US10288815B2 - Fiber mounting units and fiber receiving elements - Google Patents
Fiber mounting units and fiber receiving elements Download PDFInfo
- Publication number
- US10288815B2 US10288815B2 US15/958,280 US201815958280A US10288815B2 US 10288815 B2 US10288815 B2 US 10288815B2 US 201815958280 A US201815958280 A US 201815958280A US 10288815 B2 US10288815 B2 US 10288815B2
- Authority
- US
- United States
- Prior art keywords
- fiber
- unit
- section
- optical
- receiving element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/3628—Mechanical coupling means for mounting fibres to supporting carriers
- G02B6/3632—Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
- G02B6/3636—Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4439—Auxiliary devices
- G02B6/444—Systems or boxes with surplus lengths
- G02B6/4441—Boxes
- G02B6/4446—Cable boxes, e.g. splicing boxes with two or more multi fibre cables
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4266—Thermal aspects, temperature control or temperature monitoring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/04—Arrangements for thermal management
- H01S3/042—Arrangements for thermal management for solid state lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06704—Housings; Packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/3628—Mechanical coupling means for mounting fibres to supporting carriers
- G02B6/3648—Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
- G02B6/3656—Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being micropositioning, with microactuating elements for fine adjustment, or restricting movement, into two dimensions, e.g. cantilevers, beams, tongues or bridges with associated MEMs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/04—Arrangements for thermal management
- H01S3/0405—Conductive cooling, e.g. by heat sinks or thermo-electric elements
Definitions
- This disclosure relates to fiber laser systems and fiber mounting units as well as fiber cooling cartridges specially designed for fiber cooling as well as fiber receiving elements used therein.
- seed and pump radiation are typically supplied and guided away monolithically via passive transport fibers of the fiber amplifier unit.
- U.S. Pat. No. 9,014,220 B discloses a free-beam coupling.
- this coupling requires positioning optical components in relation to each other, where the positioning requires high accuracy and stability.
- thermal loads such as those due to fluctuations of the outside temperature during transport and waste heat created by the laser process itself (for example, by absorption, quantum defect, and photo-darkening) there can be strains or spatial changes within the fiber laser configuration. The latter can lead to deteriorations and instabilities when coupling in or out, whereby the coupling in is usually more critical for the performance of the fiber laser amplifier system.
- This disclosure relates to fiber laser amplifier systems and fiber mounting units for such fiber laser amplifier systems that provide low or reduced thermal susceptibility.
- a fiber mounting unit for providing an optical fiber for a fiber laser amplifier system includes a base body having a fiber end attachment section, a fiber guide section, and a connection section between the fiber end attachment section and the fiber guide section.
- the fiber end attachment section is adapted to attach a receiving element that holds a fiber end portion of the optical fiber
- the fiber guide section is adapted to guide a fiber central portion of the optical fiber.
- the connection section can be adapted as a flexure bearing between the fiber end attachment section and the fiber guide section.
- a fiber receiving element comprises a bottom unit extending along a longitudinal direction.
- the bottom unit is adapted for attachment to a fiber end attachment section of a fiber mounting unit as mentioned above.
- the fiber receiving element comprises a covering unit, which can be fixed on the bottom unit to at least partially cover the bottom unit.
- the bottom unit and the covering unit are adapted to receive an end section of an optical fiber so that the end section extends along the longitudinal direction and a fiber end of the optical fiber is positionable at a coupling side of the bottom unit in a free-beam coupling position.
- the support can be configured such that the free-beam coupling position remains stationary even in the event of thermally-induced volume changes.
- a fiber laser unit (e.g., a fiber laser amplifier unit or a laser oscillator) comprises an optical plate, a fiber mounting unit such as described above having a fiber guide section and a fiber end attachment section, an optical fiber, and a receiving element receiving an end of the optical fiber, the receiving element being attached to the fiber end attachment section.
- the following exemplary features can be available in amplifier units of the different laser power classes, including flexure bearings to ensure degrees of freedom of movement for compensation of thermal deformation(s), or flexure bearings mounted only at the input coupling side or only at the output coupling side or on both sides of a cartridge base body.
- a tubular absorber sleeve is at a side opposite the pump coupling for absorbing pump light not absorbed in the amplifier fiber.
- UKP systems typically use short fibers to keep nonlinearities small. It is advantageous to couple the pump light at the signal output side to keep the effective absorption length of the active fiber as short as possible. Thereby, non-absorbed pump light can escape at the opposite seed coupling side. Due to the large numerical aperture of typical active fibers, this pump light has a strong divergence.
- the free apertures in the system can be limited and one can work with small optical elements. This has a positive effect on the stability of the input coupling.
- the low-divergence components of the pump light are thereafter absorbed with classical absorber components (e.g., dichroic mirror and absorber).
- the absorber sleeve can be made of a material with a high thermal conductivity (e.g., copper or aluminum) and can also have with absorbent layer and/or have a material structure of the inner surface.
- fiber guide grooves in the fiber mounting unit can allow a tension-free fiber path.
- a spiral with a constant gradient allows the optical fiber at the intersection point to run in different planes—thus, without contact—and therefore not exert any interacting stresses.
- Fan-like grooves can be integrated into the fiber support surface to compensate for different fiber lengths due to tolerances and production.
- a coating of the fiber can be removed or a mode-stripper can be attached close to the fiber ends, so as not to couple out light guided in the pump layer at the fiber surface.
- the amplifier units can include a water-cooled support element for holding an absorber sleeve (for example, an aluminum sleeve) and a coupling lens, whereby through contact with the fiber receiver and the fiber support, the fiber itself is air-cooled, e.g., cooled only indirectly via contact heat dissipation.
- W watts
- a cooled element can hold the fiber end, whereby the cooling can take place either via a heat sink with cooling channels or via a direct (circumferential) flushing of the fiber with a coolant (e.g., water).
- a coolant e.g., water
- a three-point support of the mounting element can ensure that the outlet facet or the fiber ends are kept locally stable even under thermal expansion.
- One can embed the (active optical) fiber in a typically (water-) cooled unit/cartridge (e.g., made of aluminum) for stress-free receiving without causing constraining forces.
- the fiber can be cast typically with an optically transparent and heat-conducting material (e.g., silicone). The material typically has a high thermal conductivity to simplify heat dissipation.
- a fiber inlet and fiber outlet can be at the same beam height by tilting the fiber guide surface, e.g., the geometry of the recess.
- FIG. 1 is a schematic 3D illustration of a fiber mounting unit with fiber receiving elements, platforms and mounts for a high power fiber laser amplifier system.
- FIG. 2 is a schematic 3D illustration of the fiber mounting unit shown in FIG. 1 without cover and with a platform and optical input coupling elements.
- FIG. 3 is a view of a bottom side configuration of the fiber mounting unit shown in FIG. 1 .
- FIG. 4 is a schematic 3D illustration representation of the fiber mounting unit shown in FIG. 1 without fiber receiving elements and platforms.
- FIG. 5 is a top view of the fiber mounting unit shown in FIG. 1 with fiber receiving elements to illustrate the flexure bearing.
- FIG. 6 is an enlarged section of a connection section with a flexure bearing.
- FIG. 7 is a perspective view of a flexure bearing mount.
- FIG. 8 is a schematic side view of the fiber mounting unit shown in FIG. 4 .
- FIG. 9 is a cross section of a fiber receiving element with optical input coupling elements for a high power fiber laser amplifier system.
- FIG. 10 is a schematic 3D illustration of an absorber sleeve.
- FIG. 11A and FIG. 11B are schematic 3D illustrations of a fiber receiving element for a high power fiber laser amplifier system.
- FIG. 12 is a top view onto a base body of a fiber receiving element.
- FIG. 13 is a schematic 3D illustration of the base body shown in FIG. 12 to illustrate the orientation of compensation axes.
- FIG. 14 a top view on a fiber mounting unit with fiber receiving elements and mounts for a low or medium power fiber laser amplifier system.
- FIG. 15 is a motion restriction device for limiting a degree of freedom of a flexure bearing.
- FIG. 16 is a connection configuration of two segments of the fiber mounting unit shown in FIG. 14 .
- FIG. 17 is a fiber receiving element for a low or medium power fiber laser amplifier system.
- the mounting embodiments disclosed herein can keep the position of a fiber end stable with respect to the positions of the optical components under thermal expansion. Furthermore, the stability can be increased by a special bearing of a fiber receiving element—especially at higher powers and, thus, at potentially larger thermal deformations.
- FIGS. 1 to 14 illustrate an embodiment that can be used in high power fiber laser amplifier systems. Higher powers in this context range from tens of watts to several hundred watts (average power). The features, when reduced or selected in their scope, can be applied analogously in fiber laser amplifier systems with low and medium power. Low and medium power ranges in this context are from a few watts up to approximately 50 W (average power). Such embodiments of fiber laser amplifier systems with low and medium power are described in connection with FIGS. 14 to 17 .
- FIGS. 1 to 8 illustrate flexure bearings for fiber receiving units.
- FIGS. 9 and 10 relate to components for the absorption of exiting unused pump light
- FIGS. 11A to 13 relate to a fiber receiving element for position compensation during thermal expansion.
- FIG. 1 shows a 3D illustration of an embodiment of a fiber mounting unit 1 for a fiber laser amplifier system.
- the fiber mounting unit 1 has a base body 1 A and a cover 1 B.
- the fiber mounting unit 1 is mounted on an optical plate 5 (e.g., a laser support) with two rigid conventional mounts 3 A, 3 B (mount 3 B is shown in FIG. 4 ) and a flexure bearing mount 3 C.
- an optical plate 5 e.g., a laser support
- FIG. 1 shows two platforms 7 A, 7 B for the stationary support of optical elements, and several cooling connections 9 for supplying a cooling fluid (e.g., water) to a cooling circuit 9 A (shown in detail in FIG. 3 ).
- Platforms 7 A, 7 B are each firmly connected to the corresponding mounts 3 A, 3 B (e.g., screwed) and have mounting surfaces 11 for mounting the optical elements.
- An arrangement of such an optical platform system is shown schematically in FIG. 2 .
- FIG. 1 shows two fiber receiving elements 13 .
- the fiber receiving elements 13 each receive one of the opposite fiber ends of an optical fiber (herein also called a fiber) extending under the cover 1 B of the fiber mounting unit 1 .
- the fiber receiving elements 13 are adapted to spatially fix the fiber with respect to the corresponding mounts 3 A, 3 B as explained in connection with FIGS. 11A to 13 .
- the fiber mounting unit 1 is adapted in its dimensions to a given fiber length.
- the fiber usually runs circularly along a ring structure formed by the fiber mounting unit 1 .
- the fiber mounting unit 1 can extend in each of the X- and Y-directions of the axes indicated in FIG. 1 over several tens of centimeters. For example, it can extend 30 cm for fiber lengths in the range of 180 cm.
- the solid base body 1 A has a thickness D (shown in FIG. 8 ) that can be for example, 5 mm or more (e.g., 15 mm) for a fiber mounting unit made to hold such a 180 cm long fiber.
- the fiber mounting unit can be made of aluminum.
- the base body 1 A is relatively stiff in the Z-direction, but allows a deformation caused by temperature changes.
- the features explained below are intended to minimize the influence of deformation on the underlying amplifier performance.
- the embodiments shown herein decouple a thermally-induced deformation of the base body 1 A from the platforms 7 A, 7 B as well as from the fiber receiving elements 13 .
- FIG. 2 shows an example of an optical platform system 15 in which various optical elements are mounted on the corresponding mounting surface 11 of platform 7 B.
- optical elements include an optical telescope unit 17 A, deflecting mirrors 17 B, beam monitoring units 17 C, and a focusing lens 17 D.
- FIG. 2 shows the base body 1 A without cover 1 B to illustrate the fiber path within the fiber mounting unit 1 .
- the platform 7 A is also not shown in FIG. 2 to better illustrate the position of the receiving unit 13 with respect to the mount 3 A.
- the optical platform system 15 is an example of free-beam seed coupling, where seed laser light is fed to the optical telescope unit 17 A with an optical fiber 18 , the position of the seed laser light is monitored, and the seed laser light is focused on a fiber end of an (amplifier) optical fiber 19 located in the fiber mounting unit 1 .
- the optical platform system 15 allows a single-mode coupling.
- an appropriate arrangement of optical components such as position-sensitive optical components, can also be provided at a pump side such as on platform 7 A in FIG. 1 .
- the optical fiber 19 is designed for wavelengths of approximately 1 to 3 ⁇ m with ytterbium, holmium, thulium, and/or erbium doping.
- the optical fibers are designed to amplify light pulses with femtosecond (fs) pulse durations up to nanosecond (ns) pulse durations.
- Exemplary embodiments include step-index fibers, and photonic crystal fibers.
- Fiber core diameters range from a few micrometers to several hundred micrometers (e.g., 1 ⁇ m to 200 ⁇ m).
- Absorption lengths can be in the range of centimeters to the range of several meters. Resulting fiber lengths range from a few centimeters to several meters. The shorter the fiber, the lower the possible non-linear influence, but the stronger the fiber has to be pumped and the higher the thermal loads. Thermal loads are counteracted by thermal decoupling.
- the optical fiber 19 runs one and a half times around an inner opening 21 of the ring-type fiber mounting unit 1 in a groove 20 on the top of the base body 1 A.
- the two ends of the optical fiber 19 are held by the receiving elements 13 , so that the fiber 19 extends in the Y direction (longitudinal direction of the receiving element) in the area of the receiving elements 13 .
- the optical fiber 19 runs between the receiving elements 13 on a fiber support surface of the groove 20 in the base body 1 A.
- Groove 20 has a lamella structure 23 to adapt the fiber path, which allows adjusting the length of the fiber path while maintaining a guiding effect of the fiber 19 .
- groove 20 runs along approximately 540°, similar to a tilted spiral, so that the two fiber ends are approximately at the same height, but there is no contact of the fiber 19 at a crossing point 25 .
- the bottom of groove 20 is configured as a fiber support surface to thermally couple fiber 19 and base body 1 A as much as possible.
- the cooling circuits 9 A can be, for example, copper pipes 37 integrated into the base body 1 A.
- the copper pipes 37 are arranged to follow the path of the optical fiber 19 and to lead into the cooling connections 9 . Accordingly, heat can be dissipated from the cartridge area, which is heated most by the optical fiber 19 during operation.
- a heat-conducting, typically soft material such as silicone can be introduced into the groove 20 .
- FIGS. 3 to 6 illustrate the structure of the base body 1 A with regard to the flexure bearing concept.
- the base body 1 A has two fiber end attachment sections 31 A, 31 B, a fiber guide section 33 , and a connection section 35 A or 35 B, respectively, between the fiber end attachment sections 31 A, 31 B and the fiber guide section 33 .
- the attachment to the optical plate 5 described above is made at the fiber end attachment sections 31 A, 31 B. Accordingly, the fiber end attachment sections 31 A, 31 B are provided with mounting surfaces at their bottom side 11 A, 11 B for fixing the mounts 3 A, 3 B. Furthermore, the fiber end attachment sections 31 A, 31 B are adapted for fixing the fiber receiving elements 13 that each hold a fiber end of the optical fiber 19 , as well as for mounting the optical platform systems 15 .
- the fiber guide section 33 includes the features previously explained, such as the groove 20 and the lamella structure 23 for guiding a fiber central portion of the optical fiber 19 .
- connection sections 35 A, 35 B are configured as a flexure bearing in the embodiment of the high power fiber laser amplifier system.
- a flexure bearing can be formed by appropriate material shaping. The purpose of the flexure bearing is to allow elastic deformation without plastic deformation.
- the flexure bearing in connection section 35 A, 35 B is formed by a spatial separation of the fiber guide section 33 from the fiber end attachment sections 31 A, 31 B by incisions 41 A, 41 B, and/or by material reduction. That is, material is removed laterally along the X-axis.
- Exemplary relief bores 42 (see FIG. 6 ) together with a lowering of a bottom surface 43 , which can partially extend into the associated connection section, can weaken the material forming the flexure bearing. Such material modifications generally influence the degrees of freedom of the flexure bearing.
- the flexure bearing provides a degree of freedom of movement of the fiber guide section 33 with respect to the fiber end attachment sections 31 A, 31 B in the X-Y plane.
- this is indicated by an arrow 39 A and in FIG. 5 by arrows 39 B.
- the flexure bearing cannot have a degree of freedom in the Z direction.
- thermal deformations are absorbed by relative movements in the X-Y plane at the flexure bearings of the connection sections 35 A, 35 B.
- connection sections 35 A, 35 B dashed ovals
- zones of lateral material weakening solid ovals
- FIG. 6 shows an enlarged view of the fiber end attachment section 31 B in the area of the corresponding connection section 35 B.
- the bottom surface 43 extends from the fiber end attachment section 31 B via the connection section 35 B into an edge area of the fiber guide section 33 .
- the bottom surface 43 is narrower at the fiber guide section side in the X direction than at the input coupling side.
- Each of the bottom surfaces 43 has three depressions 45 A, 45 B, 45 C as bearing surfaces for positioning balls 84 A, 84 B, 84 C (shown in FIG. 9 ).
- the positioning balls are used for an expansion-compensated bearing and/or thermal separation of the mounting element 13 .
- the fiber end attachment section 31 B is configured for mounting the receiving element 13 (for example, using two threads 47 A, 47 B) and for mounting to the mount 3 B using a through hole 49 arranged centrally in the base surface 43 .
- the bottom surface 43 is laterally bounded by side walls 51 . Side walls 51 are used for mounting platforms 7 A, 7 B, e.g., with pin inserts and threads 47 C.
- An additional degree of freedom of movement of the mounting of the base body 1 A in the Y direction further reduces tensions due to thermal expansion effects.
- an arrow 39 C indicates such an additional direction of movement for compensation of thermal changes in the fiber mounting unit 1 .
- a flexure bearing mount 3 C can accept a change of position in the Y-direction without exerting any additional force on the fiber mounting unit 1 .
- the flexure bearing mount 3 C is shown enlarged in FIG. 7
- FIG. 8 illustrates the degree of freedom (arrow 39 C) provided by the flexure bearing mount 3 C in a side view of the configuration shown in FIG. 4 .
- the flexure bearing mount 3 C can be mounted on a mounting surface 11 C on the fiber guide section 33 (see FIG. 3 ).
- the flexure bearing mount 3 C includes a base 53 for mounting to the optical disc 5 .
- the flexure bearing mount 3 C includes an upper part 55 for mounting to the fiber mounting unit 1 (generally to an optical component), and generally at least one flexure bearing.
- the flexure bearing mount 3 C also has a plate-shaped central part 57 that is connected to the base 53 and to the upper part 55 via respective flexure bearings 59 A, 59 B.
- the plate shape of the central part 57 requires a linearly extending flexure bearing, so that there is no rigidity in the Y direction for the flexure bearing mount 3 C. Accordingly, an expansion in Y direction of the base body 1 A leads to a slight tilting of the middle section 57 in the Y direction (accompanied by a minimal change in height).
- the bottom surfaces 43 of the fiber end attachment sections 31 A, 31 B represent spatial fixed points due to the fixed mounting at the mounts 3 A, 3 B.
- the fiber receiving elements 13 are arranged at these fixed points.
- FIG. 9 shows a simplified cross-section of the fiber receiving element 13 as well as a part of the optical platform system 15 shown in FIG. 2 .
- the focusing input coupling lens 17 D is mounted in a lens holder 17 D′ together with a beam sleeve 17 E.
- the fiber receiving element 13 has a bottom unit 61 extending along a longitudinal direction (the Y direction in FIG. 1 ) and a covering unit 63 mounted on the bottom unit 61 and at least partially covering the bottom unit 61 .
- the covering unit 63 has a cooling channel 65 that enables active cooling of the fiber receiving element 13 via cooling connections 9 ′.
- a fiber end section 19 A of the optical fiber 19 which has a fiber end 67 at the input coupling side, extends between bottom unit 61 and covering unit 63 .
- the lens 17 D is part of a free-beam coupling that focuses a laser beam that is to be coupled in a stationary manner with respect to the fiber end attachment section 31 A, 31 B on a defined fiber end position (in case of a spatially fixed fiber end 67 , the fiber end 67 itself).
- the lens 17 D thus allows incident seed laser light 68 A to be coupled into the optical fiber 19 .
- An analog or simplified set-up due to the easier coupling of the pump light can be used at the pump side.
- pump light 68 B exits the fiber end 67 in a direction opposite to the seed laser light 68 A.
- the exiting pump light 68 B propagates within the beam sleeve 17 E and can be absorbed due to its large divergence on the inner surface of the beam sleeve 17 E.
- FIG. 10 shows an enlarged view of the beam sleeve 17 E.
- a cylindrical section 71 is held by a support element 73 and cylinder axis of cylinder section 71 overlap with an optical axis 68 ′ of the seed laser light 68 A.
- a funnel section (not shown) can be arranged next to the cylindrical section 71 in the direction of the cylinder axis.
- the exiting pump beam 68 B is absorbed on the inside of the cylindrical section 71 , which has an absorbing layer, and strongly heats up the beam sleeve 17 E.
- the support element 73 as shown has a cooling channel that can be connected to a cooling circuit via cooling connections 9 ′′.
- An insulating element 75 can be in contact with the corresponding platform 7 A, 7 B and due to its low thermal conductivity thermally decouples the heated cylindrical section 71 from the platform 7 A, 7 B.
- the support element 73 can be thermally insulated from the lens holder 17 D′ and the lens 17 D (for example, they can be spaced apart).
- FIGS. 11A, 11B, 12, and 13 show an example of a fiber receiving element 13 with a specially configured bottom side for interaction with the bottom surface 43 of the fiber end attachment sections 31 A, 31 B via balls as explained below.
- the fiber receiving element 13 can expand or contract under different thermal conditions, so that it is not necessarily guaranteed that the fiber end 67 is also spatially fixed.
- FIGS. 11A and 11B show perspective views of the fiber receiving element 13 with the cooling connections 9 ′′ originating from the covering unit 63 .
- the covering unit 63 is firmly screwed to the bottom unit 61 .
- Two fixing screws 69 together with compression springs 69 A press the fiber receiving unit 13 onto the bottom surface 43 .
- the position of the fixing screw 69 is explained below.
- a recess 81 on the bottom side of the bottom unit 61 and openings 83 on the fiber outlet side of the receiving element 13 can be seen.
- the recess 81 and the openings 83 are connected to a support of the fiber receiving element 13 on the base surface 43 via balls, whereby the support causes a thermal position compensation.
- three pairs of cylindrical pins are provided to allow a three-point support on three balls 84 A, 84 B, 84 C that align with and fit into hollows 45 A, 45 B, 45 C of bottom surface 43 .
- a first pair of cylindrical pins 85 A forms a first guide rail system adapted to guide a thermal expansion movement of the fiber receiving element 13 along a first axis 86 A.
- the axis 86 A is primarily aligned along the direction of the fiber end section 19 A and, when the mounting element 13 is mounted, the first axis 86 A is directed to a desired free-beam coupling position 87 , possibly with a slight tilt to the X-Y plane of FIG. 1 .
- a second pair of cylindrical pins 85 B forms a second guide rail system adapted to guide a thermal expansion movement along a second axis 86 B.
- the second axis 86 B extends substantially at an angle less than 90° with respect to the first axis 86 A and, when the receiving element 13 is installed, the second axis 86 B is directed to the free-beam coupling position 87 .
- the second axis 86 B runs from the rear (i.e., from the fiber exit side) and from below through the desired free-beam coupling position 87 .
- the inclined orientation of the pair 85 B of cylindrical pins of equal length leads in FIG. 12 to a reduced length in the drawing plane shown (see comparison with pair 85 A).
- a third pair 85 C of cylindrical pins forms a third guide rail system designed to guide a thermal expansion movement along a third axis 86 C. Similar to the second axis 86 B, the third axis 86 C extends substantially at an angle of less than 90° to the first axis 86 A and is oriented towards the free-beam coupling position 87 .
- the alignment of the second and third axes may be mirror-symmetrical to a Y-Z symmetry plane extending through the free-beam coupling position 87 .
- the three axes 86 A, 86 B, 86 C meet in the desired free-beam coupling position 87 and form the edges of a pyramid, with the free-beam coupling position 87 being the tip of the pyramid.
- This orientation relative to each other causes the position of the free-beam coupling position 87 to remain essentially stationary, if the positions of the support of the bottom side on the balls 84 A, 84 B, 84 C change in the event of a change in volume of the fiber receiving element 13 due to thermal conditions.
- the 84 A, 84 B, 84 C represent fixed points, along which the bottom side of the expanding/shrinking receiving element moves.
- the fiber receiving element 13 is lowered when the latter expands.
- the fiber receiving element 13 is raised when the fiber receiving element 13 is reduced in volume. This lowering and raising takes place at the input coupling side due to expansion in the lateral direction.
- the described guide rail system configuration provides height compensation, particularly with respect to the second fixed point and the third fixed point, to compensate for the change in size of the fiber receiving element 13 .
- the compensation movement described above requires a certain mobility of the fiber receiving element 13 . This mobility can be ensured by fixing the fiber receiving element with the screws 69 and the compression springs 69 A.
- the fixation can be made in the area of a surface center of gravity 88 of a triangle 89 spanned by the three fixed points.
- the positions of the screws 69 are arranged laterally from the surface center of gravity along the X-axis, so that tilting about a transverse axis 90 is possible.
- the transverse axis 90 runs through the two screws 69 and the surface center of gravity 88 .
- the fiber end section 19 A by arranging the fiber end section 19 A accordingly, the fiber end 67 can be positioned in the free-beam coupling position 87 . Furthermore, the free-beam coupling position 87 can also be adjusted on the laser side by respective alignment of the incident seed laser beam 68 A.
- a fiber mounting unit 101 for fiber laser amplifier systems with low to medium power is explained below with reference to FIGS. 14 to 17 .
- the fiber mounting unit 101 shown in FIG. 14 again has a base body 101 A with a fiber end attachment section 131 , a fiber guide section 133 , and a connection section 135 configured as a flexure bearing between the fiber end attachment section 131 and the fiber guide section 133 .
- the fiber end attachment section 131 is the seed side, i.e. a seed laser beam is fed to the fiber receiving element 113 attached to the fiber end attachment section 131 to a seed end of an amplifier fiber 119 held by the fiber receiving element 113 .
- the base body 101 A has a stationary fiber end attachment section 131 ′ not connected via a flexure bearing.
- a fiber receiving element 113 ′ is attached to the fiber end attachment section 131 ′, which is adapted for coupling pump light into a pump end of the amplifier fiber 119 .
- the base body 101 A is divided into several segments in the area of the fiber guide section 133 : a main segment 102 A and two circular section segments 102 B, 102 C.
- the segments are connected to each other via segment connections 104 .
- the segment connections 104 are each attached to an optical plate via a mounting unit 103 including a flexure bearing and a mount.
- a segment connection 104 or motion restriction device is shown in detail in FIG. 15 .
- Rail-like ring sections of the main segment 102 A and of the circular section segment 102 B are aligned with each other in such a way that a continuous recess 120 is formed.
- the optical fiber runs in a circle at least once along the ring-shaped recess 120 .
- the segment ends are screwed together via a cover plate 140 A and a bottom plate 140 B.
- the cover plate 140 A further has a comb structure 142 .
- the comb structure 142 has adjacent recesses in which the fiber can be arranged according to its length.
- the comb structure 142 can also be spring-like to provide a slight pressing force onto the fiber 119 .
- the lower plate 140 B has a flexure bearing 144 on an inner long side.
- the flexure bearing 144 connects the bottom plate 140 B with a mounting area 146 that can be screwed to a mount 103 .
- the flexure bearing 144 permits thermal changes in the shape of the base body 101 A without causing increased tension.
- the base body 101 A in particular the fiber guide section 133 and the recess 120 therein, also permits a circular or spiral fiber path.
- the receiving elements 131 , 131 ′ are configured in such a way that the fiber ends leave the fiber receiving elements with a height offset of ⁇ H from the size of the fiber diameter itself (e.g., 0.25 mm to e.g., 4 mm).
- the two ends are thus identically aligned except for the height offset ⁇ H.
- the optical fiber 119 thus completes a circle (360°).
- the base body 101 A is only water cooled in the area of the receiving units due to the lower performance requirements. In the area of the ring segments cooling takes place primarily via the ambient air and the heat transfer to the base, which can be made of aluminum, for example.
- cover cooling plates 148 , 148 ′ can be provided next to the receiving elements 113 , 113 ′ (see also FIG. 17 ).
- the cover cooling plate 148 ′ can be as large as possible in the area of the receiving element at the pump side.
- the cover cooling plate 148 is smaller due to incisions 141 ( FIG. 16 ) in the area of connection section 135 ( FIG. 14 ).
- the fiber receiving elements may be screwed directly onto the fiber end attachment sections 131 , 131 ′ (see FIG. 16 and FIG. 17 ).
- a thickness D′ of the base body 101 A in the Z direction can be reduced (for example, to a few millimeters).
- this can lead to a degree of freedom of movement of the flexure bearing in the Z direction.
- a pair of guide plates 150 partly bridge the incision 141 and thus prevent movement in the Z direction of the fiber end attachment section 131 .
- FIG. 16 illustrates the fixing of the guide plates 150 with screws 153 .
- the fiber 119 extends on the supporting surface 152 of the recess 120 , whereby the recess 120 tapers in the direction of the fiber receiving elements 113 , 113 ′.
- FIG. 17 shows an exploded view of the fiber receiving element 113 .
- the fiber receiving element 113 has a bottom unit 161 and a covering unit 165 .
- the covering unit 165 can be screwed to the bottom unit 161 , and the bottom unit 161 can be screwed to the fiber end attachment section 131 with screws 153 .
- a support element 173 is on the input coupling side of the bottom unit 161 .
- the support element 173 and/or the bottom unit 161 can be connected to cooling circuits, as illustrated by arrows 154 .
- the support element 173 has a through-hole opening 156 along the beam axis 168 ′.
- a cylindrical absorber sleeve 117 E can be attached to the inner wall surface of the through hole opening 156 .
- the mounting is especially adapted for good thermal contact.
- the absorber sleeve 117 E is used to remove the highly divergent components of the exiting pump laser light from the optical system.
- a mounting ring 158 extends around the through hole opening 156 .
- the mounting ring 158 can have several segments and is used for thermally insulated mounting of a lens holder 117 D′.
- the lens holder 117 D′ has a cylindrical design so that a coupling lens 117 D can be attached to its front by gluing it on.
- This arrangement allows thermally decoupling the lens 117 D from the absorber sleeve 117 E, so that thermal influence on the lens can be reduced or even avoided.
- the input coupling units disclosed herein primarily include a coupling lens system and an end cap optionally arranged at the fiber end; the latter is particularly important at higher powers. If higher laser powers in the range of several tens of watts to several hundreds of watts (average power) are generated, additional optical elements such as collimating lenses and deflection mirrors can also be mounted on the coupling unit.
- Support of the receiving element via balls can cause additional thermal insulation of the receiving element from the bottom surface.
- the support of the platforms may float above the table top, and can be used on one or both sides for pump laser radiation and seed laser radiation.
- the fiber receiving element is made, for example, of a material with a high thermal conductivity (e.g., copper).
- fiber mounting unit used herein includes inter alia (actively cooled) fiber holding cartridges, which are also referred to as fiber cooling cartridges.
- a flexure bearing mount has a base for attaching it to an optical plate and an upper part for attaching it to an optical component, and at least one flexure bearing.
- a flexure bearing mount also has a central part, one end of which is connected to the base and the other end to the upper part via a flexure bearing, respectively.
- an absorber sleeve can be positioned such that light exiting from the fiber end is intercepted.
- the absorber sleeve has—arranged on a support element—a cylindrical section and/or a funnel section.
- An acute end of the funnel section can have an opening arranged with respect to the fiber end position such that light exiting from the fiber end propagates primarily within the beam sleeve, and/or wherein the support element has a cooling structure connectable with cooling ports, and/or is mounted via an insulating element to the platform.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optical Couplings Of Light Guides (AREA)
- Lasers (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015013689.5A DE102015013689A1 (de) | 2015-10-21 | 2015-10-21 | Faserhalterungseinheit und Faseraufnahmeelement |
DE102015013689.5 | 2015-10-21 | ||
DE102015013689 | 2015-10-21 | ||
PCT/EP2016/074970 WO2017067924A1 (de) | 2015-10-21 | 2016-10-18 | Faserhalterungseinheit und faseraufnahmeelement |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2016/074970 Continuation WO2017067924A1 (de) | 2015-10-21 | 2016-10-18 | Faserhalterungseinheit und faseraufnahmeelement |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180246280A1 US20180246280A1 (en) | 2018-08-30 |
US10288815B2 true US10288815B2 (en) | 2019-05-14 |
Family
ID=57184430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/958,280 Active US10288815B2 (en) | 2015-10-21 | 2018-04-20 | Fiber mounting units and fiber receiving elements |
Country Status (6)
Country | Link |
---|---|
US (1) | US10288815B2 (ko) |
EP (1) | EP3365714B1 (ko) |
KR (1) | KR102411012B1 (ko) |
CN (1) | CN108139557B (ko) |
DE (1) | DE102015013689A1 (ko) |
WO (1) | WO2017067924A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022035707A1 (en) * | 2020-08-08 | 2022-02-17 | Pavilion Integration Corporation | Multi-core fiber, methods of making and use thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019178003A1 (en) * | 2018-03-12 | 2019-09-19 | Nlight, Inc. | Fiber laser having variably wound optical fiber |
CN109103735A (zh) * | 2018-09-28 | 2018-12-28 | 深圳市杰普特光电股份有限公司 | 连续光纤激光模块 |
JP6836043B2 (ja) * | 2019-07-26 | 2021-02-24 | 株式会社金門光波 | ファイバーレーザー装置 |
CN115102014A (zh) * | 2022-07-11 | 2022-09-23 | 中国工程物理研究院激光聚变研究中心 | 光纤激光器 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0800246A1 (en) | 1996-04-05 | 1997-10-08 | PIRELLI CAVI S.p.A. | Apparatus and method for housing high-heat-emission electrooptical components |
DE19747145A1 (de) | 1996-10-25 | 1998-07-16 | Samsung Electronics Co Ltd | Gehäusegerät für optische Verstärker |
WO2001091252A2 (en) | 2000-05-19 | 2001-11-29 | Cutting Edge Optronics, Inc. | High-power compact fiber laser |
US20030133686A1 (en) | 1999-11-30 | 2003-07-17 | Giovanni Delrosso | Optical device containing a fibre-optic component |
FR2837290A1 (fr) | 2002-03-15 | 2003-09-19 | Alcatel Optronics France | Dispositif d'amplification optique ultra-compact |
US6661962B1 (en) * | 2001-11-15 | 2003-12-09 | Siwave, Inc. | Optical element support structure and methods of using and making the same |
US20040223721A1 (en) | 1999-11-15 | 2004-11-11 | Flanders Dale C. | Optical system production system |
US6925234B2 (en) * | 2002-12-12 | 2005-08-02 | Melles Griot, Inc. | Flexure apparatus and method for achieving efficient optical coupling |
US7270022B2 (en) | 2005-08-19 | 2007-09-18 | Raytheon Company | Temperature-compensated structure with force multiplier for the temperature compensator |
DE102006038680A1 (de) | 2006-08-17 | 2008-02-21 | Bayerische Motoren Werke Ag | Schmiereinrichtung für einen Ventiltrieb einer Brennkraftmaschine |
US20110222148A1 (en) | 2010-03-12 | 2011-09-15 | Canon Kabushiki Kaisha | Holding apparatus and optical apparatus |
DE102013109185B3 (de) | 2013-08-23 | 2014-05-22 | Jenoptik Optical Systems Gmbh | Optische Baugruppe mit einer Fassung mit Verbindungseinheiten gerichteter Nachgiebigkeit |
US8917963B2 (en) * | 2010-05-21 | 2014-12-23 | Kaiam Corp. | MEMS-based levers and their use for alignment of optical elements |
US9014220B2 (en) | 2011-03-10 | 2015-04-21 | Coherent, Inc. | High-power CW fiber-laser |
US20150110136A1 (en) * | 2012-06-12 | 2015-04-23 | Braunleinsberg 10 | Movable Modular Housing for a Short Pulse Laser with Integrated Amplifier |
US9921168B2 (en) * | 2010-11-23 | 2018-03-20 | Ipg Photonics Corporation | Method and system for monitoring output of high power fiber laser system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19518021A1 (de) * | 1995-05-17 | 1996-11-21 | Sel Alcatel Ag | Optischer Verstärker |
FR2782171B1 (fr) * | 1998-08-04 | 2001-11-30 | Pouyet Sa | Dispositif de raccordement de cables a fibres optiques |
DE102013221044B4 (de) * | 2013-10-17 | 2016-03-17 | Trumpf Laser Gmbh | Optikhalterung zur Justage eines optischen Elements |
CN104793290B (zh) * | 2015-04-09 | 2018-07-10 | 无锡法尔胜光电科技有限公司 | 一种大芯径光纤端面处理装置及其处理方法 |
-
2015
- 2015-10-21 DE DE102015013689.5A patent/DE102015013689A1/de not_active Ceased
-
2016
- 2016-10-18 EP EP16784849.8A patent/EP3365714B1/de active Active
- 2016-10-18 WO PCT/EP2016/074970 patent/WO2017067924A1/de active Application Filing
- 2016-10-18 KR KR1020187014090A patent/KR102411012B1/ko active IP Right Grant
- 2016-10-18 CN CN201680061368.6A patent/CN108139557B/zh active Active
-
2018
- 2018-04-20 US US15/958,280 patent/US10288815B2/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0800246A1 (en) | 1996-04-05 | 1997-10-08 | PIRELLI CAVI S.p.A. | Apparatus and method for housing high-heat-emission electrooptical components |
DE19747145A1 (de) | 1996-10-25 | 1998-07-16 | Samsung Electronics Co Ltd | Gehäusegerät für optische Verstärker |
US6144792A (en) | 1996-10-25 | 2000-11-07 | Samsung Electronics Co., Ltd. | Device for fixing the optical elements of an optical fiber amplifier |
US20040223721A1 (en) | 1999-11-15 | 2004-11-11 | Flanders Dale C. | Optical system production system |
US20030133686A1 (en) | 1999-11-30 | 2003-07-17 | Giovanni Delrosso | Optical device containing a fibre-optic component |
WO2001091252A2 (en) | 2000-05-19 | 2001-11-29 | Cutting Edge Optronics, Inc. | High-power compact fiber laser |
US6661962B1 (en) * | 2001-11-15 | 2003-12-09 | Siwave, Inc. | Optical element support structure and methods of using and making the same |
FR2837290A1 (fr) | 2002-03-15 | 2003-09-19 | Alcatel Optronics France | Dispositif d'amplification optique ultra-compact |
US6925234B2 (en) * | 2002-12-12 | 2005-08-02 | Melles Griot, Inc. | Flexure apparatus and method for achieving efficient optical coupling |
US7270022B2 (en) | 2005-08-19 | 2007-09-18 | Raytheon Company | Temperature-compensated structure with force multiplier for the temperature compensator |
DE102006038680A1 (de) | 2006-08-17 | 2008-02-21 | Bayerische Motoren Werke Ag | Schmiereinrichtung für einen Ventiltrieb einer Brennkraftmaschine |
US20110222148A1 (en) | 2010-03-12 | 2011-09-15 | Canon Kabushiki Kaisha | Holding apparatus and optical apparatus |
US8917963B2 (en) * | 2010-05-21 | 2014-12-23 | Kaiam Corp. | MEMS-based levers and their use for alignment of optical elements |
US9921168B2 (en) * | 2010-11-23 | 2018-03-20 | Ipg Photonics Corporation | Method and system for monitoring output of high power fiber laser system |
US9014220B2 (en) | 2011-03-10 | 2015-04-21 | Coherent, Inc. | High-power CW fiber-laser |
US20150110136A1 (en) * | 2012-06-12 | 2015-04-23 | Braunleinsberg 10 | Movable Modular Housing for a Short Pulse Laser with Integrated Amplifier |
DE102013109185B3 (de) | 2013-08-23 | 2014-05-22 | Jenoptik Optical Systems Gmbh | Optische Baugruppe mit einer Fassung mit Verbindungseinheiten gerichteter Nachgiebigkeit |
US9400367B2 (en) | 2013-08-23 | 2016-07-26 | Jenoptik Optical Systems Gmbh | Optical subassembly with a mount with connection units of directed flexibility |
Non-Patent Citations (2)
Title |
---|
Anonymous, "Micro Block Fiber Alignment Solutions," Melles Griot, 1997-1998, 3 pages. |
International Search Report and Written Opinion in International Application No. PCT/EP2016/074970, dated Feb. 17, 2017, 15 pages (with English translation). |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022035707A1 (en) * | 2020-08-08 | 2022-02-17 | Pavilion Integration Corporation | Multi-core fiber, methods of making and use thereof |
Also Published As
Publication number | Publication date |
---|---|
EP3365714A1 (de) | 2018-08-29 |
CN108139557A (zh) | 2018-06-08 |
WO2017067924A1 (de) | 2017-04-27 |
EP3365714B1 (de) | 2021-05-26 |
KR102411012B1 (ko) | 2022-06-20 |
KR20180072750A (ko) | 2018-06-29 |
CN108139557B (zh) | 2020-01-03 |
DE102015013689A1 (de) | 2017-04-27 |
US20180246280A1 (en) | 2018-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10288815B2 (en) | Fiber mounting units and fiber receiving elements | |
US11322906B2 (en) | Compact mode-locked laser module | |
KR101264225B1 (ko) | 레이저 다이오드 광펌핑 모듈을 이용한 펨토초 레이저 장치 | |
US9847616B1 (en) | Laser beam amplification by homogenous pumping of an amplification medium | |
JP6459296B2 (ja) | 発光モジュール及び多チャネル発光モジュール | |
JP2004006641A (ja) | レーザダイオードコリメータシステム | |
CN104379296B (zh) | 激光加工装置 | |
US10211589B2 (en) | Laser apparatus and extreme ultraviolet light generation apparatus | |
JPH0990174A (ja) | 半導体レーザモジュール | |
KR101668875B1 (ko) | 광학 시스템 특히 조명 시스템에서의 광학 장치 | |
WO2016080252A1 (ja) | 外部共振器型半導体レーザ | |
US6606338B1 (en) | Mode-synchronized solid-state laser | |
KR102233390B1 (ko) | 파이버 어레이 라인 발생기 | |
WO2015121911A1 (en) | Scanning unit, laser scanning microscope, and temperature adjustment method | |
US20220163786A1 (en) | Laser systems and optical devices for laser beam shaping | |
KR20200036222A (ko) | 수동 정렬이 가능한 고출력 레이저 다이오드 광모듈 | |
US5076678A (en) | Laser diode light imaging optics | |
EP1194804A2 (en) | Optical system for lasers | |
CN106532420B (zh) | 一种混合腔锁模激光振荡器及其输出激光的方法 | |
EP2238655A2 (en) | System, device and method for extending the life-time of an optical system | |
JPWO2016125301A1 (ja) | レーザ装置 | |
JPH1117268A (ja) | 半導体レーザーアレイ装置 | |
KR102645680B1 (ko) | 유지보수와 냉각이 용이한 고출력 레이저 출력장치 및 레이저 다이오드 광모듈 | |
KR20230076347A (ko) | 유지보수가 용이한 고출력 레이저 출력장치 및 레이저 다이오드 광모듈 | |
KR20160006563A (ko) | 레이저 모듈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: TRUMPF LASER GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIERMANN, MARTIN;ENZMANN, ANDREAS;BUDNICKI, ALEKSANDER;AND OTHERS;SIGNING DATES FROM 20180503 TO 20180522;REEL/FRAME:046058/0933 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |