UA4388U - Method for determining thermal conductivity of material - Google Patents

Method for determining thermal conductivity of material

Info

Publication number
UA4388U
UA4388U UA2004042646U UA2004042646U UA4388U UA 4388 U UA4388 U UA 4388U UA 2004042646 U UA2004042646 U UA 2004042646U UA 2004042646 U UA2004042646 U UA 2004042646U UA 4388 U UA4388 U UA 4388U
Authority
UA
Ukraine
Prior art keywords
thermocouple
working surface
determining
measuring
thermal conductivity
Prior art date
Application number
UA2004042646U
Other languages
Russian (ru)
Ukrainian (uk)
Inventor
Юрій Олексійович Скрипник
Юрий Алексеевич Скрипник
Володимир Романович Курко
Original Assignee
Київський Національний Університет Технологій Та Дизайну
Киевский Национальный Университет Технологий И Дизайна
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Київський Національний Університет Технологій Та Дизайну, Киевский Национальный Университет Технологий И Дизайна filed Critical Київський Національний Університет Технологій Та Дизайну
Priority to UA2004042646U priority Critical patent/UA4388U/en
Publication of UA4388U publication Critical patent/UA4388U/en

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

The proposed method for determining thermal conductivity of material consists in providing the contact of the working surface of the first thermocouple with the surface of the material sample, increasing the temperature of the working surface of the thermocouple by passing alternating current through the thermocouple, measuring the alternating current through the thermocouple and thermoelectromotive force across the free terminals of the thermocouple, determining the ac power dissipated by the thermocouple, providing the contact of the second thermocouple with the opposite surface of the material sample, measuring the thermoelectromotive force at the free terminals and the temperature of the working surface of the second thermocouple, passing direct current through the second thermocouple in the direction that provides the cooling of the working surface of the thermocouple, increasing the current to the value corresponding to the maximal cooling of the working surface of the second thermocouple, increasing alternating current through the first thermocouple in order to restore the initial thermoelectromotive force across the free terminals of the thermocouple, determining the ac power dissipated by the first thermocouple, terminating the current through the second thermocouple, measuring the thermoelectromotive force at the free terminals and measuring the temperature of the working surface of the second thermocouple. The measurement data are used for determining the thermal conductivity of the material by the corresponding equation.
UA2004042646U 2004-04-08 2004-04-08 Method for determining thermal conductivity of material UA4388U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
UA2004042646U UA4388U (en) 2004-04-08 2004-04-08 Method for determining thermal conductivity of material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
UA2004042646U UA4388U (en) 2004-04-08 2004-04-08 Method for determining thermal conductivity of material

Publications (1)

Publication Number Publication Date
UA4388U true UA4388U (en) 2005-01-17

Family

ID=74348098

Family Applications (1)

Application Number Title Priority Date Filing Date
UA2004042646U UA4388U (en) 2004-04-08 2004-04-08 Method for determining thermal conductivity of material

Country Status (1)

Country Link
UA (1) UA4388U (en)

Similar Documents

Publication Publication Date Title
JP5062753B2 (en) Method and apparatus for measuring the Seebeck coefficient and thermal conductivity of thin film samples
DE69907493D1 (en) SURFACE TEMPERATURE SENSOR
TW200630600A (en) Thermocouple assembly and method of use
CN202694645U (en) Positive and reverse seebeck effect experiment instrument
Min ZT measurements under large temperature differences
ATE398261T1 (en) DETECTION OF LINER WEAR
ATE428105T1 (en) MICRO CALORIMETER DEVICE
EP1384084A4 (en) Overhead line rating monitor
UA4388U (en) Method for determining thermal conductivity of material
Lin et al. Measurement of friction surface and wear rate between a carbon graphite brush and a copper ring
JP4474550B2 (en) Thermoelectric element characteristic evaluation method
Kasirga et al. A Novel Method for Thermal Conductivity Measurements in Atomically Thin Materials
Begot et al. Estimation of internal fuel cell temperatures from surface temperature measurements
Slobodian et al. Mechanical and thermal effect of a filler of intercontact gaps on contact between two semi-infinite solids with microtextured surfaces
Evans et al. Photothermoelectric effects at and near individual grain boundaries in gold
UA68711U (en) Method for determination of thermo-electric properties of material by harman method
PL404900A1 (en) Method of measuring thermal conductivity
Hishida et al. Apparatus for the Measurement of Thermoelectric Power
Kvist Thermoelectric Power of Silver Iodide
SE0401269L (en) measuring device
Favaloro et al. Transient Electrical and Thermal Characterization of InGaAlAs Thin Films with embedded ErAs Nanoparticles.
Ismailov et al. Results of full-scale test of a prototype system for non-uniform cooling of electronic boards
Garrido et al. Peltier coefficient measurement in a thermoelectric module
Li et al. Research on nondestructive measurement of power VDMOS thermal contact resistance
Schönhoff et al. A Flexible Measurement System for the Characterization of Thermoelectric Materials