TWM649964U - Thin-film vertical resonant cavity surface emitting laser element - Google Patents

Thin-film vertical resonant cavity surface emitting laser element Download PDF

Info

Publication number
TWM649964U
TWM649964U TW112206872U TW112206872U TWM649964U TW M649964 U TWM649964 U TW M649964U TW 112206872 U TW112206872 U TW 112206872U TW 112206872 U TW112206872 U TW 112206872U TW M649964 U TWM649964 U TW M649964U
Authority
TW
Taiwan
Prior art keywords
layer
metal contact
type metal
bragg reflector
emitting
Prior art date
Application number
TW112206872U
Other languages
Chinese (zh)
Inventor
林昱成
Original Assignee
先發電光股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先發電光股份有限公司 filed Critical 先發電光股份有限公司
Priority to TW112206872U priority Critical patent/TWM649964U/en
Publication of TWM649964U publication Critical patent/TWM649964U/en

Links

Images

Abstract

本新型的薄膜式垂直共振腔面射型雷射元件的磊晶結構依序包含N型 金屬接觸層、下布拉格反射鏡層、電流侷限層、主動發光層、上布拉格反射鏡層及P型金屬接觸層,P型金屬接觸層、上布拉格反射鏡層、主動發光層、電流侷限層、下布拉格反射鏡層在N型金屬接觸層的一側形成圓柱體,而主動發光層在上布拉格反射鏡層及下布拉格反射鏡層之間產生的雷射光向N型金屬接觸層射出。本新型的共振腔面射型雷射元件不具基板而達成薄膜化,提高封裝彈性,且提高散熱效率,保證共振腔面射型雷射元件的發光效能及穩定性。 The epitaxial structure of the new thin-film vertical resonant cavity surface-emitting laser element sequentially includes N-type Metal contact layer, lower Bragg mirror layer, current limiting layer, active light emitting layer, upper Bragg mirror layer and P-type metal contact layer, P-type metal contact layer, upper Bragg mirror layer, active light emitting layer, current limiting layer, The lower Bragg reflector layer forms a cylinder on one side of the N-type metal contact layer, and the laser light generated by the active light-emitting layer between the upper Bragg reflector layer and the lower Bragg reflector layer is emitted toward the N-type metal contact layer. This new type of resonant cavity surface-emitting laser element does not have a substrate and can be thinned, thereby improving packaging flexibility and improving heat dissipation efficiency, ensuring the luminous efficiency and stability of the resonant cavity surface-emitting laser element.

Description

薄膜式垂直共振腔面射型雷射元件 Thin film vertical resonant cavity surface emitting laser element

一種雷射元件,尤指一種薄膜式垂直共振腔面射型雷射元件。 A laser element, especially a thin-film vertical resonant cavity surface-emitting laser element.

垂直共振腔面射型雷射(Vertical Cavity Surface Emitting Laser,VCSEL)是一種由原建表面出光的雷射元件,相較於邊射型雷射(Edge Emitting Laser,EEL),具有闕值電流小,對稱發散角且容易做成陣列等優點,目前廣泛用於光感測,光通信及氣體偵測等領域。 Vertical Cavity Surface Emitting Laser (VCSEL) is a laser element that emits light from the original surface. Compared with Edge Emitting Laser (EEL), it has a smaller threshold current. , symmetrical divergence angle and easy to make arrays, etc., it is currently widely used in fields such as optical sensing, optical communication and gas detection.

請參閱圖3所示,傳統的VCSEL通過磊晶程序設置在一基板上51,相對基板而言,由下而上依序為N型分散式布拉格反射鏡(Distributed Bragg Reflector;DBR)層52、主動發光層53、電流侷限層54、P型DBR層55等。當電流通過主動發光層53產生光子,光波在P型DBR層55及N型DBR層52之間進行建設性反射從而形成雷射,且下方的N型DBR層52反射率略高於P型DBR層53,使得雷射光束通過電流侷限層54的發光孔540由P型DBR層55上方射出。磊晶結構上包覆鈍化層56,金屬電極57通過鈍化層開口與P型DBR層55及N型DBR層52形成電性連接。 As shown in Figure 3, a traditional VCSEL is disposed on a substrate 51 through an epitaxial process. Relative to the substrate, from bottom to top are an N-type Distributed Bragg Reflector (DBR) layer 52, Active light emitting layer 53, current confinement layer 54, P-type DBR layer 55, etc. When current passes through the active light-emitting layer 53 to generate photons, the light wave is constructively reflected between the P-type DBR layer 55 and the N-type DBR layer 52 to form a laser, and the reflectivity of the lower N-type DBR layer 52 is slightly higher than that of the P-type DBR layer 53 , so that the laser beam passes through the light-emitting hole 540 of the current confinement layer 54 and is emitted from above the P-type DBR layer 55 . The epitaxial structure is covered with a passivation layer 56, and the metal electrode 57 forms an electrical connection with the P-type DBR layer 55 and the N-type DBR layer 52 through the passivation layer opening.

由於VCSEL在結構上採用電流侷限層54形成的發光孔540出光以及進行電流侷限,當電流通過發光孔540時,電流密度增加而產生較多的熱能,且基板51的熱阻也會使得熱能容易累積於磊晶結構中,使得主動發光層53溫度上升,進一步致使光功率及相關可靠度性能下降,甚至導致元件失效。因此解決散熱問題是提升雷射元件效能及可靠度最重要的關鍵。 Since the VCSEL structure uses the light-emitting hole 540 formed by the current confinement layer 54 to emit light and localize the current, when the current passes through the light-emitting hole 540, the current density increases and generates more heat energy, and the thermal resistance of the substrate 51 also makes the heat energy easily Accumulated in the epitaxial structure, the temperature of the active light-emitting layer 53 rises, further causing a decrease in optical power and related reliability performance, and even causing component failure. Therefore, solving the heat dissipation problem is the most important key to improving the performance and reliability of laser components.

有鑑於現有的VCSEL元件需要解決載電流侷限層附近產生的散熱問題,本新型提出一種高散熱薄膜熱薄膜式垂直共振腔面射型雷射元件,包含:一磊晶結構,包含:一上布拉格反射鏡層;一下布拉格反射鏡層;一主動發光層,設置於該上布拉格反射鏡層及下布拉格反射鏡層之間;一電流侷限層,設置於該下布拉格反射鏡層靠近該主動發光層的一表面,具有一發光孔;一N型金屬接觸層,與該下布拉格反射鏡層遠離該主動發光層的一表面形成歐姆接觸;以及一P型金屬接觸層,與該上布拉格反射鏡層遠離該主動發光層的一表面形成歐姆接觸;其中,該P型金屬接觸層、該上布拉格反射鏡層、該主動發光層、該電流侷限層、該下布拉格反射鏡層在該N型金屬接觸層的一側形成一圓柱體。 In view of the fact that existing VCSEL elements need to solve the heat dissipation problem generated near the current-carrying localization layer, this new type proposes a high heat dissipation thin film thermal film vertical resonant cavity surface-emitting laser element, including: an epitaxial structure, including: an upper Bragg Reflector layer; a lower Bragg reflector layer; an active light-emitting layer disposed between the upper Bragg reflector layer and the lower Bragg reflector layer; a current confinement layer disposed on the lower Bragg reflector layer close to the active light-emitting layer A surface has a light-emitting hole; an N-type metal contact layer forms ohmic contact with a surface of the lower Bragg reflector layer away from the active light-emitting layer; and a P-type metal contact layer forms an ohmic contact with the upper Bragg reflector layer A surface away from the active light-emitting layer forms an ohmic contact; wherein the P-type metal contact layer, the upper Bragg mirror layer, the active light-emitting layer, the current confinement layer, and the lower Bragg mirror layer are in the N-type metal contact One side of the layer forms a cylinder.

本新型的高散熱薄膜式垂直共振腔面射型雷射元件在完成製程後會移除基板,故由下布拉格反射鏡層及上布拉格反射鏡層之間的主動發光層所致使產生的雷射光可由N型金屬接觸層相對該電流侷限層的一下表面射出。相較傳統雷射元件的磊晶層及基板的總厚度為108-160μm,本新型的共振腔面射型雷射元件由於不具基板,體積減少且薄膜化,薄膜化後主要磊晶層厚度為8-10μm,具有可撓性且增加封裝彈性。進一步而言,熱能不會受到N型金屬接觸層下方的基板阻擋,而能容易的直接由N型金屬接觸層下方發散,保證薄膜式垂直共振腔面射型雷射元件的散熱效能。 This new type of high heat dissipation thin film vertical resonant cavity surface-emitting laser element will remove the substrate after completing the process, so the laser light generated by the active light-emitting layer between the lower Bragg reflector layer and the upper Bragg reflector layer It can be emitted from the lower surface of the N-type metal contact layer relative to the current localization layer. Compared with the total thickness of the epitaxial layer and substrate of traditional laser elements, which is 108-160 μm, the new resonant cavity surface-emitting laser element does not have a substrate, so the volume is reduced and the thickness is thinned. After thinning, the main epitaxial layer thickness is 8-10μm, flexible and increased packaging flexibility. Furthermore, the heat energy will not be blocked by the substrate under the N-type metal contact layer, but can be easily dissipated directly from under the N-type metal contact layer, ensuring the heat dissipation performance of the thin-film vertical resonant cavity surface-emitting laser element.

10:磊晶結構 10: Epitaxial structure

10’:圓柱體 10’:Cylinder

11:N型金屬接觸層 11:N-type metal contact layer

12:下布拉格反射鏡層 12: Lower Bragg mirror layer

13:電流侷限層 13:Current confinement layer

130:發光孔 130: Luminous hole

14:主動發光層 14:Active luminescent layer

141:N型空間層 141:N type space layer

142:多重量子井空間層 142:Multiple quantum well space layer

143:P型空間層 143:P type space layer

15:上布拉格反射鏡層 15: Upper Bragg mirror layer

16:P型金屬接觸層 16:P-type metal contact layer

21:第一金屬電極 21: First metal electrode

210:第一金屬層 210: First metal layer

22:第二金屬電極 22: Second metal electrode

23:感光性高分子材料 23: Photosensitive polymer materials

31:第一鈍化層 31: First passivation layer

311:第一開口 311:First opening

312:第二開口 312:Second opening

32:第二鈍化層 32: Second passivation layer

41:基板 41:Substrate

42:N型緩衝層 42:N-type buffer layer

43:磊晶犧牲層 43: Epitaxial sacrificial layer

51:基板 51:Substrate

52:下布拉格反射鏡層 52: Lower Bragg mirror layer

53:主動發光層 53:Active luminescent layer

54:電流侷限層 54:Current confinement layer

55:上布拉格反射鏡層 55: Upper Bragg mirror layer

56:鈍化層 56: Passivation layer

57:金屬電極 57:Metal electrode

圖1係本新型薄膜式垂直共振腔面射型雷射元件的側視剖面圖。 Figure 1 is a side cross-sectional view of the new thin-film vertical resonant cavity surface-emitting laser element.

圖2A至圖2F係本新型薄膜式垂直共振腔面射型雷射元件的製造流程剖面圖。 Figures 2A to 2F are cross-sectional views of the manufacturing process of the new thin-film vertical resonant cavity surface-emitting laser element.

圖3係習知垂直共振腔面射型雷射元件的側視剖面圖。 Figure 3 is a side cross-sectional view of a conventional vertical resonant cavity surface-emitting laser element.

請參閱圖1所示,本新型的薄膜式垂直共振腔面射型雷射元件包含一磊晶結構10,磊晶結構10由下而上依序包一N型金屬接觸層11、一下布拉格反射鏡層12、一電流侷限層13、一主動發光層14、一上布拉格反射鏡層15及一P型金屬接觸層16。主動發光層14位於上布拉格反射鏡層15及下布拉格反射鏡層12之間,而電流侷限層13位於下布拉格反射鏡層12靠近主動發光層14的一表面,具有一發光孔130以使得電流能由主動發光層14流動至下布拉格反射鏡層12,以及使得主動發光層14產生的光能在由上布拉格反射鏡層15及下布拉格反射鏡層12共振後通過下布拉格反射鏡層12射出。 Please refer to Figure 1. The new thin-film vertical resonant cavity surface-emitting laser element of the present invention includes an epitaxial structure 10. The epitaxial structure 10 sequentially includes an N-type metal contact layer 11 and a Bragg reflector from bottom to top. Mirror layer 12, a current confinement layer 13, an active light emitting layer 14, an upper Bragg reflector layer 15 and a P-type metal contact layer 16. The active light-emitting layer 14 is located between the upper Bragg reflector layer 15 and the lower Bragg reflector layer 12, and the current confinement layer 13 is located on a surface of the lower Bragg reflector layer 12 close to the active light-emitting layer 14, and has a light-emitting hole 130 to allow the current to flow. The energy flows from the active light-emitting layer 14 to the lower Bragg reflector layer 12, and causes the light energy generated by the active light-emitting layer 14 to be emitted through the lower Bragg reflector layer 12 after being resonated by the upper Bragg reflector layer 15 and the lower Bragg reflector layer 12. .

N型金屬接觸層11與下布拉格反射鏡層12遠離主動發光層14的一表面形成歐姆接觸,而P型金屬接觸層16與上布拉格反射鏡層15遠離主動發光層14的一表面形成歐姆接觸。 The N-type metal contact layer 11 forms an ohmic contact with a surface of the lower Bragg mirror layer 12 away from the active light-emitting layer 14 , while the P-type metal contact layer 16 forms an ohmic contact with a surface of the upper Bragg mirror layer 15 away from the active light-emitting layer 14 .

其中,P型金屬接觸層16、上布拉格反射鏡層15、主動發光層14、電流侷限層13、下布拉格反射鏡層12在N型金屬接觸層11的一側形成一圓柱體10’。圓柱體10’即為一基本發光單元。N型金屬接觸層11上能在製程中同時設置包含複數基板發光單元之陣列,作為一雷射裝置之發光模組。 Among them, the P-type metal contact layer 16, the upper Bragg mirror layer 15, the active light-emitting layer 14, the current confinement layer 13, and the lower Bragg mirror layer 12 form a cylinder 10' on one side of the N-type metal contact layer 11. The cylinder 10' is a basic light-emitting unit. An array including a plurality of substrate light-emitting units can be disposed simultaneously on the N-type metal contact layer 11 during the manufacturing process to serve as a light-emitting module of a laser device.

在本新型中,上布拉格反射鏡層15的反射率大於下布拉格反射鏡層12的反射率,使得在雷射由下布拉格反射鏡層12的下方射出。在上布拉格 反射鏡層15與下布拉格反射鏡層12的能係設計相同,例如均為AlxGa1-xAs/GaAs鏡層之情況下,上布拉格反射鏡層15的一鏡層對數大於下布拉格反射鏡層12的一鏡層對數。舉例而言,上布拉格反射鏡層15的鏡層對數為35~40對,反射率為大於99.8%以上,下布拉格反射鏡層12的鏡層對數為15~21對,反射率為小於99.6%。 In the present invention, the reflectivity of the upper Bragg reflector layer 15 is greater than the reflectivity of the lower Bragg reflector layer 12 , so that the laser is emitted from below the lower Bragg reflector layer 12 . When the upper Bragg mirror layer 15 and the lower Bragg mirror layer 12 have the same energy system design, for example, if they are both Al x Ga 1-x As/GaAs mirror layers, the number of mirror pairs of the upper Bragg mirror layer 15 is greater than The number of mirror layer pairs of the lower Bragg mirror layer 12. For example, the number of mirror layer pairs of the upper Bragg reflector layer 15 is 35 to 40 pairs, and the reflectivity is greater than 99.8%. The number of mirror layer pairs of the lower Bragg reflector layer 12 is 15 to 21 pairs, and the reflectivity is less than 99.6%. .

較佳的,薄膜式垂直共振腔面射型雷射元件進一步包含一第一金屬電極21及一第二金屬電極22,第一金屬電極21設置於N型金屬接觸層11朝向圓柱體10’的一側,且與N型金屬接觸層11電性連接,第二金屬電極22設置於圓柱體10’的外側且與P型金屬接觸層16電性連接。此外,還進一步包含一感光性高分子材料23,設置於第一金屬電極21及第二金屬電極22之間,以使第一金屬電極21及第二金屬電極22之間電性隔離。第一金屬電極21、第二金屬電極22及感光性高分子材料23之實際形狀依半導體元件之線路走線設計而決定,本新型不以此為限。 Preferably, the thin-film vertical resonant cavity surface-emitting laser element further includes a first metal electrode 21 and a second metal electrode 22. The first metal electrode 21 is disposed on the N-type metal contact layer 11 facing the cylinder 10'. One side is electrically connected to the N-type metal contact layer 11 , and the second metal electrode 22 is disposed on the outside of the cylinder 10 ′ and is electrically connected to the P-type metal contact layer 16 . In addition, it further includes a photosensitive polymer material 23 disposed between the first metal electrode 21 and the second metal electrode 22 to electrically isolate the first metal electrode 21 and the second metal electrode 22 . The actual shapes of the first metal electrode 21, the second metal electrode 22 and the photosensitive polymer material 23 are determined by the wiring design of the semiconductor device, and the present invention is not limited thereto.

較佳的,薄膜式垂直共振腔面射型雷射元件進一步包含一第一鈍化層31。第一鈍化層31包覆圓柱體10’及N型金屬接觸層11未受圓柱體10’覆蓋的部分表面。第一鈍化層31具有一第一開口311及一第二開口312,第一開口311局部地露出P型金屬接觸層16的部分表面,且第二開口局312部地露出N型金屬接觸層11的表面。第一金屬電極21係通過第一開口311與N型金屬接觸層11電性連接,而第二金屬電極22係通過第一開口311與P型金屬接觸層16電性連接。換言之,第一鈍化層31係位於圓柱體10’及N型金屬接觸層11的外側與第一金屬電極21、第二金屬電極22之間。 Preferably, the thin-film vertical resonant cavity surface-emitting laser element further includes a first passivation layer 31 . The first passivation layer 31 covers the cylinder 10' and the part of the surface of the N-type metal contact layer 11 that is not covered by the cylinder 10'. The first passivation layer 31 has a first opening 311 and a second opening 312. The first opening 311 partially exposes part of the surface of the P-type metal contact layer 16, and the second opening 312 partially exposes the N-type metal contact layer 11. s surface. The first metal electrode 21 is electrically connected to the N-type metal contact layer 11 through the first opening 311 , and the second metal electrode 22 is electrically connected to the P-type metal contact layer 16 through the first opening 311 . In other words, the first passivation layer 31 is located between the outside of the cylinder 10' and the N-type metal contact layer 11 and the first metal electrode 21 and the second metal electrode 22.

較佳的,薄膜式垂直共振腔面射型雷射元件進一步包含一第二鈍化層32,第二鈍化層32設置於下布拉格反射鏡層12的一表面,以保護下布拉格反射鏡層12的表面。 Preferably, the thin-film vertical resonant cavity surface-emitting laser element further includes a second passivation layer 32. The second passivation layer 32 is disposed on a surface of the lower Bragg reflector layer 12 to protect the lower Bragg reflector layer 12. surface.

以下將由圖2A~2F進一步說明本新型的薄膜式垂直共振腔面射型雷射元件之製造流程,以使得薄膜式垂直共振腔面射型雷射元件之結構更加清楚明確。 The manufacturing process of the new thin-film vertical resonant cavity surface-emitting laser element of the present invention will be further explained below in Figures 2A to 2F, so as to make the structure of the thin-film vertical resonant cavity surface-emitting laser element clearer.

請參閱圖2A所示,首先在一基板41上通過複數道磊晶製程依序設置一N型緩衝層42、一磊晶犧牲層43、N型金屬接觸層11、下布拉格反射鏡層12、主動發光層14、上布拉格反射鏡層15及P型金屬接觸層16。較佳的,基板41係一砷化鎵(GaAs)基板。磊晶犧牲層43的磊晶結構例如為砷化鋁(AlAs),其厚度為15~30nm。 Please refer to FIG. 2A. First, an N-type buffer layer 42, an epitaxial sacrificial layer 43, an N-type metal contact layer 11, a lower Bragg mirror layer 12, and Active light emitting layer 14 , upper Bragg mirror layer 15 and P-type metal contact layer 16 . Preferably, the substrate 41 is a gallium arsenide (GaAs) substrate. The epitaxial structure of the epitaxial sacrificial layer 43 is, for example, aluminum arsenide (AlAs), and its thickness is 15~30 nm.

其中,主動發光層14係一複合層,由下而上包含一N型空間層141、一多重量子井空間層142及一P型空間層143。換言之,多重量子井空間層142,設置於P型空間層143和N型空間層141之間。 Among them, the active light-emitting layer 14 is a composite layer, including an N-type space layer 141, a multiple quantum well space layer 142 and a P-type space layer 143 from bottom to top. In other words, the multiple quantum well space layer 142 is provided between the P-type space layer 143 and the N-type space layer 141 .

須說明的是,在本新型中,所述「上」方係指基板41進行磊晶製程的表面所朝向之方向,而「下」方則為上方之相反方向。 It should be noted that in the present invention, the “upper” direction refers to the direction in which the surface of the substrate 41 undergoes the epitaxial process faces, while the “lower” direction refers to the opposite direction of the upper direction.

請參閱圖2B所示,對基板41上的多層磊晶結構進行第一次平台蝕刻(MESA etching)程序,由P型金屬接觸層16表面蝕刻至下布拉格反射鏡層12而尚未穿透下布拉格反射鏡層12而形成圓柱體10’。進一步的,進行一氧化程序,由圓柱體10’的側面對下布拉格反射鏡層12與主動發光層14的交接處進行定深氧化程序,使得下布拉格反射鏡層12靠近主動發光層14的表面由外向內形成電流侷限層13,且在下布拉格反射鏡層12靠近主動發光層14的表面中間未氧化部分為發光孔130。 Please refer to FIG. 2B . The first platform etching (MESA etching) process is performed on the multi-layer epitaxial structure on the substrate 41 . The surface of the P-type metal contact layer 16 is etched to the lower Bragg mirror layer 12 without penetrating the lower Bragg. The mirror layer 12 is reflected to form a cylinder 10'. Further, an oxidation process is performed, and a fixed-depth oxidation process is performed from the side of the cylinder 10' to the junction of the lower Bragg reflector layer 12 and the active light-emitting layer 14, so that the lower Bragg reflector layer 12 is close to the surface of the active light-emitting layer 14. The current confinement layer 13 is formed from the outside to the inside, and the unoxidized portion in the middle of the surface of the lower Bragg reflector layer 12 close to the active light-emitting layer 14 is the light-emitting hole 130 .

請參閱圖2C所示,對下布拉格反射鏡層12進行第二次平台蝕刻,由在第一次平台蝕刻程序中保留的部分的下布拉格反射鏡層12表面繼續蝕刻至N型金屬接觸層11表面,形成靠近N型金屬接觸層11表面較寬的第二段圓 柱體。並且,設置一第一鈍化層31,第一鈍化層31包覆N型金屬接觸層11朝向圓柱體10’而未受圓柱體10’覆蓋的部分表面及圓柱體10’。 Referring to FIG. 2C , a second platform etching is performed on the lower Bragg reflector layer 12 , and the etching continues from the surface of the lower Bragg reflector layer 12 retained in the first platform etching process to the N-type metal contact layer 11 surface, forming a second circular segment with a wider surface close to the N-type metal contact layer 11 cylinder. Furthermore, a first passivation layer 31 is provided. The first passivation layer 31 covers the partial surface of the N-type metal contact layer 11 facing the cylinder 10' and not covered by the cylinder 10' and the cylinder 10'.

請參閱圖2D所示,對第一鈍化層31進行一蝕刻程序,以形成一第一開口311及一第二開口312,第一開口311局部地露出P型金屬接觸層16的部分表面,第二開口312局部地露出N型金屬接觸層11的部分表面。 Referring to FIG. 2D , an etching process is performed on the first passivation layer 31 to form a first opening 311 and a second opening 312 . The first opening 311 partially exposes part of the surface of the P-type metal contact layer 16 . The two openings 312 partially expose part of the surface of the N-type metal contact layer 11 .

請參閱圖2E所示,設置圖案化且相互間隔的一第一金屬電極21及一第二金屬電極22。第一金屬電極21設通過第一金屬層210與N型金屬接觸層11電性連接,第二金屬電極22與P型金屬接觸層16電性連接。第一金屬電極21例如是包覆於圓柱體10’一部分的外側並覆蓋第二開口312及其中的第一金屬層210,以通過第一金屬層210與N型金屬接觸層電性連接,而第二金屬電極22則是包覆於圓柱體10’另外一部分的外側並覆蓋第一開口311,以與P型金屬接觸層電性連接。並且,在第一金屬電極21及第二金屬電極22的間隔中設置感光性高分子材料23,以完成第一金屬電極21及第二金屬電極22之間的電性隔離。 Referring to FIG. 2E , a first metal electrode 21 and a second metal electrode 22 are patterned and spaced apart from each other. The first metal electrode 21 is electrically connected to the N-type metal contact layer 11 through the first metal layer 210 , and the second metal electrode 22 is electrically connected to the P-type metal contact layer 16 . For example, the first metal electrode 21 covers the outside of a part of the cylinder 10' and covers the second opening 312 and the first metal layer 210 therein, so as to be electrically connected to the N-type metal contact layer through the first metal layer 210, and The second metal electrode 22 is wrapped around the outside of another part of the cylinder 10' and covers the first opening 311 to be electrically connected to the P-type metal contact layer. Furthermore, a photosensitive polymer material 23 is disposed between the first metal electrode 21 and the second metal electrode 22 to complete the electrical isolation between the first metal electrode 21 and the second metal electrode 22 .

請參閱圖2F所示,連同基板41將磊晶犧牲層43由N型金屬接觸層11遠離圓柱體10’的表面移除。較佳的,此步驟是以化學藥液如氫氟酸(HF)對磊晶犧牲層43進行蝕刻,使得基板41由N型金屬接觸層11遠離圓柱體10’的表面剝離。如此一來,磊晶結構10與基板41完成分離,從而完成雷射元件的薄膜化。N型緩衝層42則保護基板41的表面,使得基板41能重複使用。 Referring to FIG. 2F , the epitaxial sacrificial layer 43 together with the substrate 41 is removed from the surface of the N-type metal contact layer 11 away from the cylinder 10'. Preferably, this step involves etching the epitaxial sacrificial layer 43 with a chemical solution such as hydrofluoric acid (HF), so that the substrate 41 is peeled off from the surface of the N-type metal contact layer 11 away from the cylinder 10'. In this way, the epitaxial structure 10 and the substrate 41 are separated, thereby completing the thinning of the laser element. The N-type buffer layer 42 protects the surface of the substrate 41 so that the substrate 41 can be reused.

最後,在N型金屬接觸層11移除基板41後露出的表面設置一第二鈍化層32,以保護N型金屬接觸層11的表面,完成本新型的薄膜式垂直共振腔面射型雷射元件。 Finally, a second passivation layer 32 is provided on the exposed surface of the N-type metal contact layer 11 after the substrate 41 is removed to protect the surface of the N-type metal contact layer 11 to complete the novel thin-film vertical resonant cavity surface-emitting laser. element.

綜上,本新型為一不具基板的薄膜式垂直共振腔面射型雷射元件,N型金屬接觸層11下方除了作為保護層的第二鈍化層32之外沒有其他材料阻隔,故在主動發光層14及下布拉格反射鏡層12的介面的電流侷限層13所產生 之熱能能夠有效地由N型金屬接觸層11下方發散。進一步而言,第一金屬電極21及第二金屬電極22包覆磊晶結構10的圓柱體10’,作為元件整體之支撐材,且圓柱體10’中前述產生之熱能亦能由第一金屬電極21及第二金屬電極22通過傳到而散熱,保證了共振腔面射型雷射元件之散熱效率。 In summary, the present invention is a thin-film vertical resonant cavity surface-emitting laser element without a substrate. There is no other material barrier under the N-type metal contact layer 11 except the second passivation layer 32 as a protective layer, so it can emit light during active operation. The current localization layer 13 at the interface between the layer 14 and the lower Bragg mirror layer 12 The heat energy can be effectively dissipated from below the N-type metal contact layer 11 . Furthermore, the first metal electrode 21 and the second metal electrode 22 cover the cylinder 10' of the epitaxial structure 10 as a support material for the entire element, and the thermal energy generated in the cylinder 10' can also be generated by the first metal The electrode 21 and the second metal electrode 22 dissipate heat through transmission, ensuring the heat dissipation efficiency of the resonant cavity surface-emitting laser element.

以上所述僅是本新型的實施例而已,並非對本新型做任何形式上的限制,雖然本新型已以實施例揭露如上,然而並非用以限定本新型,任何熟悉本專業的技術人員,在不脫離本新型技術方案的範圍內,當可利用上述揭示的技術內容做出些許更動或修飾為等同變化的等效實施例,但凡是未脫離本新型技術方案的內容,依據本新型的技術實質對以上實施例所作的任何簡單修改、等同變化與修飾,均仍屬於本新型技術方案的範圍內。 The above descriptions are only embodiments of the present invention and are not intended to limit the present invention in any form. Although the present invention has been disclosed as above in the form of embodiments, they are not intended to limit the present invention. Any skilled person familiar with the art will not Without departing from the scope of the technical solution of the present invention, the technical content disclosed above can be used to make slight changes or modifications to equivalent embodiments with equivalent changes. However, as long as the content of the technical solution of the present invention is not departed from, the technical content of the present invention shall be modified based on the technical essence of the present invention. Any simple modifications, equivalent changes and modifications made to the above embodiments still fall within the scope of the new technical solution.

10:磊晶結構 10: Epitaxial structure

10’:圓柱體 10’:Cylinder

11:N型金屬接觸層 11:N-type metal contact layer

12:下布拉格反射鏡層 12: Lower Bragg mirror layer

13:電流侷限層 13:Current confinement layer

130:發光孔 130: Luminous hole

14:主動發光層 14:Active luminescent layer

141:N型空間層 141:N type space layer

142:多重量子井空間層 142:Multiple quantum well space layer

143:P型空間層 143:P type space layer

15:上布拉格反射鏡層 15: Upper Bragg mirror layer

16:P型金屬接觸層 16:P-type metal contact layer

21:第一金屬電極 21: First metal electrode

22:第二金屬電極 22: Second metal electrode

23:感光性高分子材料 23: Photosensitive polymer materials

31:第一鈍化層 31: First passivation layer

32:第二鈍化層 32: Second passivation layer

Claims (8)

一種薄膜式垂直共振腔面射型雷射元件,包含:一磊晶結構,包含:一上布拉格反射鏡層;一下布拉格反射鏡層;一主動發光層,設置於該上布拉格反射鏡層及下布拉格反射鏡層之間;一電流侷限層,設置於該下布拉格反射鏡層靠近該主動發光層的一表面,具有一發光孔;一N型金屬接觸層,與該下布拉格反射鏡層遠離該主動發光層的一表面形成歐姆接觸;以及一P型金屬接觸層,與該上布拉格反射鏡層遠離該主動發光層的一表面形成歐姆接觸;其中,該P型金屬接觸層、該上布拉格反射鏡層、該主動發光層、該電流侷限層、該下布拉格反射鏡層在該N型金屬接觸層的一側形成一圓柱體。 A thin-film vertical resonant cavity surface-emitting laser element, including: an epitaxial structure, including: an upper Bragg reflector layer; a lower Bragg reflector layer; an active light-emitting layer, arranged on the upper Bragg reflector layer and below between the Bragg reflector layers; a current confinement layer, which is disposed on a surface of the lower Bragg reflector layer close to the active light-emitting layer and has a light-emitting hole; an N-type metal contact layer, which is away from the lower Bragg reflector layer. A surface of the active light-emitting layer forms ohmic contact; and a P-type metal contact layer forms ohmic contact with a surface of the upper Bragg reflector layer away from the active light-emitting layer; wherein, the P-type metal contact layer, the upper Bragg reflector layer The mirror layer, the active light-emitting layer, the current confinement layer, and the lower Bragg reflector layer form a cylinder on one side of the N-type metal contact layer. 如請求項1所述之薄膜式垂直共振腔面射型雷射元件,進一步包含:一第一金屬電極,設置於該N型金屬接觸層朝向該圓柱體的一側,且與該N型金屬接觸層電性連接,一第二金屬電極,設置於該圓柱體的外側且與該P型金屬接觸層電性連接。 The thin-film vertical resonant cavity surface-emitting laser element according to claim 1, further comprising: a first metal electrode, disposed on a side of the N-type metal contact layer facing the cylinder, and connected with the N-type metal electrode The contact layer is electrically connected to a second metal electrode, which is disposed outside the cylinder and is electrically connected to the P-type metal contact layer. 如請求項2所述之薄膜式垂直共振腔面射型雷射元件,進一步包含: 一感光性高分子材料感光性高分子材料,設置於該第一金屬電極及第二金屬電極的間隔中。 The thin-film vertical resonant cavity surface-emitting laser element as described in claim 2 further includes: A photosensitive polymer material is disposed in the gap between the first metal electrode and the second metal electrode. 如請求項1所述之薄膜式垂直共振腔面射型雷射元件,其中,該上布拉格反射鏡層的反射率大於該下布拉格反射鏡層。 The thin-film vertical resonant cavity surface-emitting laser element according to claim 1, wherein the reflectivity of the upper Bragg reflector layer is greater than that of the lower Bragg reflector layer. 如請求項2所述之薄膜式垂直共振腔面射型雷射元件,進一步包含:一第一鈍化層,包覆該圓柱體及該N型金屬接觸層未受該圓柱體覆蓋的部分表面,且具有一第一開口及一第二開口,該第一開口局部地露出該N型金屬接觸層的該部分表面,該第二開口局部地露出該P型金屬接觸層的表面;其中,該第一金屬電極係通過該第一開口與該N型金屬接觸層電性連接,該第二金屬電極係通過該第二開口與該P型金屬接觸層電性連接。 The thin-film vertical resonant cavity surface-emitting laser element as described in claim 2 further includes: a first passivation layer covering the surface of the cylinder and the N-type metal contact layer that is not covered by the cylinder, and has a first opening and a second opening, the first opening partially exposes the surface of the N-type metal contact layer, and the second opening partially exposes the surface of the P-type metal contact layer; wherein, the first opening partially exposes the surface of the N-type metal contact layer; A metal electrode is electrically connected to the N-type metal contact layer through the first opening, and the second metal electrode is electrically connected to the P-type metal contact layer through the second opening. 如請求項1所述之薄膜式垂直共振腔面射型雷射元件,進一步包含:一第二鈍化層,設置於該N型金屬接觸層遠離該下布拉格反射鏡層的一表面。 The thin-film vertical resonant cavity surface-emitting laser element according to claim 1 further includes: a second passivation layer disposed on a surface of the N-type metal contact layer away from the lower Bragg mirror layer. 如請求項1至6中任一項所述之薄膜式垂直共振腔面射型雷射元件,其中,該上布拉格反射鏡層的一鏡層對數大於該下布拉格反射鏡層的一鏡層對數。 The thin-film vertical resonant cavity surface-emitting laser element according to any one of claims 1 to 6, wherein the number of mirror layer pairs of the upper Bragg reflector layer is greater than the number of mirror layer pairs of the lower Bragg reflector layer. . 如請求項1至6中任一項所述之薄膜式垂直共振腔面射型雷射元件,其中,該主動發光層進一步包含:一P型空間層;一N型空間層;及 一多重量子井空間層,設置於該P型空間層和該N型空間層之間。 The thin-film vertical resonant cavity surface-emitting laser element according to any one of claims 1 to 6, wherein the active light-emitting layer further includes: a P-type space layer; an N-type space layer; and A multiple quantum well space layer is provided between the P-type space layer and the N-type space layer.
TW112206872U 2023-07-03 2023-07-03 Thin-film vertical resonant cavity surface emitting laser element TWM649964U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112206872U TWM649964U (en) 2023-07-03 2023-07-03 Thin-film vertical resonant cavity surface emitting laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112206872U TWM649964U (en) 2023-07-03 2023-07-03 Thin-film vertical resonant cavity surface emitting laser element

Publications (1)

Publication Number Publication Date
TWM649964U true TWM649964U (en) 2024-01-01

Family

ID=90455490

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112206872U TWM649964U (en) 2023-07-03 2023-07-03 Thin-film vertical resonant cavity surface emitting laser element

Country Status (1)

Country Link
TW (1) TWM649964U (en)

Similar Documents

Publication Publication Date Title
JP6176298B2 (en) Surface emitting semiconductor laser array and method for manufacturing surface emitting semiconductor laser array
US11777280B2 (en) Emitter array with shared via to an ohmic metal shared between adjacent emitters
US9172213B2 (en) VCSEL module and manufacture thereof
US9627854B2 (en) VCSEL with intracavity contacts
JP2006157024A (en) Light emission semiconductor element
JP5151317B2 (en) Surface emitting semiconductor laser device and manufacturing method thereof
US11973315B2 (en) VCSEL with integrated electrodes
JP4962743B2 (en) Light emitting device
US20110019709A1 (en) Semiconductor device and method of manufacturing the same
TW201801341A (en) Light-emitting device
US8027370B2 (en) Semiconductor device
JP4507489B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP2003031840A (en) Light emitting diode array
KR20160036862A (en) Method of fabricating lighting emitting device and lighting emitting device fabricated by the same
KR101115570B1 (en) Light emitting device and method of fabricating the same
US20080205469A1 (en) Optical element
JP2015153862A (en) Surface emission laser array and laser device
TWM649964U (en) Thin-film vertical resonant cavity surface emitting laser element
JP6308319B2 (en) Surface emitting semiconductor laser array
CN220233724U (en) Thin film type vertical resonant cavity surface emitting laser element
US20040136426A1 (en) Moisture passivated planar index-guided VCSEL
JP4879094B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2012054474A (en) Semiconductor laser device
WO2019107273A1 (en) Surface emission semiconductor laser
US8035114B2 (en) Integration of a light emitting device and a photodetector with an isolation structure formed therebetween