TWM646347U - Computing device for predicting lightning strike - Google Patents
Computing device for predicting lightning strike Download PDFInfo
- Publication number
- TWM646347U TWM646347U TW112204004U TW112204004U TWM646347U TW M646347 U TWM646347 U TW M646347U TW 112204004 U TW112204004 U TW 112204004U TW 112204004 U TW112204004 U TW 112204004U TW M646347 U TWM646347 U TW M646347U
- Authority
- TW
- Taiwan
- Prior art keywords
- cloud
- data
- lightning
- observation
- discharges
- Prior art date
Links
- 238000012545 processing Methods 0.000 claims abstract description 43
- 238000012216 screening Methods 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 8
- 238000012549 training Methods 0.000 claims description 5
- 238000010801 machine learning Methods 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims 1
- 238000004891 communication Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Wind Motors (AREA)
- Elimination Of Static Electricity (AREA)
- Thermistors And Varistors (AREA)
Abstract
一種用於預測落雷的運算裝置,該運算裝置包含一儲存模組及一處理模組,該儲存模組儲存有一用於預測相關於一地域之一落雷預測結果的落雷預測模型,該處理模組獲得多筆相關於發生在自該地域所延伸之多個不同區域範圍中,且發生在一早於一待預測時間點之過去時間區段中之雲中放電的雲中放電資料,該處理模組根據每筆雲中放電資料獲得其所對應之雲中放電個數,並根據所有的雲中放電個數統計出一雲中放電總數,該處理模組根據所有的雲中放電個數及該雲中放電總數,利用該落雷強度預測模型,獲得相關於該地域在該待預測時間點之該落雷預測結果。A computing device for predicting lightning strikes. The computing device includes a storage module and a processing module. The storage module stores a lightning prediction model for predicting a lightning strike prediction result related to an area. The processing module The processing module obtains a plurality of cloud discharge data related to cloud discharges that occur in multiple different areas extending from the region and occur in a past time segment earlier than a time point to be predicted. According to each cloud discharge data, the corresponding number of cloud discharges is obtained, and the total number of cloud discharges is calculated based on the number of all cloud discharges. The processing module calculates the total number of cloud discharges based on the number of all cloud discharges and the number of cloud discharges. The total number of medium discharges, and the lightning intensity prediction model is used to obtain the lightning prediction results related to the area at the time point to be predicted.
Description
本新型是有關於一種用於預測的運算裝置,特別是指一種用於預測落雷的運算裝置。The present invention relates to a computing device for prediction, in particular to a computing device for predicting lightning strikes.
閃電有包含兩種,第一為雲中放電,即空氣溫度下降到冰點的高度以上,雲內的液態水變成冰晶和過冷卻水滴,由於空氣的密度不同會造成空氣對流,在這些水滴或冰晶摩擦碰撞的過程中便會產生電荷,如果雲內出現兩個足夠強的相反電位,帶正電的區域就會像帶負電的區域放電,進而產生雲內閃電或雲間閃電;第二為雲對地落雷,是由雲層往地面傳下來的雷電擊,對人的生命及財產具有威脅性,若是擊中人體,身上的水分會瞬間蒸發,並可擾亂心跳而致人於死地,若是擊中電力公司所架設的輸電線路,恐會損壞線路及連接於線路上之電子設備造成財產的損失,因應電力公司所架設之輸電線路的電壓不同,所能承受的落雷強度亦不同,若能精確預測落雷等級,可以針對不同電壓的線路提出預警,以便廠商或現場人員提早準備,以降低損失,因此,勢必得提出一解決方案,來避免雷擊可能導致的財產損失。There are two types of lightning. The first is discharge in the cloud, that is, the air temperature drops above the freezing point, and the liquid water in the cloud turns into ice crystals and supercooled water droplets. Due to the different density of the air, air convection will occur, and these water droplets or ice crystals will Charges will be generated during friction and collision. If there are two strong enough opposite potentials in the cloud, the positively charged area will discharge like the negatively charged area, thereby producing intra-cloud lightning or inter-cloud lightning; the second is cloud pairing. Ground lightning is a lightning strike transmitted from the clouds to the ground. It is a threat to human life and property. If it hits the human body, the water in the body will evaporate instantly, and it can disrupt the heartbeat and kill people. If it hits the electricity The transmission lines set up by the company may damage the lines and the electronic equipment connected to the lines, causing property losses. Due to the different voltages of the transmission lines set up by the power companies, the lightning intensity they can withstand is also different. If lightning strikes can be accurately predicted Levels can provide early warnings for lines with different voltages so that manufacturers or on-site personnel can prepare in advance to reduce losses. Therefore, a solution must be proposed to avoid possible property losses caused by lightning strikes.
因此,本新型之目的,即在提供一種可自動預測落雷強度之運算裝置。Therefore, the purpose of the present invention is to provide a computing device that can automatically predict lightning intensity.
於是,本新型用於預測落雷的運算裝置,包含一儲存模組及一電連接該儲存模組之處理模組。Therefore, the new computing device for predicting lightning strikes includes a storage module and a processing module electrically connected to the storage module.
該儲存模組用於儲存一用於預測相關於一地域之一落雷預測結果的落雷預測模型,該落雷預測結果指示出該地域於一預測時間點將發生一第一級落雷、一第二級落雷,及一第三級落雷之其中一者。The storage module is used to store a lightning prediction model for predicting a lightning prediction result related to a region. The lightning prediction result indicates that a first-level lightning strike and a second-level lightning strike will occur in the area at a prediction time point. , and one of the third-level lightning strikes.
該處理模組用於獲得多筆相關於發生在自該地域所延伸之多個不同區域範圍中,且發生在一早於一待預測時間點之過去時間區段中之雲中放電的雲中放電資料,該處理模組根據每筆雲中放電資料獲得其所對應之雲中放電個數,並根據所有的雲中放電個數統計出一雲中放電總數,該處理模組根據所有的雲中放電個數及該雲中放電總數,利用該落雷強度預測模型,獲得相關於該地域在該待預測時間點之該落雷預測結果。The processing module is used to obtain a plurality of cloud discharges related to cloud discharges that occur in multiple different regions extending from the region and occur in a past time segment earlier than a time point to be predicted. data, the processing module obtains the corresponding number of cloud discharges based on each cloud discharge data, and counts the total number of cloud discharges based on all cloud discharges. The processing module calculates the total number of cloud discharges based on all cloud discharge data. Based on the number of discharges and the total number of discharges in the cloud, the lightning intensity prediction model is used to obtain the lightning prediction results related to the region at the time point to be predicted.
本新型的功效在於:藉由該處理模組獲得該等雲中放電資料,且根據每筆雲中放電資料獲得其所對應之雲中放電個數及該雲中放電總數,並根據所有的雲中放電個數及該雲中放電總數利用該落雷強度預測模型,獲得相關於該地域之該落雷預測結果,以自動化預測落雷強度。The function of this new model is to obtain the cloud discharge data through the processing module, and obtain the corresponding number of cloud discharges and the total number of cloud discharges based on each cloud discharge data, and obtain the cloud discharge data according to all cloud discharge data. The number of medium discharges and the total number of discharges in the cloud use the lightning intensity prediction model to obtain the lightning prediction results related to the area to automatically predict the lightning intensity.
參閱圖1,本新型用於預測落雷的運算裝置之實施例的一運算裝置2,該運算裝置2經由一通訊網路1連接一用於量測風向之風向量測裝置3及一用於收集相關於雲中放電之雲中放電資料的雷電收集裝置4,該運算裝置2包含一儲存模組23、一通訊模組21,及一電連接該儲存模組23及該通訊模組21的處理模組22。該運算裝置2之實施態樣例如為一個人電腦、一伺服器或一雲端主機,但不以此為限。該風向量測裝置3之實施態樣例如為一氣象站,但不以此為限。Referring to Figure 1, a
該儲存模組23用於儲存一用於預測相關於一地域之一落雷預測結果的落雷預測模型、多筆對應多個不同觀測時間區間且相關於該地域之落雷資料。該落雷預測結果指示出該地域於一預測時間點將發生一第一級落雷、一第二級落雷,及一第三級落雷之其中一者,每一筆落雷資料包含該地域在一觀測時間點的一落雷強度、相關於該地域於早於該觀測時間點之一過去觀測風向時間點之一觀測風向,及多筆相關於發生在自該地域所延伸之多個不同區域範圍中,且發生在一早於該觀測時間點之過去時間區段中的觀測雲中放電的觀測雲中放電資料。其中,該過去觀測風向時間點為早於該觀測時間點之過去時間區段的起始時間點,但不以此為限。The
舉例來說,若該地域為一台中科學園區,該等不同區域範圍(見圖6)可以是自台中科學園區向外擴0~3公里、3~5公里、5~10公里,及10~20公里,以對應於觀測時間區間為2016年8月6號下午1:00~2:00的台中科學園區來舉例,若該觀測時間點為2016年8月6號下午2:00,則該過去時間區段為2016年8月6號下午1:00~1:30,且該觀測風向為2016年8月6號下午1:00(該過去觀測風向時間點)之相關於該台中科學園區的風向,但不以此為限;亦即,若該台中科學園區發生落雷的時間為2016年8月6號下午2:00(該觀測時間),則該等觀測雲中放電資料為相關於該台中科學園區在2016年8月6號下午1:00~1:30(該過去時間區段)的0~3公里、3~5公里、5~10公里,及10~20公里之觀測雲中放電,但不以此為限;且該第一級落雷之電流範圍為0~10kA,該第二級落雷之電流範圍為10~20kA,該第三級落雷之電流範圍為大於20kA,但不以此為限。For example, if the area is Taichung Science Park, the different areas (see Figure 6) can be 0~3 kilometers, 3~5 kilometers, 5~10 kilometers, and 10~ extending outward from Taichung Science Park. 20 kilometers, taking the Taichung Science Park corresponding to the observation time interval from 1:00 to 2:00 pm on August 6, 2016 as an example. If the observation time point is 2:00 pm on August 6, 2016, then the The past time range is from 1:00 pm to 1:30 pm on August 6, 2016, and the observed wind direction is 1:00 pm on August 6, 2016 (the time point of the past wind direction observation) relative to the Taichung Science Park wind direction, but not limited to this; that is, if the time of lightning strike in Taichung Science Park is 2:00 pm on August 6, 2016 (the observation time), then the observed cloud discharge data are related to The Taichung Science Park observed clouds at 0~3 km, 3~5 km, 5~10 km, and 10~20 km from 1:00 to 1:30 pm on August 6, 2016 (the past time period) Medium discharge, but not limited to this; and the current range of the first-level lightning strike is 0~10kA, the current range of the second-level lightning strike is 10~20kA, and the current range of the third-level lightning strike is greater than 20kA, but Not limited to this.
以下將藉由一落雷預測方法來說明該運算裝置2、該風向量測裝置3及該雷電收集裝置4間之各元件的作動,並依序包含一用於建立該落雷預測模型之模型建立程序,及一用於預測該地域之落雷的落雷預測程序。The operation of each component between the
參閱圖1與圖2,該模型建立程序包括步驟61~66。Referring to Figure 1 and Figure 2, the model establishment procedure includes
在步驟61中,該處理模組22根據該儲存模組23所存有之該等落雷資料之落雷強度及一落雷強度閥值(如, 5kA),獲得多筆待訓練落雷資料,其中每筆待訓練落雷資料之落雷強度高於該落雷強度閥值。In
在步驟62中,對於每筆待訓練落雷資料,該處理模組22根據該待訓練落雷資料之落雷強度,獲得一對應該待訓練落雷資料之落雷標記,該落雷標記包含該第一級落雷、該第二級落雷,及該第三級落雷之其中一者。In
在步驟63中,對於每筆待訓練落雷資料,該處理模組22根據該地域、該觀測風向對該待訓練落雷資料中之每一觀測雲中放電資料進行篩選,以獲得一對應之篩選後的觀測雲中放電資料。值得一提的是,在本發明之其他實施方式中,也可不進行步驟63之篩選動作,而直接以該待訓練落雷資料中之該等觀測雲中放電資料來建立模型,不以此為限。In
參閱圖1與圖3,該步驟63還包含以下子步驟。Referring to Figures 1 and 3, this
在步驟631中,對於每筆待訓練落雷資料,該處理模組22根據該待訓練落雷資料所對應之地域及觀測風向自該待訓練落雷資料中之每一觀測雲中放電資料所對應之區域範圍,獲得一對應之篩選觀測範圍,其中,該處理模組22是將通過地域之該待訓練落雷資料所對應的觀測風向往兩邊擴展一預設角度以獲得兩個擴展觀測風向,並根據該地域,及該等兩個擴展觀測風向在該待訓練落雷資料中之每一觀測雲中放電資料所對應之區域範圍界定出對應之該篩選觀測範圍。In
在步驟632中,對於每筆待訓練落雷資料,該處理模組22根據該待訓練落雷資料中之每一觀測雲中放電資料所對應之篩選觀測範圍,篩選出在該篩選觀測範圍內之雲中放電以獲得一對應之篩選後的觀測雲中放電資料。In
舉例來說,若該觀測風向為向西北吹向該地域,該預設角度例如為30度,則該處理模組22將通過該地域的該觀測風向5(見圖7)之反向往兩邊擴展該預設角度以獲得兩個擴展觀測風向51(見圖7),接著,該地域及該等兩個擴展觀測風向在該待訓練落雷資料中之每一觀測雲中放電資料所對應之區域範圍(0~3公里、3~5公里、5~10公里,及10~20公里)界定出對應之該篩選觀測範圍(0~3公里篩選觀測範圍52、3~5公里篩選觀測範圍53、5~10公里篩選觀測範圍54、10~20公里篩選觀測範圍55)(見圖7)。For example, if the observed wind direction is blowing northwest to the area, and the preset angle is, for example, 30 degrees, the
在步驟64中,對於每筆待訓練落雷資料,該處理模組22根據該待訓練落雷資料中之篩選後的該等觀測雲中放電資料,獲得多個觀測雲中放電個數,並根據該待訓練落雷資料中所有的觀測雲中放電個數統計出一觀測雲中放電總數。In
延續上述圖7之例子,該等觀測雲中放電個數即為分別在0~3公里篩選觀測範圍52、3~5公里篩選觀測範圍53、5~10公里篩選觀測範圍54、10~20公里篩選觀測範圍55內之雲中放電的數目,且該觀測雲中放電總數則為該等觀測雲中放電個數的加總,但不以此為限。Continuing the example in Figure 7 above, the number of discharges in these observation clouds is respectively 52 in the 0~3 km filtered observation range, 53 in the 3~5 km filtered observation range, 54 in the 5~10 km filtered observation range, and 10~20 km in the filtered observation range. The number of discharges in clouds within the observation range of 55 is screened, and the total number of discharges in the observed clouds is the sum of the number of discharges in the observed clouds, but is not limited to this.
在步驟65中,對於每筆待訓練落雷資料,該處理模組22將該待訓練落雷資料之觀測雲中放電個數與觀測雲中放電總數,及所對應之落雷標記作為一組訓練資料。In
在步驟66中,該處理模組22根據該等訓練資料,利用一機器學習演算法,建立該落雷預測模型。其中,該機器學習演算法為一廣義回歸神經網路(General Regression Neural Networks, GRNN)演算模型。In
參閱圖1與圖4,該落雷預測程序包含步驟71~74。Referring to Figures 1 and 4, the lightning prediction program includes
在步驟71中,該處理模組22經由該通訊模組21透過該通訊網路1自該雷電收集裝置4獲得之多筆相關於發生在自該地域所延伸之該等不同區域範圍中,且發生在一早於一待預測時間點之過去時間區段中之雲中放電的雲中放電資料,及自該風向量測裝置3所量測到之該地域在早於該預測時間點之一過去風向時間點之一風向。其中,該過去風向時間點是早於該預測時間點之過去時間區段的起始時間點,但不以此為限。In
舉例來說,若該待預測時間點為某天之下午3:00,則早於待預測時間點之過去時間區段為同一天之下午2:00~2:30,且該風向為同一天之下午2:00(該過去風向時間點)所量測到,但不以此為限。For example, if the time point to be predicted is 3:00 pm on a certain day, the past time period earlier than the time point to be predicted is 2:00~2:30 pm on the same day, and the wind direction is the same day measured at 2:00 pm (the past wind direction time point), but is not limited to this.
在步驟72中,對於每筆雲中放電資料,該處理模組22根據該地域、該風向及該雲中放電資料,獲得一篩選後的雲中放電資料。In
參閱圖1與圖5,該步驟72還包含以下子步驟。Referring to Figure 1 and Figure 5, this
在步驟721中,對於每筆雲中放電資料,該處理模組22根據該地域及該風向自該雲中放電資料所對應之區域範圍獲得一篩選範圍。對於每筆雲中放電資料,該處理模組22是將通過該地域的該風向之反向往兩邊擴展一預設角度以獲得兩個擴展風向,並根據該地域、該等兩個擴展風向在該雲中放電資料所對應之區域範圍界定出該篩選範圍。In
在步驟722中,對於每筆雲中放電資料,該處理模組22根據該雲中放電資料所對應之篩選範圍篩選出在該篩選範圍內之雲中放電以獲得該篩選後的雲中放電資料。In
在步驟73中,該處理模組22根據每筆篩選後的雲中放電資料獲得其所對應之雲中放電個數,並根據所有的雲中放電個數統計出一雲中放電總數。In
在步驟74中,該處理模組22根據所有的雲中放電個數及該雲中放電總數,利用該儲存模組23所儲存的該落雷強度預測模型,獲得相關於該地域在該待預測時間點之該落雷預測結果。In
綜上所述,本新型用於預測落雷的運算裝置,藉由該處理模組22在建立該落雷預測模型後,獲得該等雲中放電資料及該風向,且根據每筆雲中放電資料及該風向獲得在所對應之篩選範圍內之雲中放電個數及該雲中放電總數,並根據該等雲中放電個數、該雲中放電總數及該風向,利用該落雷強度預測模型,獲得相關於該地域之在該待預測時間點之該落雷預測結果,便能自動化預測該地域在該待預測時間點之落雷狀況,以便提前警戒,避免生命及物品受到雷擊危害,故確實能達成本新型的目的。To sum up, the new computing device for predicting lightning strikes obtains the cloud discharge data and the wind direction through the
惟以上所述者,僅為本新型之實施例而已,當不能以此限定本新型實施之範圍,凡是依本新型申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本新型專利涵蓋之範圍內。However, the above are only examples of the present invention, and should not be used to limit the scope of the present invention. All simple equivalent changes and modifications made based on the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. Within the scope covered by this new patent.
1:通訊網路
2:運算裝置
21:通訊模組
22:處理模組
23:儲存模組
3:風向量測裝置
4:雷電收集裝置
5:觀測風向
51:擴展觀測風向
52:0~3公里篩選觀測範圍
53:3~5公里篩選觀測範圍
54:5~10公里篩選觀測範圍
55:10~20公里篩選觀測範圍
61~66:步驟
631~632:步驟
71~74:步驟
721~722:步驟1: Communication network
2:Computing device
21:Communication module
22: Processing module
23:Storage module
3: Wind direction measurement device
4: Lightning collection device
5: Observe the wind direction
51:Extended observation of wind direction
52: 0~3 kilometers filtered observation range
53: 3~5 kilometers screening observation range
54:5~10km filtered observation range
55: 10~20 kilometers
本新型之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,說明本新型用於預測落雷的運算裝置之實施例; 圖2是一流程圖,說明利用本新型用於預測落雷的運算裝置之實施例實現一落雷預測方法之一模型訓練程序; 圖3是一流程圖,說明利用本新型用於預測落雷的運算裝置之實施例實現該模型訓練程序根據多筆待訓練落雷資料獲得多筆篩選後的觀測雲中放電資料之細部流程; 圖4是一流程圖,說明利用本新型用於預測落雷的運算裝置之實施例實現該落雷預測方法之一落雷預測程序; 圖5是一流程圖,說明利用本新型用於預測落雷的運算裝置之實施例實現該落雷預測程序根據多筆雲中放電資料獲得多筆篩選後的雲中放電資料之細部流程; 圖6是一示意圖,說明一地區所延伸之多個不同區域及多個觀測雲中放電;及 圖7是一示意圖,說明根據一觀測風向所界定出的多個篩選觀測範圍。 Other features and functions of the present invention will be clearly presented in the embodiments with reference to the drawings, in which: Figure 1 is a block diagram illustrating an embodiment of the new computing device for predicting lightning strikes; Figure 2 is a flow chart illustrating a model training procedure for implementing a lightning prediction method using an embodiment of the novel computing device for predicting lightning strike; Figure 3 is a flow chart illustrating the detailed process of using an embodiment of the new computing device for predicting lightning strike to implement the model training program to obtain multiple filtered observation cloud discharge data based on multiple lightning strike data to be trained; Figure 4 is a flow chart illustrating the implementation of a lightning prediction procedure of the lightning prediction method using an embodiment of the novel computing device for predicting lightning strikes; Figure 5 is a flow chart illustrating the detailed process of using an embodiment of the novel computing device for predicting lightning strike to implement the lightning strike prediction program to obtain multiple filtered cloud discharge data based on multiple cloud discharge data; Figure 6 is a schematic diagram illustrating discharges in multiple different areas and multiple observed clouds extending over an area; and Figure 7 is a schematic diagram illustrating multiple filtered observation ranges defined according to an observation wind direction.
1:通訊網路 1: Communication network
2:運算裝置 2:Computing device
21:通訊模組 21:Communication module
22:處理模組 22: Processing module
23:儲存模組 23:Storage module
3:風向量測裝置 3: Wind direction measurement device
4:雷電收集裝置 4: Lightning collection device
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112204004U TWM646347U (en) | 2023-04-27 | 2023-04-27 | Computing device for predicting lightning strike |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112204004U TWM646347U (en) | 2023-04-27 | 2023-04-27 | Computing device for predicting lightning strike |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM646347U true TWM646347U (en) | 2023-09-21 |
Family
ID=88926880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112204004U TWM646347U (en) | 2023-04-27 | 2023-04-27 | Computing device for predicting lightning strike |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM646347U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI831681B (en) * | 2023-04-27 | 2024-02-01 | 台灣電力股份有限公司 | Lightning strike prediction method and calculation device |
-
2023
- 2023-04-27 TW TW112204004U patent/TWM646347U/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI831681B (en) * | 2023-04-27 | 2024-02-01 | 台灣電力股份有限公司 | Lightning strike prediction method and calculation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104486141B (en) | A kind of network security situation prediction method that wrong report is adaptive | |
CN102721924B (en) | Fault early warning method of wind generating set | |
CN102779230B (en) | State analysis and maintenance decision judging method of power transformer system | |
CN105866638B (en) | A kind of city net cable connector state of insulation on-line monitoring prior-warning device and method | |
TWI831681B (en) | Lightning strike prediction method and calculation device | |
TWM646347U (en) | Computing device for predicting lightning strike | |
CN105068149B (en) | Multi-information integration-based thunder and lightning monitoring and forecasting method for electric transmission and transformation equipment | |
CN106448171B (en) | A kind of ponding link prediction method and device | |
CN104966372A (en) | Multi-data fusion forest fire intelligent recognition system and method | |
CN107796609B (en) | Water chilling unit fault diagnosis method based on DBN model | |
CN104601604B (en) | Network safety situation analysis method | |
CN105114348A (en) | Device and method for induced draft fan fault early warning based on power station operation data | |
CN107037504B (en) | Dodge to assimilation for Severe Convective Weather Forecasting the method for translation proxy radar return | |
CN106503751A (en) | A kind of power transmission line Louis dance potential prediction method based on SVM classifier | |
TWI721693B (en) | Network behavior anomaly detection system and method based on mobile internet of things | |
CN104122488A (en) | Fault check and diagnosis method for power transmission line | |
CN107257351A (en) | One kind is based on grey LOF Traffic anomaly detections system and its detection method | |
CN112766372A (en) | Power equipment state monitoring and early warning method and system based on microclimate perception | |
CN107153160B (en) | A kind of wind power generating set all-position safety monitoring system | |
CN108663600A (en) | A kind of method for diagnosing faults, device and storage medium based on power transmission network | |
CN106330624A (en) | Method for detecting power information network traffic abnormality | |
TW202208746A (en) | Fault diagnosis system and method for wind turbine wherein the hidden faults in the operation process can be found in time through the real-time monitoring and trend prediction of the operating status of wind power generation equipment | |
CN109583723A (en) | Method, electronic equipment and the device of water environment hot spot grid are determined based on pollution sources | |
CN109460923A (en) | A kind of ice covering on transmission lines probability forecasting method | |
CN107505511A (en) | life cycle prediction method, device and system of direct current support capacitor |