative X direction. The laser light emitted in the negative Z direction is collected by lenses 108 and 109, and then excites the phosphor on phosphor wheel 15.
As shown in the side view (a) of FIG. 2, phosphor wheel 15 is composed of motor 201; rotating substrate 202, which is a disk rotating about the shaft of motor 201; and yellow phosphor 203, which is formed on rotating substrate 202.
As shown in the front view (b) of FIG. 2, yellow phosphor 203 on rotating substrate 202 is shaped like a ring with a predetermined width W. The middle of the width W is distant by a distance R1 from the axial rotation center A of the phosphor wheel. The side of rotating substrate 202 that has yellow phosphor 203 thereon functions a reflective surface.
When the laser light from laser light sources 101 is collected on yellow phosphor 203 of phosphor wheel 15, yellow phosphor 203 is excited and emits yellow light containing green and red components.
Phosphor wheel 15 is an example of a fluorescent plate that is excited by one of the linearly polarized light rays separated from the other ray by dichroic mirror 107 and that emits yellow light (containing green and red components). Lenses 108 and 109 are an example of a first light-condensing element.
Referring back to FIG. 1, the yellow light emitted from phosphor wheel 15 propagates along the positive Z direction. The fluorescence emitted in the negative Z direction from yellow phosphor 203 is reflected by the reflective surface of rotating substrate 202 and is emitted in the positive Z direction. These yellow light rays, which are unpolarized light, are paralleled by lenses 109 and 108 and then pass through dichroic mirror 107.
Meanwhile, the p-polarized light of the blue light emitted by the blue semiconductor lasers and then passed through dichroic mirror 107 is collected by lens 110, passes through quarter-wave plate 111 to be converted into circularly polarized light, and strikes multi-reflection mirror 112, which is placed near the focus of lens 110. The blue light incident on multi-reflection mirror 112 is reflected by multi-reflection mirror 112, again passes through quarter-wave plate 111 to be s-polarized, is collected by lens 110 into approximately parallel light, and is reflected by dichroic mirror 107. Lens 110 is an example of a second light-condensing element, whereas quarter-wave plate 111 is an example of a first wave plate.
Thus, dichroic mirror 107 combines the yellow light (containing the green and red components) from phosphor wheel 15 with the blue light from multi-reflection mirror 112, and then emits white light.
FIG. 4 shows projection display apparatus 300, which operates with the white light emitted from light source device 10. The white light from light source device 10 strikes first lens array plate 301, which is composed of a plurality of lens elements. The rays of light incident on first lens array plate 301 are split into a larger number of rays of light. The larger number of rays of light are converged by second lens array plate 302 composed of a plurality of lenses. The lens elements of first lens array plate 301 are open similar to liquid crystal panels 311, 312, and 313. The focal length of the lens elements of second lens array plate 302 is determined such that first lens array plate 301 and liquid crystal panels 311 to 313 are in approximate conjugate relation. The light from second lens array plate 302 strikes polarization converter 303.
Polarization converter 303, which is composed of a polarizing prism and a half-wave plate, converts natural light from the light source into light in one direction of polarization (s-polarized light). The yellow light as fluorescence is natural light, and therefore, is converted in one direction of polarization. Meanwhile, the blue light, which strikes as s-polarized light, is not subjected to conversion. The light from polarization converter 303 strikes superimposing lens 304. Superimposing lens 304 is used to superimpose the light from each lens element of second lens array plate 302 upon liquid crystal panels 311, 312, and 313. First lens array plate 301, second lens array plate 302, polarization converter 303, and superimposing lens 304 together compose an illumination optical system, which collects the light from light source device 10 and applies it to an area to be illuminated.
The light from superimposing lens 304 is split into blue, green, and red light by blue-reflecting dichroic mirror 305 and green-reflecting dichroic mirror 306, which are color separating means. The green light passes through field lens 307 and incident-side polarizing plate 308, and then strikes liquid crystal panel 311. The blue light is reflected by reflective mirror 318, then passes through field lens 319 and incident-side polarizing plate 310, and strikes liquid crystal panel 313. The red light passes through (refracted by) relay lenses 320 and 322, reflected by reflective mirrors 321 and 323, passes through field lens 324 and incident-side polarizing plate 309, and strikes liquid crystal panel 312.
Three liquid crystal panels 311, 312, and 313 produce green, red, and blue images, respectively as follows. These panels change the polarization state of incident light by controlling the voltage applied to the image pixels according to the video signals. In other words, the light is modulated by combining incident-side polarizing plates 308, 309, and 310 with emission-side polarizing plates 314, 315, and 316. Incident-side polarizing plates 308 to 310 are placed on one side of liquid crystal panels 311 to 313, respectively, whereas emission-side polarizing plates 314 to 316 are placed on the other side of liquid crystal panels 311 to 313, respectively. These incident-side polarizing plates 308 to 310 and emission-side polarizing plates 314 to 316 are orthogonal to their respective transmission axis. After passing through emission-side polarizing plates 314 to 316, the red light and the blue light are reflected by a red-reflecting dichroic mirror and a blue-reflecting dichroic mirror, respectively through color combining prism 317, and then are combined with green light. The resulting light strikes projection lens 325 as video light, which is an image produced by the liquid crystal panels. The light incident on projection lens 325 is projected in an enlarged scale on the screen (not shown).
1-1-2 Structure of the Essential Part of Light Source Device
Effects of multi-reflection mirror 112 in light source device 10 will now be described with reference to FIGS. 5 and 6. As shown in FIG. 5, the p-polarized blue light that has passed dichroic mirror 107 is collected by lens 110, passes through quarter-wave plate 111 to be converted into circularly polarized light, and strikes multi-reflection mirror 112. The circularly polarized blue light is then reflected by multi-reflection mirror 112 to be split into a plurality of rays of light, again passes through quarter-wave plate 111 to be s-polarized, is approximately paralleled by lens 110, and is reflected by dichroic mirror 107. Multi-reflection mirror 112 is a reflector plate placed near the focus of lens 110 (i.e., the focal point of the second light-condensing element).
FIG. 6 shows the structure of multi-reflection mirror 112. Multi-reflection mirror 112 has a first surface which the blue light strikes, and a second surface, which is the reverse side of multi-reflection mirror 112 from the first surface. The first surface is mounted with partial reflection coating 112 a, and the second surface is mounted with total reflection coating 112 b. Partial reflection coating 112 a is a dielectric multilayer coating with 30% reflectance and 70% transmittance, and total reflection coating 112 b is a dielectric multilayer coating with 98 to 100% reflectance.
Partial reflection coating 112 a reflects 30% of the incident light and allows 70% of the light to pass through it. The 70% of the passed light is reflected by total reflection coating 112 b formed on the reverse side. Next, partial reflection coating 112 a reflects 30% of the 70% light and allows 70% of the 70% light, that is, 49% of the light to pass through it. Multi-reflection mirror 112 repeats the reflection and transmission in the same manner, emitting the light of 14.7%, 4.4%, . . . . As shown in FIG. 6, the rays of light from multi-reflection mirror 112 are split into a larger number of rays of light at the above-mentioned intensity ratio, are approximately paralleled by lens 110, and are reflected by dichroic mirror 107.
In multi-reflection mirror 112 used in the present exemplary embodiment, partial reflection coating 112 a has 30% reflectance; however, the reflectance can alternatively be selected from the range of 20% to 50% to optimize the separation of the rays of light.
1-1-3 Effects of Light Source Device
As described above, in the present exemplary embodiment, multi-reflection mirror 112 can split a plurality of blue rays of light into a larger number of rays of light. Furthermore, placing multi-reflection mirror 112 near the focus of lens 110 can miniaturize the optical system. The rays of light split by multi-reflection mirror 112 are applied uniformly to first lens array plate 301. These features reduce luminance unevenness and speckle noise in the projected images and also miniaturize the light source device.
Other Exemplary Embodiments
The above exemplary embodiment has been described as a technical example of the present application, and techniques of the present disclosure are not limited to those described in the above exemplary embodiment and are applicable to other exemplary embodiments provided with modification, replacement, addition, omission, etc. It is also possible to create additional exemplary embodiments by combining components described in the above exemplary embodiment.
The above-described exemplary embodiment has described a case in which quarter-wave plate 106 converts the polarization state of the blue light from laser light sources 101 to the intensity ratio of 80% s-polarized component and 20% p-polarized component. However, in the present disclosure, the intensity ratio is not limited to this and can be determined to optimize the distribution of wavelengths of the white light emitted from light source device 10.
In the above-described exemplary embodiment, the first light-condensing element is composed of two lenses 108 and 109, but may alternatively be composed of one, three, or more lenses. In the exemplary embodiment, the second light-condensing element is composed of lens 110 alone, but may alternatively be composed of a plurality of lenses.
In the exemplary embodiment, lens 110 as an example of the second light-condensing element is placed between dichroic mirror 107 and quarter-wave plate 111 as an example of the first wave plate. Alternatively, however, quarter-wave plate 111 may be placed between dichroic mirror 107 and lens 110.
Light source device 10 in the above-described exemplary embodiment can further include a diffuser between dichroic mirror 107 and multi-reflection mirror 112. The diffuser can be placed, for example, between dichroic mirror 107 and lens 110, which is the second light-condensing element, or between lens 110 and quarter-wave plate 111, which is the first wave plate. Providing the diffuser further homogenizes the blue light reflected by multi-reflection mirror 112.
INDUSTRIAL APPLICABILITY
The present disclosure is applicable to a light source device or a projection display apparatus such as a projector.

Claims (13)

What is claimed is:
1. A light source device comprising:
a solid-state light source unit configured to emit a linearly polarized light ray;
a dichroic mirror configured to separate the linearly polarized light ray into a first linearly polarized light ray and a second linearly polarized light ray, a polarization of the second linearly polarized light ray being orthogonal to a polarization of the first linearly polarized light ray;
a fluorescent plate configured to emit light to the dichroic mirror when the fluorescent plate is excited by the first linearly polarized light ray;
a first wave plate configured to convert the second linearly polarized light ray into circularly polarized light; and
a multi-reflection mirror configured to reflect the circularly polarized light through the first wave plate to the dichroic mirror.
2. The light source device according to claim 1,
wherein the solid-state light source unit comprises:
a semiconductor laser light source configured to emit blue light; and
a second wave plate configured to emit the linearly polarized light ray by converting a polarization state of the blue light emitted from the semiconductor laser light source.
3. The light source device according to claim 1, further comprising a light-condensing element configured to collect (i) the first linearly polarized light ray and (ii) the light emitted from the fluorescent plate.
4. The light source device according to claim 1, further comprising a light-condensing element configured to collect (i) the second linearly polarized light ray and (ii) light obtained by the multi-reflection mirror reflecting the circularly polarized light through the first wave plate.
5. The light source device according to claim 4, wherein the multi-reflection mirror is placed near a focal point of the light-condensing element.
6. The light source device according to claim 4, wherein the first wave plate is placed between the multi-reflection mirror and the light-condensing element.
7. The light source device according to claim 1, wherein the multi-reflection mirror has a predetermined incident surface with a reflectance of 20% to 50%, inclusive.
8. The light source device according to claim 1, further comprising a diffuser placed between the dichroic mirror and the first wave plate.
9. A projection display apparatus comprising the light source device according to claim 1.
10. The light source device according to claim 1,
wherein the multi-reflection mirror includes a first surface and a second surface, and
wherein in the multi-reflection mirror, the circularly polarized light is reflected between the first surface and the second surface.
11. The light source device according to claim 10, wherein the first surface of the multi-reflection mirror has a partial reflection coating, and the second surface of the multi-reflection mirror has a total reflection coating.
12. The light source device according to claim 1,
wherein the light emitted by the fluorescent plate when the fluorescent plate is excited by the first linearly polarized light ray is yellow light,
wherein light obtained by the multi-reflection mirror reflecting the circularly polarized light through the first wave plate is blue light, and
wherein the dichroic mirror emits white light by combining (i) the yellow light emitted by the fluorescent plate when the fluorescent plate is excited by the first linearly polarized light ray with (ii) the blue light obtained by the multi-reflection mirror reflecting the circularly polarized light through the first wave plate.
13. The light source device according to claim 1, wherein the first linearly polarized light ray is an s-polarized component of the linearly polarized light ray, and the second linearly polarized light ray is a p-polarized component of the linearly polarized light ray.
US15/944,451 2017-05-18 2018-04-03 Light source device and projection display apparatus Active US10310364B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-098682 2017-05-18
JP2017098682 2017-05-18
JP2018029692A JP2018194819A (en) 2017-05-18 2018-02-22 Light source device and projection image display device
JP2018-029692 2018-02-22

Publications (2)

Publication Number Publication Date
US20180335685A1 US20180335685A1 (en) 2018-11-22
US10310364B2 true US10310364B2 (en) 2019-06-04

Family

ID=64271600

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/944,451 Active US10310364B2 (en) 2017-05-18 2018-04-03 Light source device and projection display apparatus

Country Status (2)

Country Link
US (1) US10310364B2 (en)
CN (1) CN108957925A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10712645B2 (en) * 2018-04-28 2020-07-14 Coretronic Corporation Projection apparatus and illumination system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061525A (en) 2011-09-14 2013-04-04 Casio Comput Co Ltd Diffusion wheel for light source, light source device, and projector
US20140293232A1 (en) 2013-03-27 2014-10-02 Panasonic Corporation Light source device and projection display device
WO2015151180A1 (en) 2014-03-31 2015-10-08 Necディスプレイソリューションズ株式会社 Light source device and projector
US20160223895A1 (en) 2015-01-30 2016-08-04 Panasonic Intellectual Property Management Co., Ltd. Light source apparatus and projection display apparatus
JP2016145965A (en) 2015-01-30 2016-08-12 パナソニックIpマネジメント株式会社 Light source device and projection-type image display device
JP2016180818A (en) 2015-03-23 2016-10-13 キヤノン株式会社 Illumination optical system and projection type display device using the same
US20170082912A1 (en) 2014-03-31 2017-03-23 Nec Display Solutions, Ltd. Light source device and projector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012108486A (en) * 2010-10-21 2012-06-07 Panasonic Corp Light source device and image display
JP5874058B2 (en) * 2010-12-06 2016-03-01 パナソニックIpマネジメント株式会社 Light source device and projection display device
CN103207507B (en) * 2012-01-11 2015-07-08 中强光电股份有限公司 Light source module and projector
JP6056001B2 (en) * 2012-06-04 2017-01-11 パナソニックIpマネジメント株式会社 Light source device and projection display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061525A (en) 2011-09-14 2013-04-04 Casio Comput Co Ltd Diffusion wheel for light source, light source device, and projector
US20140293232A1 (en) 2013-03-27 2014-10-02 Panasonic Corporation Light source device and projection display device
JP2014209184A (en) 2013-03-27 2014-11-06 パナソニック株式会社 Light source device and projection type video display device
WO2015151180A1 (en) 2014-03-31 2015-10-08 Necディスプレイソリューションズ株式会社 Light source device and projector
US20170082912A1 (en) 2014-03-31 2017-03-23 Nec Display Solutions, Ltd. Light source device and projector
US20160223895A1 (en) 2015-01-30 2016-08-04 Panasonic Intellectual Property Management Co., Ltd. Light source apparatus and projection display apparatus
JP2016145965A (en) 2015-01-30 2016-08-12 パナソニックIpマネジメント株式会社 Light source device and projection-type image display device
JP2016180818A (en) 2015-03-23 2016-10-13 キヤノン株式会社 Illumination optical system and projection type display device using the same

Also Published As

Publication number Publication date
US20180335685A1 (en) 2018-11-22
CN108957925A (en) 2018-12-07

Similar Documents

Publication Publication Date Title
US8955985B2 (en) Lighting device and projection-type display device using same
CN107608166B (en) Light source device and projection display device
CN107870503B (en) Illumination device and projector
EP2687903B1 (en) Phosphor-equipped illumination optical system and projector
JP6056001B2 (en) Light source device and projection display device
US10101647B2 (en) Illuminator and projector
US10649321B2 (en) Light source device and projector
US20100225885A1 (en) Projector
JP6632231B2 (en) Light source device, lighting device using the same, and projection display device
US10599025B2 (en) Light source device and projector
US11327392B2 (en) Light source device and projector in which wave plates are downsized
US20210011365A1 (en) Light source device and projection display device
JP2018194819A (en) Light source device and projection image display device
TWI731073B (en) Illumination system
CN109324467B (en) Light source device and projection display device
KR20170133936A (en) Light source device and projector comprising the same
US10310364B2 (en) Light source device and projection display apparatus
US11300861B2 (en) Light source apparatus suitable for image projection apparatus
JP5433561B2 (en) Light source device
JPH1138528A (en) Liquid crystal projector
JP2000321535A (en) Parallel light polarizing conversion device, lighting device, and liquid crystal projector
WO2021229762A1 (en) Light source device and projector
US20230259013A1 (en) Light source device and projection display apparatus
JP2010113186A (en) Projection type display device
JP2010020030A (en) Projector apparatus and image synthesizing device for the same

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OKUNO, MANABU;TANAKA, TAKAAKI;REEL/FRAME:046135/0159

Effective date: 20180313

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4