TWM657846U - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
TWM657846U
TWM657846U TW113202425U TW113202425U TWM657846U TW M657846 U TWM657846 U TW M657846U TW 113202425 U TW113202425 U TW 113202425U TW 113202425 U TW113202425 U TW 113202425U TW M657846 U TWM657846 U TW M657846U
Authority
TW
Taiwan
Prior art keywords
circuit
control circuit
conversion device
die
power conversion
Prior art date
Application number
TW113202425U
Other languages
Chinese (zh)
Inventor
劉嘉憲
Original Assignee
力林科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力林科技股份有限公司 filed Critical 力林科技股份有限公司
Priority to TW113202425U priority Critical patent/TWM657846U/en
Publication of TWM657846U publication Critical patent/TWM657846U/en

Links

Images

Landscapes

  • Power Conversion In General (AREA)

Abstract

A power conversion device is provided. The power conversion device includes a safety capacitor, a power switch, a charge-and-discharge control circuits and control circuits. The charge-and-discharge control circuit includes a bridge switch and a discharge circuit. A first terminal of the bridge switch is coupled to the safety capacitor via a connection node. The discharge circuit is coupled to a second terminal of the bridge switch. The discharge circuit discharges a voltage on the safety capacitor. The control circuit and the discharge circuit are integrated in a first die. The power switch and the bridge switch are integrated in a second die. The voltage withstand capability of the second die is higher than the voltage withstand capability of the first die.

Description

電源轉換裝置Power conversion device

本新型創作是有關於一種電源轉換裝置,且特別是有關於一種具備高耐壓能力的電源轉換裝置。The present invention relates to a power conversion device, and in particular to a power conversion device with high voltage resistance.

現行的電源轉換裝置可將交流電源轉換為直流電源。一般來說,電源轉換裝置具備安規電容器(如,X電容器)以及用於對安規電容器進行放電的放電電路。電源轉換裝置的控制電路被集成(或被封裝)在符合低耐壓能力的晶粒(Die)中。在高電壓(如,大於600伏特)的需求下,電源轉換裝置的至少一功率開關必須被集成在符合高耐壓能力的晶粒中。放電電路則被集成在符合高耐壓能力的另一晶粒中。因此,電源轉換裝置共包括三個不同製程的晶粒。Current power conversion devices can convert AC power into DC power. Generally speaking, the power conversion device has a safety capacitor (such as an X capacitor) and a discharge circuit for discharging the safety capacitor. The control circuit of the power conversion device is integrated (or packaged) in a die that meets the low voltage withstand capability. Under the requirement of high voltage (such as greater than 600 volts), at least one power switch of the power conversion device must be integrated in a die that meets the high voltage withstand capability. The discharge circuit is integrated in another die that meets the high voltage withstand capability. Therefore, the power conversion device includes a total of three dies with different processes.

應注意的是,晶粒與晶粒之間需要以多個連接線來進行連接。因此,晶粒的數量越多,電源轉換裝置的體積越大。在具有低體積的設計需求下,電源轉換裝置並無法容納三個晶粒。因此,在高電壓的需求下,如何降低晶粒的數量或縮小電源轉換裝置的體積是本領域技術人員的研究重點之一。It should be noted that multiple connection lines are required to connect the dies. Therefore, the more dies there are, the larger the volume of the power conversion device. Under the design requirements of low volume, the power conversion device cannot accommodate three dies. Therefore, under the requirements of high voltage, how to reduce the number of dies or reduce the volume of the power conversion device is one of the research focuses of technicians in this field.

本新型創作提供一種具有高電壓需求且具備小體積的電源轉換裝置。The novel invention provides a power conversion device with high voltage requirement and small size.

在本新型創作的一實施例中,電源轉換裝置包括安規電容器、功率開關、充放電控制電路以及控制電路。充放電控制電路包括橋接開關以及放電電路。橋接開關的第一端經由連接節點耦接至安規電容器。放電電路耦接於橋接開關的第二端。放電電路對位於安規電容器的電壓進行放電。控制電路以及放電電路被集成在第一晶粒中。功率開關以及橋接開關被集成在第二晶粒中。第二晶粒的耐壓能力高於第一晶粒的耐壓能力。In one embodiment of the present invention, the power conversion device includes a safety capacitor, a power switch, a charge and discharge control circuit, and a control circuit. The charge and discharge control circuit includes a bridge switch and a discharge circuit. The first end of the bridge switch is coupled to the safety capacitor via a connection node. The discharge circuit is coupled to the second end of the bridge switch. The discharge circuit discharges the voltage in the safety capacitor. The control circuit and the discharge circuit are integrated in a first die. The power switch and the bridge switch are integrated in a second die. The voltage withstand capability of the second die is higher than the voltage withstand capability of the first die.

在本新型創作的一實施例中,功率開關由氮化鎵場效電晶體來實施。In one embodiment of the novel invention, the power switch is implemented by a gallium nitride field effect transistor.

在本新型創作的一實施例中,橋接開關由氮化鎵場效電晶體來實施。In one embodiment of the novel invention, the bridge switch is implemented by a gallium nitride field effect transistor.

在本新型創作的一實施例中,當放電電路對位於安規電容器的電壓進行放電時,控制電路導通橋接開關。In one embodiment of the present invention, when the discharge circuit discharges the voltage of the safety capacitor, the control circuit turns on the bridge switch.

在本新型創作的一實施例中,充放電控制電路還包括充電電路。充電電路耦接於橋接開關的第二端。充電電路對位於連接節點的電壓進行充電。充電電路被集成在第一晶粒中。In one embodiment of the present invention, the charge-discharge control circuit further includes a charging circuit. The charging circuit is coupled to the second end of the bridge switch. The charging circuit charges the voltage at the connection node. The charging circuit is integrated in the first die.

在本新型創作的一實施例中,當充電電路對位於連接節點的電壓進行充電時,控制電路導通橋接開關。In one embodiment of the present invention, when the charging circuit charges the voltage at the connection node, the control circuit turns on the bridge switch.

在本新型創作的一實施例中,電源轉換裝置還包括分壓電路。分壓電路耦接至連接節點以及控制電路。分壓電路依據位於連接節點的電壓值來產生回饋電壓。控制電路依據回饋電壓來判斷安規電容器的電壓值。分壓電路被集成在第二晶粒中。In one embodiment of the present invention, the power conversion device further includes a voltage divider circuit. The voltage divider circuit is coupled to the connection node and the control circuit. The voltage divider circuit generates a feedback voltage according to the voltage value at the connection node. The control circuit determines the voltage value of the safety capacitor according to the feedback voltage. The voltage divider circuit is integrated in the second die.

在本新型創作的一實施例中,電源轉換裝置還包括感測電晶體。感測電晶體的第一端耦接至連接節點。感測電晶體的第二端耦接至控制電路。感測電晶體的控制端耦接至控制電路。控制電路導通感測電晶體並感測流經感測電晶體的電流值。感測電晶體被集成在第二晶粒中。In one embodiment of the present invention, the power conversion device further includes a sensing transistor. The first end of the sensing transistor is coupled to the connection node. The second end of the sensing transistor is coupled to the control circuit. The control end of the sensing transistor is coupled to the control circuit. The control circuit turns on the sensing transistor and senses the current value flowing through the sensing transistor. The sensing transistor is integrated in the second die.

在本新型創作的一實施例中,功率開關由空乏型氮化鎵場效電晶體來實施。In one embodiment of the present novel invention, the power switch is implemented by a depletion-type gallium nitride field effect transistor.

在本新型創作的一實施例中,電源轉換裝置還包括級聯開關。級聯開關耦接於功率開關以及控制電路。In one embodiment of the present invention, the power conversion device further includes a cascade switch. The cascade switch is coupled to the power switch and the control circuit.

基於上述,充放電控制電路包括橋接開關以及放電電路。功率開關以及充放電控制電路的橋接開關被集成在第二晶粒中。控制電路以及充放電控制電路的放電電路被集成在第一晶粒中。第二晶粒由符合高耐壓能力的製程規則來產生。第一晶粒由符合低耐壓能力的製程規則來產生。因此,本新型創作的充放電控制電路並不需被集成在額外的晶粒。電源轉換裝置中的晶粒的數量能夠被降低。如此一來,在高電壓的需求下,電源轉換裝置的體積能夠被縮小。Based on the above, the charge and discharge control circuit includes a bridge switch and a discharge circuit. The power switch and the bridge switch of the charge and discharge control circuit are integrated in the second die. The control circuit and the discharge circuit of the charge and discharge control circuit are integrated in the first die. The second die is produced by a process rule that meets the high voltage withstand capability. The first die is produced by a process rule that meets the low voltage withstand capability. Therefore, the charge and discharge control circuit of the present novel invention does not need to be integrated in an additional die. The number of die in the power conversion device can be reduced. In this way, under the demand for high voltage, the size of the power conversion device can be reduced.

本新型創作的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本新型創作的一部份,並未揭示所有本新型創作的可實施方式。更確切的說,這些實施例只是本新型創作的專利申請範圍中的範例。Some embodiments of the present invention will be described in detail below with reference to the accompanying drawings. When the same element symbols appear in different drawings, they will be regarded as the same or similar elements. These embodiments are only part of the present invention and do not disclose all possible implementations of the present invention. More precisely, these embodiments are only examples within the scope of the patent application of the present invention.

請參考圖1,圖1是依據本新型創作一實施例所繪示的電源轉換裝置的示意圖。在本實施例中,電源轉換裝置100包括安規電容器(或稱X電容器)CX、功率開關SWP、充放電控制電路110以及控制電路120。充放電控制電路110包括橋接開關SWB以及放電電路111。橋接開關SWB的第一端經由連接節點ND耦接至安規電容器CX。放電電路111耦接於橋接開關SWB的第二端。放電電路111對位於安規電容器CX的電壓進行放電。Please refer to FIG. 1, which is a schematic diagram of a power conversion device according to an embodiment of the present invention. In this embodiment, the power conversion device 100 includes a safety capacitor (or X capacitor) CX, a power switch SWP, a charge and discharge control circuit 110, and a control circuit 120. The charge and discharge control circuit 110 includes a bridge switch SWB and a discharge circuit 111. The first end of the bridge switch SWB is coupled to the safety capacitor CX via a connection node ND. The discharge circuit 111 is coupled to the second end of the bridge switch SWB. The discharge circuit 111 discharges the voltage at the safety capacitor CX.

以本實施例為例,電源轉換裝置100還包括整流電路RC以及轉換電路TC(然本新型創作並不以此為限)。功率開關SWP被設置在轉換電路TC中。整流電路RC可接收交流電源VAC,並對交流電源VAC進行整流以產生輸入電源VIN。轉換電路TC接收輸入電源VIN,並將輸入電源VIN轉換為輸出電源VOUT。控制電路120可利用控制信號SCP來控制功率開關SWP。功率開關SWP的開關操作(如工作週期(duty cycle)或頻率)可決定輸出電源VOUT的輸出結果。在本實施例中,電源轉換裝置100可以是任意型式的升壓轉換裝置。Taking the present embodiment as an example, the power conversion device 100 further includes a rectifier circuit RC and a conversion circuit TC (but the present invention is not limited thereto). The power switch SWP is arranged in the conversion circuit TC. The rectifier circuit RC can receive the AC power supply VAC and rectify the AC power supply VAC to generate the input power supply VIN. The conversion circuit TC receives the input power supply VIN and converts the input power supply VIN into the output power supply VOUT. The control circuit 120 can use the control signal SCP to control the power switch SWP. The switching operation (such as duty cycle or frequency) of the power switch SWP can determine the output result of the output power supply VOUT. In the present embodiment, the power conversion device 100 can be any type of boost converter.

在本實施例中,控制電路120以及放電電路111被集成(integrated)或被封裝在第一晶粒(Die)DIE1中。功率開關SWP以及橋接開關SWB被集成或被封裝在第二晶粒DIE2中。第二晶粒DIE2的耐壓能力高於第一晶粒DIE1的耐壓能力。In this embodiment, the control circuit 120 and the discharge circuit 111 are integrated or packaged in the first die DIE1. The power switch SWP and the bridge switch SWB are integrated or packaged in the second die DIE2. The withstand voltage capability of the second die DIE2 is higher than that of the first die DIE1.

第一晶粒DIE1由符合低耐壓能力的製程規則來產生。第二晶粒DIE2由符合高耐壓能力的製程規則來產生。在此值得一提的是,功率開關SWP以及充放電控制電路110的橋接開關SWB被集成在第二晶粒DIE2中。控制電路120以及充放電控制電路110的放電電路111被集成在第一晶粒DIE1中。因此,本新型創作的充放電控制電路110並不需被集成在額外的晶粒。電源轉換裝置100中的晶粒的數量能夠被降低。如此一來,在高電壓的需求下,電源轉換裝置100的體積能夠被縮小。The first die DIE1 is produced by a process rule that complies with low withstand voltage capability. The second die DIE2 is produced by a process rule that complies with high withstand voltage capability. It is worth mentioning here that the power switch SWP and the bridge switch SWB of the charge and discharge control circuit 110 are integrated in the second die DIE2. The control circuit 120 and the discharge circuit 111 of the charge and discharge control circuit 110 are integrated in the first die DIE1. Therefore, the charge and discharge control circuit 110 of the novel invention does not need to be integrated in an additional die. The number of die in the power conversion device 100 can be reduced. In this way, under the demand for high voltage, the volume of the power conversion device 100 can be reduced.

在本實施例中,功率開關SWP由氮化鎵(GaN)場效電晶體來實施。橋接開關SWB由GaN場效電晶體來實施。進一步來說,功率開關SWP以及橋接開關SWB分別由增強(enhancement)型GaN場效電晶體來實施。因此,功率開關SWP以及橋接開關SWB具有較高的電壓耐受能力。舉例來說,功率開關SWP以及橋接開關SWB能夠承受大於600伏特的電壓差。In this embodiment, the power switch SWP is implemented by a gallium nitride (GaN) field effect transistor. The bridge switch SWB is implemented by a GaN field effect transistor. Further, the power switch SWP and the bridge switch SWB are respectively implemented by enhancement-type GaN field effect transistors. Therefore, the power switch SWP and the bridge switch SWB have a higher voltage tolerance. For example, the power switch SWP and the bridge switch SWB can withstand a voltage difference greater than 600 volts.

在本實施例中,控制電路120可利用控制信號SCB來控制橋接開關SWB的導通或斷開。控制電路120可利用控制信號SCD來控制放電電路111。在電源轉換裝置100沒有接收到交流電源VAC的情況下,放電電路111被控制以對位於安規電容器CX的電壓進行放電。當放電電路111對位於安規電容器CX的電壓進行放電時,控制電路120導通橋接開關SWB。因此,放電電路111可利用參考低電壓(如,接地)來下拉安規電容器CX的電壓值。In this embodiment, the control circuit 120 can use the control signal SCB to control the conduction or disconnection of the bridge switch SWB. The control circuit 120 can use the control signal SCD to control the discharge circuit 111. When the power conversion device 100 does not receive the AC power VAC, the discharge circuit 111 is controlled to discharge the voltage at the safety capacitor CX. When the discharge circuit 111 discharges the voltage at the safety capacitor CX, the control circuit 120 turns on the bridge switch SWB. Therefore, the discharge circuit 111 can use a reference low voltage (e.g., ground) to pull down the voltage value of the safety capacitor CX.

電源轉換裝置100還包括二極體D1、D2以及電阻器R1、R2。二極體D1的陽極耦接於安規電容器CX的第一端。二極體D2的陽極耦接於安規電容器CX的第二端。電阻器R1耦接於二極體D1的陰極與連接節點ND之間。電阻器R2耦接於二極體D2的陰極與連接節點ND之間。The power conversion device 100 further includes diodes D1, D2 and resistors R1, R2. The anode of the diode D1 is coupled to the first end of the safety capacitor CX. The anode of the diode D2 is coupled to the second end of the safety capacitor CX. The resistor R1 is coupled between the cathode of the diode D1 and the connection node ND. The resistor R2 is coupled between the cathode of the diode D2 and the connection node ND.

在本實施例中,充放電控制電路110還包括充電電路112。充電電路112耦接於橋接開關SWB的第二端。充電電路112對位於連接節點ND的電壓進行充電。充電電路112被集成在所述第一晶粒DIE1中。控制電路120可利用控制信號SCC來控制充電電路112。當電源轉換裝置100剛接收到交流電源VAC時,充電電路112被控制以對位於連接節點ND的電壓進行充電。當充電電路112對位於連接節點ND的電壓進行充電時,控制電路120導通橋接開關SWB。因此,充電電路112可利用電容器CVCC所儲存的電能來對連接節點ND進行充電。In this embodiment, the charge and discharge control circuit 110 further includes a charging circuit 112. The charging circuit 112 is coupled to the second end of the bridge switch SWB. The charging circuit 112 charges the voltage at the connection node ND. The charging circuit 112 is integrated in the first die DIE1. The control circuit 120 can control the charging circuit 112 using the control signal SCC. When the power conversion device 100 just receives the alternating current power VAC, the charging circuit 112 is controlled to charge the voltage at the connection node ND. When the charging circuit 112 charges the voltage at the connection node ND, the control circuit 120 turns on the bridge switch SWB. Therefore, the charging circuit 112 can use the electric energy stored in the capacitor CVCC to charge the connection node ND.

在本實施例中,當電源轉換裝置100接收到交流電源VAC並且連接節點ND的充電結束時,橋接開關SWB被斷開。In this embodiment, when the power conversion device 100 receives the AC power VAC and the charging of the connection node ND is completed, the bridge switch SWB is disconnected.

請參考圖1以及圖2,圖2是依據本新型創作一實施例所繪示的電源轉換裝置的晶粒佈局示意圖。在本實施例中,第一晶粒DIE1以及第二晶粒DIE2被封裝在一電路元件中。第一晶粒DIE1包括放電電路111、充電電路112以及控制電路120。放電電路111、充電電路112以及控制電路120分別被集成在第一晶粒DIE1中。第二晶粒DIE2包括橋接開關SWB以及功率開關SWP。也就是說,功率開關SWP被集成在第二晶粒DIE2的區域RG1中。橋接開關SWB被集成在第二晶粒DIE2的區域RG2中。Please refer to Figures 1 and 2. Figure 2 is a schematic diagram of the die layout of a power conversion device according to an embodiment of the present invention. In this embodiment, the first die DIE1 and the second die DIE2 are packaged in a circuit element. The first die DIE1 includes a discharge circuit 111, a charge circuit 112 and a control circuit 120. The discharge circuit 111, the charge circuit 112 and the control circuit 120 are respectively integrated in the first die DIE1. The second die DIE2 includes a bridge switch SWB and a power switch SWP. That is, the power switch SWP is integrated in the region RG1 of the second die DIE2. The bridge switch SWB is integrated in the region RG2 of the second die DIE2.

在本實施例中,第一晶粒DIE1至少包括腳墊(pad)PD1_1~PD1_4。第二晶粒DIE2至少包括腳墊PD2_1~PD2_12。控制電路120透過腳墊PD1_1、PD2_1來將控制信號SCP提供至功率開關SWP的控制端。功率開關SWP的第一端透過腳墊PD2_6~PD2_9的至少其中之一耦接至電路元件的高壓引腳(pin)PN5~PN8的至少其中之一。功率開關SWP的第二端透過腳墊PD2_2~PD2_5的至少其中之一耦接至電路元件的低壓引腳PN1~PN4的至少其中之一。In this embodiment, the first die DIE1 includes at least pads PD1_1 to PD1_4. The second die DIE2 includes at least pads PD2_1 to PD2_12. The control circuit 120 provides the control signal SCP to the control end of the power switch SWP through the pads PD1_1 and PD2_1. The first end of the power switch SWP is coupled to at least one of the high voltage pins PN5 to PN8 of the circuit element through at least one of the pads PD2_6 to PD2_9. The second end of the power switch SWP is coupled to at least one of the low voltage pins PN1 to PN4 of the circuit element through at least one of the pads PD2_2 to PD2_5.

在本實施例中,橋接開關SWB的第一端透過腳墊PD2_10以及電路元件的引腳PN9耦接至連接節點ND。充電電路112透過腳墊PD1_2以及電路元件的引腳PN10耦接至電容器CVCC。橋接開關SWB的第二端透過腳墊PD2_11、PD1_3耦接至放電電路111以及充電電路112。此外,橋接開關SWB的控制端透過腳墊PD2_12、PD1_4耦接至第一晶粒DIE1。進一步來說,橋接開關SWB的控制端可透過腳墊PD2_12、PD1_4耦接至控制電路120。In this embodiment, the first end of the bridge switch SWB is coupled to the connection node ND through the pad PD2_10 and the pin PN9 of the circuit element. The charging circuit 112 is coupled to the capacitor CVCC through the pad PD1_2 and the pin PN10 of the circuit element. The second end of the bridge switch SWB is coupled to the discharge circuit 111 and the charging circuit 112 through the pads PD2_11 and PD1_3. In addition, the control end of the bridge switch SWB is coupled to the first die DIE1 through the pads PD2_12 and PD1_4. Further, the control end of the bridge switch SWB can be coupled to the control circuit 120 through the pads PD2_12 and PD1_4.

請參考圖1、圖3以及圖4,圖3是依據本新型創作一實施例所繪示的橋接開關以及感測電晶體的電路示意圖。圖4是依據本新型創作一實施例所繪示的電源轉換裝置的晶粒佈局示意圖。在本實施例中,電源轉換裝置100還包括感測電晶體TS。感測電晶體TS的第一端耦接至連接節點ND。感測電晶體TS的第二端耦接至控制電路120。感測電晶體TS的控制端耦接至所制電路120。控制電路120導通感測電晶體TS並感測流經感測電晶體TS的電流值IS。Please refer to Figures 1, 3 and 4. Figure 3 is a circuit diagram of a bridge switch and a sensing transistor according to an embodiment of the present invention. Figure 4 is a schematic diagram of a chip layout of a power conversion device according to an embodiment of the present invention. In this embodiment, the power conversion device 100 also includes a sensing transistor TS. The first end of the sensing transistor TS is coupled to the connection node ND. The second end of the sensing transistor TS is coupled to the control circuit 120. The control end of the sensing transistor TS is coupled to the manufactured circuit 120. The control circuit 120 turns on the sensing transistor TS and senses the current value IS flowing through the sensing transistor TS.

在本實施例中,感測電晶體TS被集成在第二晶粒DIE2中。進一步來說,橋接開關SWB以及感測電晶體TS被集成在第二晶粒DIE2的區域RG2中。在本實施例中,感測電晶體TS的第一端耦接至橋接開關SWB的第一端以及腳墊PD2_10。感測電晶體TS的控制端耦接至橋接開關SWB的控制端以及腳墊PD2_12。因此,當橋接開關SWB被導通時,感測電晶體TS被導通。流經橋接開關SWB的電流值IB被設計為大於流經感測電晶體TS的電流值IS。電流值IB是電流值IS的整數倍(如,IB:IS=100:1,然本新型創作並不以此為限)。因此,控制電路120可依據流經感測電晶體TS的電流值IS來獲知流經橋接開關SWB的電流值IB。在另一方面,當橋接開關SWB被斷開時,感測電晶體TS被斷開。In the present embodiment, the sensing transistor TS is integrated in the second die DIE2. Furthermore, the bridge switch SWB and the sensing transistor TS are integrated in the region RG2 of the second die DIE2. In the present embodiment, the first end of the sensing transistor TS is coupled to the first end of the bridge switch SWB and the pad PD2_10. The control end of the sensing transistor TS is coupled to the control end of the bridge switch SWB and the pad PD2_12. Therefore, when the bridge switch SWB is turned on, the sensing transistor TS is turned on. The current value IB flowing through the bridge switch SWB is designed to be greater than the current value IS flowing through the sensing transistor TS. The current value IB is an integer multiple of the current value IS (e.g., IB:IS=100:1, but the present invention is not limited to this). Therefore, the control circuit 120 can obtain the current value IB flowing through the bridge switch SWB according to the current value IS flowing through the sensing transistor TS. On the other hand, when the bridge switch SWB is turned off, the sensing transistor TS is turned off.

感測電晶體TS的第二端腳透過腳墊PD2_13、PD1_5耦接至控制電路120。因此,當感測電晶體TS以及橋接開關SWB被導通時,控制電路120透過腳墊PD2_13、PD1_5感測流經感測電晶體TS的電流值IS。控制電路120依據電流值IS來進行過電流保護操作。在本實施例中,控制電路120包括感測電路121。感測電路121感測流經感測電晶體TS的電流值IS並提供感測結果。控制電路120依據感測結果來進行過電流保護操作。The second end pin of the sensing transistor TS is coupled to the control circuit 120 through the pads PD2_13 and PD1_5. Therefore, when the sensing transistor TS and the bridge switch SWB are turned on, the control circuit 120 senses the current value IS flowing through the sensing transistor TS through the pads PD2_13 and PD1_5. The control circuit 120 performs an over-current protection operation according to the current value IS. In the present embodiment, the control circuit 120 includes a sensing circuit 121. The sensing circuit 121 senses the current value IS flowing through the sensing transistor TS and provides a sensing result. The control circuit 120 performs an over-current protection operation according to the sensing result.

請參考圖1、圖5以及圖6,圖5是依據本新型創作一實施例所繪示的橋接開關以及分壓電路的電路示意圖。圖6是依據本新型創作一實施例所繪示的電源轉換裝置的晶粒佈局示意圖。在本實施例中,電源轉換裝置100還包括分壓電路130。分壓電路130耦接至連接節點ND以及控制電路120。分壓電路130依據位於連接節點ND的電壓值來產生回饋電壓VFB。控制電路120依據回饋電壓VFB來判斷安規電容器CX的電壓值。Please refer to Figures 1, 5 and 6. Figure 5 is a circuit diagram of a bridge switch and a voltage divider circuit according to an embodiment of the present invention. Figure 6 is a schematic diagram of a die layout of a power conversion device according to an embodiment of the present invention. In this embodiment, the power conversion device 100 also includes a voltage divider circuit 130. The voltage divider circuit 130 is coupled to the connection node ND and the control circuit 120. The voltage divider circuit 130 generates a feedback voltage VFB according to the voltage value at the connection node ND. The control circuit 120 determines the voltage value of the safety capacitor CX according to the feedback voltage VFB.

在本實施例中,分壓電路130被集成在第二晶粒DIE2中。進一步來說,橋接開關SWB以及分壓電路130被集成在第二晶粒DIE2的區域RG2中。在本實施例中,分壓電路130包括分壓電阻器RD1、RD2。分壓電阻器RD1的第一端耦接至橋接開關SWB的第一端以及腳墊PD2_10。分壓電阻器RD1的第二端透過腳墊PD2_14、PD1_6耦接至控制電路120。分壓電阻器RD2的第一端耦接至分壓電阻器RD1的第二端。分壓電阻器RD2的第二端耦接至第二晶粒DIE2的接地腳墊PD2_GND以及第一晶粒DIE1的接地腳墊PD1_GND。In the present embodiment, the voltage divider circuit 130 is integrated in the second die DIE2. Further, the bridge switch SWB and the voltage divider circuit 130 are integrated in the region RG2 of the second die DIE2. In the present embodiment, the voltage divider circuit 130 includes voltage divider resistors RD1 and RD2. The first end of the voltage divider resistor RD1 is coupled to the first end of the bridge switch SWB and the pad PD2_10. The second end of the voltage divider resistor RD1 is coupled to the control circuit 120 through the pads PD2_14 and PD1_6. The first end of the voltage divider resistor RD2 is coupled to the second end of the voltage divider resistor RD1. The second end of the voltage dividing resistor RD2 is coupled to the ground pad PD2_GND of the second die DIE2 and the ground pad PD1_GND of the first die DIE1.

在本實施例中,分壓電路130利用分壓電阻器RD1的電阻值以及分壓電阻器RD2的電阻值來對位於連接節點ND的電壓值進行分壓以產生回饋電壓VFB。分壓電路130透過腳墊PD2_14輸出回饋電壓VFB。控制電路120透過腳墊PD1_6接收回饋電壓VFB,並依據回饋電壓VFB來進行過電壓保護操作、欠電壓保護操作以及電源轉換裝置100與交流電源VAC之間的連接狀態的至少其中之一。In this embodiment, the voltage divider circuit 130 divides the voltage value at the connection node ND by the resistance value of the voltage divider resistor RD1 and the resistance value of the voltage divider resistor RD2 to generate the feedback voltage VFB. The voltage divider circuit 130 outputs the feedback voltage VFB through the pad PD2_14. The control circuit 120 receives the feedback voltage VFB through the pad PD1_6, and performs at least one of an over-voltage protection operation, an under-voltage protection operation, and a connection state between the power conversion device 100 and the AC power source VAC according to the feedback voltage VFB.

在本實施例中,電源轉換裝置100還包括電阻器RS。電阻器RS耦接於橋接開關SWB的第一端與控制端之間。電阻器RS被集成在第二晶粒DIE2的區域RG2中。In this embodiment, the power conversion device 100 further includes a resistor RS. The resistor RS is coupled between the first terminal and the control terminal of the bridge switch SWB. The resistor RS is integrated in the region RG2 of the second die DIE2.

請參考圖1、圖7以及圖8,圖7是依據本新型創作一實施例所繪示的橋接開關、感測電晶體以及分壓電路的電路示意圖。圖8是依據本新型創作一實施例所繪示的電源轉換裝置的晶粒佈局示意圖。在本實施例中,電源轉換裝置100還包括感測電晶體TS以及分壓電路130。在本實施例中,感測電晶體TS以及分壓電路130被集成在第二晶粒DIE2中。進一步來說,橋接開關SWB、感測電晶體TS以及分壓電路130被集成在第二晶粒DIE2的區域RG2中。感測電晶體TS的實施方式已經在圖1、圖3以及圖4的實施例中清楚說明,故不在此重述。分壓電路130的實施方式已經在圖1、圖5以及圖6的實施例中清楚說明,故不在此重述。Please refer to Figures 1, 7 and 8. Figure 7 is a circuit diagram of a bridge switch, a sensing transistor and a voltage divider circuit drawn according to an embodiment of the present invention. Figure 8 is a schematic diagram of the chip layout of a power conversion device drawn according to an embodiment of the present invention. In this embodiment, the power conversion device 100 also includes a sensing transistor TS and a voltage divider circuit 130. In this embodiment, the sensing transistor TS and the voltage divider circuit 130 are integrated in the second chip DIE2. Further, the bridge switch SWB, the sensing transistor TS and the voltage divider circuit 130 are integrated in the region RG2 of the second chip DIE2. The implementation method of the sensing transistor TS has been clearly explained in the embodiments of Figures 1, 3 and 4, so it will not be repeated here. The implementation of the voltage divider circuit 130 has been clearly described in the embodiments of FIG. 1 , FIG. 5 , and FIG. 6 , and will not be repeated here.

請參考圖1、圖9以及圖10,圖9是依據本新型創作一實施例所繪示的功率開關以及級聯開關的電路示意圖。圖10是依據本新型創作一實施例所繪示的電源轉換裝置的晶粒佈局示意圖。在本實施例中,功率開關SWP由空乏(depletion)型GaN場效電晶體來實施。因此,電源轉換裝置100還包括級聯(cascode)開關SWC。級聯開關SWC耦接於功率開關SWP以及控制電路120。級聯開關SWC以及功率開關SWP被形成級聯開關電路。級聯開關SWC用以決定級聯開關電路的開關操作。Please refer to Figures 1, 9 and 10. Figure 9 is a circuit diagram of a power switch and a cascade switch according to an embodiment of the present invention. Figure 10 is a schematic diagram of a die layout of a power conversion device according to an embodiment of the present invention. In this embodiment, the power switch SWP is implemented by a depletion type GaN field effect transistor. Therefore, the power conversion device 100 also includes a cascode switch SWC. The cascade switch SWC is coupled to the power switch SWP and the control circuit 120. The cascade switch SWC and the power switch SWP form a cascade switch circuit. The cascade switch SWC is used to determine the switching operation of the cascade switch circuit.

在本實施例中,功率開關SWP的控制端接收偏壓值VB。因此,功率開關SWP被控制為常導通(normal ON)狀態。級聯開關SWC的第一端透過腳墊PD3_2、PD3_3腳墊PD2_2~PD2_5的至少其中之一耦接至功率開關SWP的第二端。控制電路120包括驅動電路DC。驅動電路DC會基於脈波寬度調變(Pulse-width modulation,PWM)信號來提供控制信號SCP,並透過腳墊PD3_1將控制信號SCP提供至級聯開關SWC。因此,級聯開關電路基於控制信號SCP來進行開關操作。In this embodiment, the control end of the power switch SWP receives the bias value VB. Therefore, the power switch SWP is controlled to be in a normal ON state. The first end of the cascade switch SWC is coupled to the second end of the power switch SWP through at least one of the pads PD3_2, PD3_3, and PD2_2~PD2_5. The control circuit 120 includes a drive circuit DC. The drive circuit DC provides a control signal SCP based on a pulse-width modulation (PWM) signal, and provides the control signal SCP to the cascade switch SWC through the pad PD3_1. Therefore, the cascade switch circuit performs a switching operation based on the control signal SCP.

在本實施例中,橋接開關SWB以及分壓電路130被集成在第二晶粒DIE2的區域RG2中(然本新型創作並不以此為限)。因此,第二晶粒DIE2的區域RG2還包括腳墊PD2_10~PD2_12以及PD2_14。在一些實施例中,僅有橋接開關SWB被集成在第二晶粒DIE2的區域RG2中。因此,第二晶粒DIE2的區域RG2還包括腳墊PD2_10~PD2_12。在一些實施例中,橋接開關SWB以及感測電晶體TS被集成在第二晶粒DIE2的區域RG2中(然本新型創作並不以此為限)。因此,第二晶粒DIE2的區域RG2還包括腳墊PD2_10~PD2_13。在一些實施例中,橋接開關SWB、感測電晶體TS以及分壓電路130被集成在第二晶粒DIE2的區域RG2中。因此,第二晶粒DIE2的區域RG2還包括腳墊PD2_10~PD2_14。In the present embodiment, the bridge switch SWB and the voltage divider circuit 130 are integrated in the region RG2 of the second die DIE2 (but the present invention is not limited thereto). Therefore, the region RG2 of the second die DIE2 also includes the pads PD2_10~PD2_12 and PD2_14. In some embodiments, only the bridge switch SWB is integrated in the region RG2 of the second die DIE2. Therefore, the region RG2 of the second die DIE2 also includes the pads PD2_10~PD2_12. In some embodiments, the bridge switch SWB and the sensing transistor TS are integrated in the region RG2 of the second die DIE2 (but the present invention is not limited thereto). Therefore, the region RG2 of the second die DIE2 also includes the pads PD2_10~PD2_13. In some embodiments, the bridge switch SWB, the sensing transistor TS, and the voltage divider circuit 130 are integrated in the region RG2 of the second die DIE2. Therefore, the region RG2 of the second die DIE2 further includes pads PD2_10-PD2_14.

請參考圖11,圖11是依據本新型創作一實施例所繪示的功率開關、級聯開關以及充放電控制電路的電路示意圖。在本實施例中,功率開關SWP以及級聯開關SWC的實施內容已經在圖1、圖9以及圖10的實施例中清楚說明,故不在此重述。在本實施例中,與圖1不同的是,充放電控制電路110透過功率開關SWP耦接至安規電容器或連接節點(如圖1所示的安規電容器CX或連接節點ND)。由於功率開關SWP處於常導通狀態。因此,充放電控制電路110可透過功率開關SWP來對進行安規電容器的放電操作及/或連接節點的充電操作。Please refer to FIG. 11, which is a circuit diagram of a power switch, a cascade switch, and a charge-discharge control circuit according to an embodiment of the present invention. In this embodiment, the implementation contents of the power switch SWP and the cascade switch SWC have been clearly described in the embodiments of FIG. 1, FIG. 9, and FIG. 10, and will not be repeated here. In this embodiment, unlike FIG. 1, the charge-discharge control circuit 110 is coupled to a safety capacitor or a connection node (such as the safety capacitor CX or the connection node ND shown in FIG. 1) through the power switch SWP. Since the power switch SWP is in a normally conducting state. Therefore, the charge-discharge control circuit 110 can perform discharge operations on the safety capacitor and/or charge operations on the connection node through the power switch SWP.

綜上所述,本新型創作的電源轉換裝置包括安規電容器、功率開關SWP、充放電控制電路以及控制電路。充放電控制電路包括橋接開關以及放電電路。功率開關以及充放電控制電路的橋接開關被集成在第二晶粒中。控制電路以及充放電控制電路的放電電路被集成在第一晶粒中。第二晶粒由符合高耐壓能力的製程規則來產生。第一晶粒由符合低耐壓能力的製程規則來產生。因此,本新型創作的充放電控制電路並不需被集成在額外的晶粒。電源轉換裝置中的晶粒的數量能夠被降低。如此一來,在高電壓的需求下,電源轉換裝置的體積能夠被縮小。In summary, the power conversion device of the present invention includes a safety capacitor, a power switch SWP, a charge and discharge control circuit, and a control circuit. The charge and discharge control circuit includes a bridge switch and a discharge circuit. The power switch and the bridge switch of the charge and discharge control circuit are integrated in the second die. The control circuit and the discharge circuit of the charge and discharge control circuit are integrated in the first die. The second die is produced by a process rule that meets the high voltage withstand capability. The first die is produced by a process rule that meets the low voltage withstand capability. Therefore, the charge and discharge control circuit of the present invention does not need to be integrated in an additional die. The number of die in the power conversion device can be reduced. In this way, under the demand for high voltage, the size of the power conversion device can be reduced.

雖然本新型創作已以實施例揭露如上,然其並非用以限定本新型創作,任何所屬技術領域中具有通常知識者,在不脫離本新型創作的精神和範圍內,當可作些許的更動與潤飾,故本新型創作的保護範圍當視後附的申請專利範圍所界定者為準。Although the novel creation has been disclosed as above by way of embodiments, they are not intended to limit the novel creation. Any person with ordinary knowledge in the relevant technical field may make slight changes and modifications without departing from the spirit and scope of the novel creation. Therefore, the protection scope of the novel creation shall be subject to the scope defined in the attached patent application.

100:電源轉換裝置 110:充放電控制電路 111:放電電路 112:充電電路 120:控制電路 121:感測電路 130:分壓電路 CVCC:電容器 CX:安規電容器 D1、D2:二極體 DC:驅動電路 DIE1:第一晶粒 DIE2:第二晶粒 IB、IS:電流值 ND:連接節點 PD1_1~PD1_6、PD2_1~PD2_14、PD3_1~PD3_3:腳墊 PD1_GND、PD2_GND:接地腳墊 PN1~PN4:低壓引腳 PN5~PN8:高壓引腳 PN9、PN10:引腳 R1、R2、RS:電阻器 RC:整流電路 RD1、RD2:分壓電阻器 RG1、RG2:區域 SCB、SCC、SCD、SCP:控制信號 SWB:橋接開關 SWC:級聯開關 SWP:功率開關 TC:轉換電路 TS:感測電晶體 VAC:交流電源 VFB:回饋電壓 VIN:輸入電源 VOUT:輸出電源 100: Power conversion device 110: Charge and discharge control circuit 111: Discharge circuit 112: Charge circuit 120: Control circuit 121: Sensing circuit 130: Voltage divider circuit CVCC: Capacitor CX: Safety capacitor D1, D2: Diode DC: Drive circuit DIE1: First die DIE2: Second die IB, IS: Current value ND: Connection node PD1_1~PD1_6, PD2_1~PD2_14, PD3_1~PD3_3: Pads PD1_GND, PD2_GND: Ground pads PN1~PN4: Low voltage pins PN5~PN8: High voltage pins PN9, PN10: pins R1, R2, RS: resistors RC: rectifier circuit RD1, RD2: voltage divider resistors RG1, RG2: regions SCB, SCC, SCD, SCP: control signals SWB: bridge switch SWC: cascade switch SWP: power switch TC: conversion circuit TS: sensing transistor VAC: AC power VFB: feedback voltage VIN: input power VOUT: output power

圖1是依據本新型創作一實施例所繪示的電源轉換裝置的示意圖。 圖2是依據本新型創作一實施例所繪示的電源轉換裝置的晶粒佈局示意圖。 圖3是依據本新型創作一實施例所繪示的橋接開關以及感測電晶體的電路示意圖。 圖4是依據本新型創作一實施例所繪示的電源轉換裝置的晶粒佈局示意圖。 圖5是依據本新型創作一實施例所繪示的橋接開關以及分壓電路的電路示意圖。 圖6是依據本新型創作一實施例所繪示的電源轉換裝置的晶粒佈局示意圖。 圖7是依據本新型創作一實施例所繪示的橋接開關、感測電晶體以及分壓電路的電路示意圖。 圖8是依據本新型創作一實施例所繪示的電源轉換裝置的晶粒佈局示意圖。 圖9是依據本新型創作一實施例所繪示的功率開關以及級聯開關的電路示意圖。 圖10是依據本新型創作一實施例所繪示的電源轉換裝置的晶粒佈局示意圖。 圖11是依據本新型創作一實施例所繪示的功率開關、級聯開關以及充放電控制電路的電路示意圖。 FIG. 1 is a schematic diagram of a power conversion device according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a chip layout of a power conversion device according to an embodiment of the present invention. FIG. 3 is a schematic diagram of a circuit of a bridge switch and a sensing transistor according to an embodiment of the present invention. FIG. 4 is a schematic diagram of a chip layout of a power conversion device according to an embodiment of the present invention. FIG. 5 is a schematic diagram of a circuit of a bridge switch and a voltage divider circuit according to an embodiment of the present invention. FIG. 6 is a schematic diagram of a chip layout of a power conversion device according to an embodiment of the present invention. FIG. 7 is a circuit diagram of a bridge switch, a sensing transistor, and a voltage divider circuit according to an embodiment of the present invention. FIG. 8 is a circuit diagram of a power converter according to an embodiment of the present invention. FIG. 9 is a circuit diagram of a power switch and a cascade switch according to an embodiment of the present invention. FIG. 10 is a circuit diagram of a power converter according to an embodiment of the present invention. FIG. 11 is a circuit diagram of a power switch, a cascade switch, and a charge-discharge control circuit according to an embodiment of the present invention.

100:電源轉換裝置 100: Power conversion device

110:充放電控制電路 110: Charging and discharging control circuit

111:放電電路 111: Discharge circuit

112:充電電路 112: Charging circuit

120:控制電路 120: Control circuit

121:感測電路 121: Sensing circuit

CVCC:電容器 CVCC: Capacitor

CX:安規電容器 CX: Safety capacitor

D1、D2:二極體 D1, D2: diodes

DIE1:第一晶粒 DIE1: First grain

DIE2:第二晶粒 DIE2: Second die

ND:連接節點 ND: Connection Node

R1、R2:電阻器 R1, R2: resistors

RC:整流電路 RC: Rectifier circuit

SCB、SCC、SCD、SCP:控制信號 SCB, SCC, SCD, SCP: control signals

SWB:橋接開關 SWB: Bridge switch

SWP:功率開關 SWP: Power switch

TC:轉換電路 TC:Conversion circuit

VAC:交流電源 VAC: alternating current power

VIN:輸入電源 VIN: Input power

VOUT:輸出電源 VOUT: output power

Claims (10)

一種電源轉換裝置,包括: 安規電容器; 功率開關; 充放電控制電路,包括: 橋接開關,所述橋接開關的第一端經由連接節點耦接至所述安規電容器;以及 放電電路,耦接於所述橋接開關的第二端,經配置以對位於所述安規電容器的電壓進行放電;以及 控制電路,耦接於所述功率開關以及所述充放電控制電路, 其中所述控制電路以及所述放電電路被集成在第一晶粒中, 其中所述功率開關以及所述橋接開關被集成在第二晶粒中,並且 其中所述第二晶粒的耐壓能力高於所述第一晶粒的耐壓能力。 A power conversion device, comprising: a safety capacitor; a power switch; a charge-discharge control circuit, comprising: a bridge switch, a first end of the bridge switch coupled to the safety capacitor via a connection node; and a discharge circuit coupled to a second end of the bridge switch, configured to discharge a voltage located at the safety capacitor; and a control circuit coupled to the power switch and the charge-discharge control circuit, wherein the control circuit and the discharge circuit are integrated in a first die, wherein the power switch and the bridge switch are integrated in a second die, and wherein the withstand voltage capability of the second die is higher than the withstand voltage capability of the first die. 如請求項1所述的電源轉換裝置,其中所述功率開關由氮化鎵場效電晶體來實施。A power conversion device as described in claim 1, wherein the power switch is implemented by a gallium nitride field effect transistor. 如請求項1所述的電源轉換裝置,其中所述橋接開關由氮化鎵場效電晶體來實施。A power conversion device as described in claim 1, wherein the bridge switch is implemented by a gallium nitride field effect transistor. 如請求項1所述的電源轉換裝置,其中當所述放電電路對位於所述安規電容器的電壓進行放電時,所述控制電路導通所述橋接開關。A power conversion device as described in claim 1, wherein when the discharge circuit discharges the voltage at the safety capacitor, the control circuit turns on the bridge switch. 如請求項1所述的電源轉換裝置,所述充放電控制電路還包括: 充電電路,耦接於所述橋接開關的第二端,經配置以對位於所述連接節點的電壓進行充電, 其中所述充電電路被集成在所述第一晶粒中。 In the power conversion device as described in claim 1, the charge-discharge control circuit further includes: A charging circuit coupled to the second end of the bridge switch, configured to charge the voltage at the connection node, wherein the charging circuit is integrated in the first die. 如請求項5所述的電源轉換裝置,其中當所述充電電路對位於所述連接節點的電壓進行充電時,所述控制電路導通所述橋接開關。A power conversion device as described in claim 5, wherein when the charging circuit charges the voltage at the connection node, the control circuit turns on the bridge switch. 如請求項1所述的電源轉換裝置,還包括: 分壓電路,耦接至所述連接節點以及所述控制電路,經配置以依據位於所述連接節點的電壓值來產生回饋電壓, 其中所述控制電路依據所述回饋電壓來判斷所述安規電容器的電壓值,並且 其中所述分壓電路被集成在所述第二晶粒中。 The power conversion device as described in claim 1 further includes: A voltage divider circuit coupled to the connection node and the control circuit, configured to generate a feedback voltage according to the voltage value at the connection node, wherein the control circuit determines the voltage value of the safety capacitor according to the feedback voltage, and wherein the voltage divider circuit is integrated in the second die. 如請求項1所述的電源轉換裝置,還包括: 感測電晶體,所述感測電晶體的第一端耦接至所述連接節點,所述感測電晶體的第二端耦接至所述控制電路,所述感測電晶體的控制端耦接至所述控制電路, 其中所述控制電路導通所述感測電晶體並感測流經所述感測電晶體的電流值,並且 其中所述感測電晶體被集成在所述第二晶粒中。 The power conversion device as described in claim 1 further comprises: a sensing transistor, wherein the first end of the sensing transistor is coupled to the connection node, the second end of the sensing transistor is coupled to the control circuit, the control end of the sensing transistor is coupled to the control circuit, wherein the control circuit turns on the sensing transistor and senses the current value flowing through the sensing transistor, and wherein the sensing transistor is integrated in the second die. 如請求項1所述的電源轉換裝置,其中所述功率開關由空乏型氮化鎵場效電晶體來實施。A power conversion device as described in claim 1, wherein the power switch is implemented by a depletion type gallium nitride field effect transistor. 如請求項9所述的電源轉換裝置,還包括: 級聯開關,耦接於所述功率開關以及所述控制電路。 The power conversion device as described in claim 9 further includes: A cascade switch coupled to the power switch and the control circuit.
TW113202425U 2024-03-11 2024-03-11 Power conversion device TWM657846U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113202425U TWM657846U (en) 2024-03-11 2024-03-11 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113202425U TWM657846U (en) 2024-03-11 2024-03-11 Power conversion device

Publications (1)

Publication Number Publication Date
TWM657846U true TWM657846U (en) 2024-07-11

Family

ID=92930255

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113202425U TWM657846U (en) 2024-03-11 2024-03-11 Power conversion device

Country Status (1)

Country Link
TW (1) TWM657846U (en)

Similar Documents

Publication Publication Date Title
US6775164B2 (en) Three-terminal, low voltage pulse width modulation controller IC
JP6374261B2 (en) Insulation synchronous rectification type DC / DC converter and synchronous rectification controller thereof, power supply device using the same, power supply adapter, and electronic device
US11563337B2 (en) High efficiency wireless charging system and method
TWI231088B (en) Control IC for low power auxiliary supplies
US9397636B2 (en) System and method for driving transistors
US9887619B2 (en) System and method for a normally-on switched mode power supply
JP2005210730A (en) Alternating current switching circuit
CN101123399A (en) Switching power supply device
KR101319284B1 (en) Dc-dc converter and power supply device
TWI751768B (en) Soft-start boost converter
D'Souza et al. A fully integrated power-management solution for a 65nm CMOS cellular handset chip
TWM657846U (en) Power conversion device
US11777405B2 (en) Boost off time adaptive adjustment unit and power converter comprising the same
US6650098B2 (en) Current limited buck power supply
JP2016162301A (en) Insulation synchronous rectification type dc/dc converter, secondary side module, power supply device using the same, power supply adaptor and electronic apparatus
US20210104950A1 (en) Auxiliary power supply circuit, power supply apparatus, and power supply circuit
Fan et al. A high-voltage low-power switched-capacitor DC-DC converter based on GaN and SiC devices for LED drivers
TWM658694U (en) Power conversion device
TWI715464B (en) Buck converter
JP6651577B2 (en) Semiconductor device, DC / DC converter using the same, power supply device, power supply adapter, electronic device
TWI804189B (en) Switching power supply and its control chip and control method
US11513545B2 (en) Voltage converting circuit and associated chip package and converting method
US10439487B2 (en) Voltage converter circuit and method for operating a voltage converter circuit
US20240275293A1 (en) Power supply system with active clamping
US11888482B2 (en) Hybrid hysteretic control system