TWM643971U - The utilizing polyurea-type polyimide resin in reinforcing material structures - Google Patents

The utilizing polyurea-type polyimide resin in reinforcing material structures Download PDF

Info

Publication number
TWM643971U
TWM643971U TW111212725U TW111212725U TWM643971U TW M643971 U TWM643971 U TW M643971U TW 111212725 U TW111212725 U TW 111212725U TW 111212725 U TW111212725 U TW 111212725U TW M643971 U TWM643971 U TW M643971U
Authority
TW
Taiwan
Prior art keywords
polyurea
polyimide resin
type polyimide
composite material
carbon fiber
Prior art date
Application number
TW111212725U
Other languages
Chinese (zh)
Inventor
陳玉鈴
Original Assignee
陳玉鈴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陳玉鈴 filed Critical 陳玉鈴
Priority to TW111212725U priority Critical patent/TWM643971U/en
Publication of TWM643971U publication Critical patent/TWM643971U/en

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

本創作係為一種利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,主要利用聚尿素型聚醯亞胺樹脂,係由二酸酐、二異氰酸鹽類及二胺三種單體聚合製成一種樹脂,獲得黏度高之褐色透明的聚尿素型聚醯亞胺樹脂,其樹脂的熱裂解溫度達到500℃以上,能製備與纖維材料形成纖維複合材料,或製備與金屬材料表面塗佈或薄膜貼合金屬材料表面形成金屬複合材料,使本創作產品能獲得優異耐熱性、機械性、電器性及化學性極佳特性。 This creation is a structure that uses polyurea-type polyimide resin to reinforce the material structure. It mainly uses polyurea-type polyimide resin, which is polymerized from three monomers: dianhydride, diisocyanate and diamine. A kind of resin is made to obtain a brown transparent polyurea-type polyimide resin with high viscosity. The thermal cracking temperature of the resin reaches above 500°C, and it can be prepared to form fiber composite materials with fiber materials, or to prepare surface coatings with metal materials. Or the film is pasted on the surface of the metal material to form a metal composite material, so that the creative product can obtain excellent heat resistance, mechanical properties, electrical properties and excellent chemical properties.

Description

利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體 Utilizing Polyurea-type Polyimide Resin in Reinforcing Material Structures

本創作係有關於一種利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,尤指將聚尿素型聚醯亞胺樹脂作為纖維布的浸漬加工與金屬材料塗佈加工或薄膜貼合加工,使本創作產品能獲得優異耐熱性、機械性、電器性及化學性極佳特性。 This work is about a method of using polyurea-type polyimide resin to reinforce the material structure, especially the impregnation process and metal material coating process or film lamination process of using polyurea-type polyimide resin as fiber cloth , so that this creative product can obtain excellent heat resistance, mechanical, electrical and chemical properties.

近幾年有人用傳統樹脂與炭繊維布製成汽車引掣蓋板,輕又美觀裝在汽車上,但半年後就變色一年後就壞掉,因不耐熱、不耐候等而失敗,又有人用傳統樹脂與碳繊布製成機車排氣管很美觀,但很快就壤掉,因機車排氣時的溫度約220℃,傳統樹脂不耐熱而失敗,本創作所用樹脂製成之複合材料用途很多因有耐熱性,耐候性、耐老化生、高機械特性等,因未有人用聚醯亞胺做成纖維複合材料,尤其本創作聚尿素型聚醯亞胺樹脂具有耐衝擊性、高靭彈性,抗龜烈性,在於碳纖維複合材料代替金屬材料具有發展性。 In recent years, some people have used traditional resin and charcoal fabric to make car brake covers. They are light and beautiful and installed on cars, but they will change color after half a year and then break down after a year. They fail because they are not resistant to heat and weather. The motorcycle exhaust pipe made of traditional resin and carbon cloth is very beautiful, but it will soon be soiled. Because the temperature of the motorcycle exhaust is about 220 ℃, the traditional resin is not heat-resistant and fails. The composite material made of resin used in this creation is used Because of its heat resistance, weather resistance, aging resistance, high mechanical properties, etc., no one has used polyimide to make fiber composite materials, especially the polyurea type polyimide resin in this creation has impact resistance and high toughness. Elasticity, strong resistance, lies in the development of carbon fiber composite materials instead of metal materials.

本創作主要目的,係要提出一種利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體專利申請,聚尿素型聚醯亞胺樹脂具有聚醯亞胺樹脂及尿素樹脂的優點的高性能樹脂,聚尿素型聚醯亞胺樹脂與纖維或金屬有良好的接著性,例如聚尿素樹脂/纖維製成複合材料或聚尿素樹脂/金屬製成複合材料皆有很好用途。 The main purpose of this creation is to propose a patent application for the use of polyurea-type polyimide resin in reinforcing material structures. Polyurea-type polyimide resin has the advantages of polyimide resin and urea resin. , Polyurea-type polyimide resin has good adhesion to fibers or metals, for example, polyurea resin/fiber composite materials or polyurea resin/metal composite materials are very useful.

本創作一種利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,主要係聚尿素型聚醯亞胺樹脂作為纖維布浸漬加工,或聚尿素型聚醯亞胺樹脂作為金屬材料塗佈加工或薄膜貼合加工,其中聚尿素型聚醯亞胺樹脂,係由二酸酐、二異氰酸鹽類及二胺三種單體聚合製成一種樹脂,其中將纖維布的表面熱處理後含浸聚尿素型聚醯亞胺樹脂液,然後加熱加壓成複合材料板,尤指纖維布浸漬聚尿素型聚醯亞胺樹脂液能獲得三次元纖維複合材料,係材料質輕、強度大、防震姓,而且三次元立體編織布製成的複合材料板沒有脫層的缺點,因三次元組織的纖維布在於布的厚度方向有纖維加強,而加強用之纖維有carbon fiber、glass fiber及aramid fiber,尤指碳纖維複合材料可以代替汽車的金屬板,能減輕汽車的重量而且美觀。 This creation uses polyurea-type polyimide resin to apply to reinforced material structures, mainly polyurea-type polyimide resin as fiber cloth impregnation processing, or polyurea-type polyimide resin as metal material coating processing Or film lamination processing, in which polyurea type polyimide resin is a kind of resin made by polymerizing three monomers of dianhydride, diisocyanate and diamine, in which the surface of the fiber cloth is heat treated and then impregnated with polyurea Type polyimide resin liquid, and then heat and press to form a composite material board, especially fiber cloth impregnated with polyurea type polyimide resin liquid to obtain a three-dimensional fiber composite material, which is light in weight, high in strength, and shockproof. Moreover, the composite material board made of three-dimensional three-dimensional woven cloth has no disadvantage of delamination, because the fiber cloth of the three-dimensional structure has fiber reinforcement in the thickness direction of the cloth, and the fibers used for reinforcement include carbon fiber, glass fiber and aramid fiber, especially Carbon fiber composites can replace the metal plates of the car, which can reduce the weight of the car and be beautiful.

將製備成聚尿素型聚醯亞胺樹脂液,或經由延伸加熱加壓製成薄膜,其將聚尿素型聚醯亞胺樹脂液作為金屬材料的表面塗布加工,或將前述製備成的聚尿素型聚醯亞胺樹脂薄膜作為金屬材料的表面貼合加工,可以應用在近海風力發電鐵架金屬表面的包護,以免受海水、海風的侵蝕。 Prepare polyurea type polyimide resin liquid, or make it into a film by stretching, heating and pressing, which uses polyurea type polyimide resin liquid as the surface coating process of metal materials, or the polyurea type prepared above Type polyimide resin film is used as the surface lamination processing of metal materials, and can be applied to the protection of the metal surface of the iron frame of offshore wind power generation, so as to avoid the erosion of sea water and sea wind.

當製備與纖維布作為浸漬材料,或作為金屬材料表面塗佈或製成薄膜貼合在金屬材料表面,使本創作產品具有如下特性: When prepared with fiber cloth as the impregnating material, or as the surface coating of the metal material or made into a film and pasted on the surface of the metal material, the creative product has the following characteristics:

1、本創作產品具有優異耐熱性、熱穩定性高,可以承受高低溫熱漲冷縮。 1. This creative product has excellent heat resistance and high thermal stability, and can withstand high and low temperature thermal expansion and contraction.

2、本創作產品具有高韌彈性、高耐磨抗刮抗龜裂及抗老化特性。 2. This creative product has high toughness, elasticity, high wear resistance, scratch resistance, crack resistance and anti-aging characteristics.

3、本創作產品具有耐衝擊性、耐化學品性、耐候性、耐輻射性。 3. This creative product has impact resistance, chemical resistance, weather resistance and radiation resistance.

4、本創作產品具有高機械性質、優良電器性質。 4. This creative product has high mechanical properties and excellent electrical properties.

5、本創作產品聚尿素聚醯亞胺樹脂薄膜與金屬材料相疊經由熱壓形成金屬複合材料,經由測試可以獲得抗張強度(Tensile Strength)85.15Mpa,斷裂伸長率(Elongation to break)5.54%,介電常數(Dielectric Costant)2.81ε,散逸因子(Dissipation factor)tax δ≦0.003,吸水率(Water absorption rate)2.61%。 5. The polyurea polyimide resin film of this creation is laminated with metal materials to form a metal composite material through hot pressing. After testing, the tensile strength (Tensile Strength) is 85.15Mpa, and the elongation at break (Elongation to break) is 5.54%. , dielectric constant (Dielectric Costant) 2.81ε, dissipation factor (Dissipation factor) tax δ≦0.003, water absorption rate (Water absorption rate) 2.61%.

C:碳纖維複合材料 C: carbon fiber composite material

C1:緯向纖維紗線 C1: weft fiber yarn

C2:經向纖維紗線 C2: warp fiber yarn

F:薄膜 F: film

U1,U2,U3:樹脂 U1, U2, U3: Resin

M:金屬複合材料 M: metal composite

M1:金屬板 M1: metal plate

圖1 係為本創作利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體TGA曲線圖。 Figure 1 is the TGA curve of this creation using polyurea-type polyimide resin applied to the reinforced material structure.

圖2 係為本創作利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體在非振動負荷下形變與溫度的關係圖。 Figure 2 is a diagram of the relationship between deformation and temperature under non-vibration loads using polyurea-type polyimide resin in this creation to reinforce the material structure.

圖3 係為本創作的碳纖維複合材料在不同結構的三圍織物複合材料下的拉伸斷裂功示意圖。 Fig. 3 is a schematic diagram of the tensile fracture work of the carbon fiber composite material created by this paper under different structures of three-dimensional fabric composite materials.

圖4 係為本創作的碳纖維複合材料在不同結構的三維織物複合材料下的彎曲強度示意圖。 Figure 4 is a schematic diagram of the flexural strength of the carbon fiber composite material created by this paper under different structures of the three-dimensional fabric composite material.

圖5 係為本創作的碳纖維複合材料在不同結構的三維織物複合材料下的彎曲斷裂功示意圖。 Figure 5 is a schematic diagram of the bending and fracture work of the carbon fiber composite material created by this paper under different structures of the three-dimensional fabric composite material.

圖6 係為本創作的碳纖維複合材料在不同結構的三維織物複合材料下的抗剪強度示意圖。 Figure 6 is a schematic diagram of the shear strength of the carbon fiber composite material created for this paper under different structures of the three-dimensional fabric composite material.

圖7 係為本創作的碳纖維複合材料在不同結構的三維織物複合材料荷重-變形(Deflection)曲線下的彎曲示意圖。 Figure 7 is a schematic diagram of the bending of the carbon fiber composite material created for the present under the load-deflection curve of the three-dimensional fabric composite material of different structures.

圖8 係為本創作的碳纖維複合材料在不同溫度下三維織物複合材料保持彎曲強度(Retention of flexural strength(%))-溫度(℃)曲線下的彎曲強度保有率曲線圖。 Figure 8 is the curve of the flexural strength retention rate of the three-dimensional fabric composite material under the curve of Retention of flexural strength (%)-temperature (°C) at different temperatures for the carbon fiber composite material created by this paper.

圖9 係為本創作的聚尿素型聚醯亞胺樹脂薄膜與金屬材料相疊經由熱壓形成金屬複合材料,在不同溫度與不同壓力測得的剝離強度(Peal strength(kgf/cm))曲線圖。 Figure 9 is the peel strength (Peal strength (kgf/cm)) curve measured at different temperatures and different pressures for the polyurea-type polyimide resin film created by the author and the metal material laminated to form a metal composite material through hot pressing picture.

圖10 係為本創作利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體的碳纖維複合材料示意圖。 Figure 10 is a schematic diagram of the carbon fiber composite material that uses polyurea-type polyimide resin in this creation to reinforce the material structure.

圖11 係為本創作利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體的金屬材料複合材料示意圖。 Figure 11 is a schematic diagram of the metal material composite material that uses polyurea-type polyimide resin in this creation to reinforce the material structure.

本創作係為一種利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,係由二酸酐、二異氰酸鹽類及二胺三種單體所製成的一種樹脂,主要利用作為纖維布浸漬加工,與金屬材料塗佈加工或薄膜貼合加工的聚尿素型聚醯亞胺樹脂,其中將碳纖維布內纖維排列方向、纖維間隔都會影響到碳纖維結合樹脂結合為複合材料的性質。 This creation is a kind of polyurea-type polyimide resin applied to the reinforced material structure. It is a resin made of three monomers: dianhydride, diisocyanate and diamine. It is mainly used as a fiber cloth. Polyurea-type polyimide resin for impregnation processing, metal material coating processing or film lamination processing, in which the fiber arrangement direction and fiber spacing in the carbon fiber cloth will affect the properties of the carbon fiber-bonded resin combined into a composite material.

請參考圖1所示聚尿素型聚醯亞胺樹脂具有高耐熱性,由如圖1所示熱重量分析(TGA)所獲得的TGA曲線,由圖1所示聚尿素型聚醯亞胺樹脂約在500℃左右有10%的熱重損失在,而在565.56℃有最大熱重損失,由此可見聚尿素型聚醯亞胺樹脂的耐熱性佳。 Please refer to the polyurea type polyimide resin shown in Figure 1 with high heat resistance, by the TGA curve obtained by thermogravimetric analysis (TGA) as shown in Figure 1, by the polyurea type polyimide resin shown in Figure 1 There is 10% thermogravimetric loss at about 500°C, and the maximum thermogravimetric loss is at 565.56°C, which shows that polyurea-type polyimide resin has good heat resistance.

請參閱如圖2所示在非振動負荷下的形變與溫度的關係圖,其由熱膨脹係數的測定可以顯知材料的尺寸安定性,因材料與接著基材在熱膨脹係數值相差太 大時,在高溫下會產生裂解或斷裂的現象,由圖2所示可知熱變形溫度為Tg在264.566℃,其黏度值之範圍為0.83~0.91dl/g。 Please refer to the relationship between deformation and temperature under non-vibration load as shown in Figure 2. The dimensional stability of the material can be shown from the measurement of the thermal expansion coefficient, because the difference between the thermal expansion coefficient of the material and the substrate is too large When it is large, cracking or fracture will occur at high temperature. As shown in Figure 2, it can be seen that the heat distortion temperature is Tg at 264.566°C, and its viscosity ranges from 0.83 to 0.91dl/g.

複合材料的製造方法如下: Composite materials are manufactured as follows:

(1)、編織三次元三方向(x,y,z軸)及五方向(x,y,z,+45°x1,-45°x2軸),織密選取5.0mm、7.5mm織成四種組織結構,尺寸為150mmx150mmx6mm。 (1), three-dimensional three-dimensional three-direction (x, y, z axis) and five directions (x, y, z, +45°x 1 , -45°x 2 axis), the weaving density is 5.0mm, 7.5mm Into four organizational structures, the size is 150mmx150mmx6mm.

(2)、將織物放置於以盛滿聚尿素型聚醯亞胺樹脂液的鋼盒中含浸。 (2) Place the fabric in a steel box filled with polyurea-type polyimide resin solution for impregnation.

(3)、將含浸聚尿素型聚醯亞胺樹脂的織物置入真空烘箱中,加熱到溶液完全揮發即形成碳纖維複合材料。如圖10所示係為碳纖維複合材料C,緯向纖維紗線C1含有樹脂U1,經向纖維紗線C2含有樹脂U2。 (3) Put the fabric impregnated with polyurea-type polyimide resin into a vacuum oven, and heat until the solution is completely volatilized to form a carbon fiber composite material. As shown in FIG. 10, it is a carbon fiber composite material C, the weft fiber yarn C1 contains resin U1, and the warp fiber yarn C2 contains resin U2.

其中,下表示是各種織物結構的纖維含有率測試表,由表得知各種織物結構的纖維含有率,大約在55%到57%左右,與理論推算所得之纖維含有率大致相同:

Figure 111212725-A0305-02-0006-1
Among them, the following shows the fiber content test table of various fabric structures. From the table, the fiber content of various fabric structures is about 55% to 57%, which is roughly the same as the theoretically calculated fiber content:
Figure 111212725-A0305-02-0006-1

實施例中採取碳纖維(維度-織密)五種規格,採取2D(2維度-0.0mm)、3D-5.0(3維度-5mm)、5D-5.0(5維度-5mm)、3D-7.5(3維度-7.5mm)、5D-7.5(5維度-7.5mm)編織成碳纖維複合材料(150mmx150mmx6mm)。 In the embodiment, five specifications of carbon fiber (dimension-weaving density) are taken, 2D (2 dimension-0.0mm), 3D-5.0 (3 dimension-5mm), 5D-5.0 (5 dimension-5mm), 3D-7.5 (3 Dimension-7.5mm), 5D-7.5 (5 dimension-7.5mm) are woven into carbon fiber composite material (150mmx150mmx6mm).

如圖3所示碳纖維複合材料在不同結構的三圍織物複合材料下的拉伸斷裂功,顯示橫向座標-織物結構、縱向座標-斷裂功(Rupture(J)),其織物結構為2D,3D-5.0,5D-5.0,3D-7.5,5D-7.5,測試結果2D-79J,(3D-5.0)-180J,(5D-5.0)-99J,(3D-7.5)-130J,(5D-7.5)-50J。 As shown in Figure 3, the tensile work of fracture of carbon fiber composite materials under three-dimensional fabric composite materials of different structures shows the transverse coordinates-fabric structure, longitudinal coordinates-break work (Rupture(J)), and its fabric structure is 2D, 3D- 5.0, 5D-5.0, 3D-7.5, 5D-7.5, test results 2D-79J, (3D-5.0)-180J, (5D-5.0)-99J, (3D-7.5)-130J, (5D-7.5)- 50J.

如圖4所示碳纖維複合材料在不同結構的三維織物複合材料下的彎曲強度,顯示橫向座標-織物結構、縱向座標-彎曲強度(Flexural strength(Mpa)),其織物結構為2D,3D-5.0,5D-5.0,3D-7.5,5D-7.5,測試結果2D-300Mpa,(3D-5.0)-388Mpa,(5D-5.0)-358Mpa,(3D-7.5)-368Mpa,(5D-7.5)-285Mpa,結果3D>5D>2D。 As shown in Figure 4, the flexural strength of carbon fiber composites under different structures of three-dimensional fabric composites shows the transverse coordinates - fabric structure, longitudinal coordinates - flexural strength (Flexural strength (Mpa)), and its fabric structure is 2D, 3D-5.0 ,5D-5.0,3D-7.5,5D-7.5, test results 2D-300Mpa,(3D-5.0)-388Mpa,(5D-5.0)-358Mpa,(3D-7.5)-368Mpa,(5D-7.5)-285Mpa , the result is 3D>5D>2D.

如圖5所示碳纖維複合材料在不同結構的三維織物複合材料下的彎曲斷裂功,顯示橫向座標-織物結構、縱向座標-彎曲斷裂功(Rupture(J)),其織物結構為2D,3D-5.0,5D-5.0,3D-7.5,5D-7.5,測試結果2D-3J,(3D-5.0)-4.5J,(5D-5.0)-6J,(3D-7.5)-4J,(5D-7.5)-4.5J。 As shown in Figure 5, the bending fracture work of carbon fiber composite materials under different structures of three-dimensional fabric composite materials shows the transverse coordinates-fabric structure, longitudinal coordinates-bending fracture work (Rupture(J)), and the fabric structure is 2D, 3D- 5.0, 5D-5.0, 3D-7.5, 5D-7.5, test results 2D-3J, (3D-5.0)-4.5J, (5D-5.0)-6J, (3D-7.5)-4J, (5D-7.5) -4.5J.

如圖6所示碳纖維複合材料在不同結構的三維織物複合材料下的抗剪強度,顯示橫向座標-織物結構、縱向座標-抗剪強度(Shear strength(Mpa)),其織物結構為2D,3D-5.0,5D-5.0,3D-7.5,5D-7.5,測試結果2D-38.8Mpa,(3D-5.0)-42.5Mpa,(5D-5.0)-35Mpa,(3D-7.5)-40Mpa,(5D-7.5)-33.8Mpa。 As shown in Figure 6, the shear strength of carbon fiber composites under different structures of three-dimensional fabric composites shows the transverse coordinates-fabric structure, longitudinal coordinates-shear strength (Shear strength (Mpa)), and its fabric structure is 2D, 3D -5.0,5D-5.0,3D-7.5,5D-7.5, test results 2D-38.8Mpa,(3D-5.0)-42.5Mpa,(5D-5.0)-35Mpa,(3D-7.5)-40Mpa,(5D- 7.5)-33.8Mpa.

如圖7所示碳纖維複合材料在不同結構的三維織物複合材料荷重-變形(Deflection)曲線下的彎曲測試,顯示橫向座標-變形、縱向座標-荷重(Load(kg),測試結果2D碳纖維複合織物150kg荷仲-變形2.5mm下破壞,3D碳纖維複合織物165kg荷仲-變形3.5mm下破壞,5D碳纖維複合織物138kg荷重-變形6mm下破壞,顯知荷重-變形下結果3D>2D>5D。 As shown in Figure 7, the bending test of carbon fiber composite materials under the load-deformation (Deflection) curve of three-dimensional fabric composite materials of different structures shows the transverse coordinate-deformation, longitudinal coordinate-load (Load (kg), test results 2D carbon fiber composite fabric 150kg load-deformation 2.5mm, 3D carbon fiber composite fabric 165kg load-deformation 3.5mm, 5D carbon fiber composite fabric 138kg load-deformation 6mm, the result of load-deformation is 3D>2D>5D.

如圖8所示碳纖維複合材料在不同溫度下纖維織物複合材料保持彎曲強度(Retention of flexural strength(%))-溫度(℃)曲線下的彎曲強度保有率測試,顯示橫向座標-溫度(°c)、縱向座標-保持彎曲強度(Retention of flexural strength(%)),測試結果採取▲3D-5.0、◇5D-5.0、■3D-7.5、△5D-7.5碳纖維複合織物,在200℃下▲3D-5.0碳纖維複合材料獲得80%、◇5D-5.0碳纖維複合 材料獲得75%、■3D-7.5碳纖維複合材料獲得79%、△5D-7.5碳纖維複合材料獲得70%,在300℃下▲3D-5.0碳纖維複合材料獲得78%、◇5D-5.0碳纖維複合材料獲得63%、■3D-7.5碳纖維複合材料獲得70%、△5D-7.5碳纖維複合材料獲得60%,在370℃下▲3D-5.0碳纖維複合材料獲得54%、◇5D-5.0碳纖維複合材料獲得40%、■3D-7.5碳纖維複合材料獲得57%、△5D-7.5碳纖維複合材料獲得35%,在450℃下▲3D-5.0碳纖維複合材料獲得33%、◇5D-5.0碳纖維複合材料獲得28%、■3D-7.5碳纖維複合材料獲得30%、△5D-7.5碳纖維複合材料獲得25%。 As shown in Figure 8, the flexural strength retention rate test of the carbon fiber composite material under the curve of the fiber fabric composite material at different temperatures (Retention of flexural strength (%))-temperature (°C), shows the transverse coordinate-temperature (°C ), longitudinal coordinates - Retention of flexural strength (%), the test results are ▲3D-5.0, ◇5D-5.0, ■3D-7.5, △5D-7.5 carbon fiber composite fabrics, at 200 ℃ ▲3D -5.0 carbon fiber composite material obtained 80%, ◇5D-5.0 carbon fiber composite 75% of the material, 79% of the 3D-7.5 carbon fiber composite material, 70% of the △5D-7.5 carbon fiber composite material, 78% of the ▲3D-5.0 carbon fiber composite material at 300°C, and 78% of the ◇5D-5.0 carbon fiber composite material 63%, ■3D-7.5 carbon fiber composite material obtains 70%, △5D-7.5 carbon fiber composite material obtains 60%, at 370°C ▲3D-5.0 carbon fiber composite material obtains 54%, ◇5D-5.0 carbon fiber composite material obtains 40% , 3D-7.5 carbon fiber composite material obtains 57%, △5D-7.5 carbon fiber composite material obtains 35%, at 450°C ▲3D-5.0 carbon fiber composite material obtains 33%, ◇5D-5.0 carbon fiber composite material obtains 28%, ■ 3D-7.5 carbon fiber composite materials get 30%, and △5D-7.5 carbon fiber composite materials get 25%.

請參閱如圖9所示,聚尿素聚醯亞胺樹脂薄膜與金屬材料相疊經由熱壓形成金屬複合材料,在不同溫度與不同壓力測得的剝離強度(Peal strength(kgf/cm))曲線圖,◆壓力40kgf/cm2 245℃剝離強度1.9kgf/cm,■壓力50kgf/cm2 245℃剝離強度2.2kgf/cm,▲壓力60kgf/cm2 235℃剝離強度2.65kgf/cm,□壓力70kgf/cm2 235℃剝離強度2.5kgf/cm,隨著同溫度、不同壓力下顯示剝離強度。 Please refer to the peel strength (Peal strength (kgf/cm)) curve measured at different temperatures and different pressures as shown in Figure 9. Figure, ◆Pressure 40kgf/cm 2 245℃ peel strength 1.9kgf/cm, ■Pressure 50kgf/cm 2 245℃ peel strength 2.2kgf/cm, ▲Pressure 60kgf/cm 2 235℃ peel strength 2.65kgf/cm, □Pressure 70kgf /cm 2 235°C peel strength 2.5kgf/cm, with the same temperature and different pressure to show the peel strength.

本創作係為一種利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,如圖11所示係為金屬複合材料M係樹脂U3作成薄膜F作為貼合金屬板M1。 This creation is a structure using polyurea-type polyimide resin to reinforce the material structure. As shown in FIG. 11, it is a metal composite material M-based resin U3 made of film F as a laminated metal plate M1.

本創作係為一種利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,已符合專利要件,今爰依法提出專利申請。 This creation is a kind of use of polyurea type polyimide resin to strengthen the material structure, which has met the requirements of the patent, and now the patent application is filed in accordance with the law.

以上實施例係例舉說明本創作實施態樣,以及敘述本創作織技術徵,並非用來限制本創作報保護範疇。任何熟悉此技術者可輕易完成改變或均等性之安排均屬於本創作所主張之範圍,本創作權利保護範圍應以所附之申請專利範圍為準。 The above embodiments are examples to illustrate the implementation of this creation, and describe the technical characteristics of this creation, and are not used to limit the scope of protection of this creation. Any arrangements that can be easily accomplished by those who are familiar with this technology fall within the scope of this creation, and the protection scope of this creation should be subject to the scope of the attached patent application.

F:薄膜 F: film

M:金屬複合材料 M: metal composite

M1:金屬板 M1: metal plate

U3:樹脂 U3: Resin

Claims (11)

一種利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,其中強化材料係聚尿素型聚醯亞胺樹脂,強化材料應用於碳纖維複合材料,其織物組織結構的緯向纖維紗線含有聚尿素型聚醯亞胺樹脂,經向纖維紗線含有聚尿素型聚醯亞胺樹脂,另金屬複合材料係強化材料作成薄膜作為貼合金屬板。 A polyurea-type polyimide resin is applied to a reinforced material structure, wherein the reinforced material is a polyurea-type polyimide resin, and the reinforced material is applied to a carbon fiber composite material, and the weft fiber yarn of its fabric structure contains poly Urea-type polyimide resin, the warp fiber yarn contains polyurea-type polyimide resin, and the metal composite material is a reinforcing material made into a film as a laminated metal plate. 如請求項1所述之利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,其中聚尿素型聚醯亞胺樹脂係由二酸酐、二異氰酸鹽類及二胺三種單體所製成的一種樹脂。 As described in claim 1, the use of polyurea-type polyimide resins for reinforcing material structures, wherein the polyurea-type polyimide resins are composed of three monomers: dianhydride, diisocyanate and diamine A resin made of. 如請求項1所述之利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,其中織物組織結構編織成三次元三方向為x,y,z軸,編織成五方向為x,y,z,+45°x1,-45°x2軸。 As described in Claim 1, the use of polyurea-type polyimide resin for reinforcing material structures, wherein the fabric structure is woven into three dimensions and three directions are x, y, z axes, and five directions are x, y, z axes z, +45°x 1 , -45°x 2 axes. 如請求項1所述之利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,其中聚尿素型聚醯亞胺樹脂耐熱溫度係在500℃以上。 As described in claim 1, the polyurea-type polyimide resin is used in the reinforced material structure, wherein the heat-resistant temperature of the polyurea-type polyimide resin is above 500°C. 如請求項1所述之利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,其中聚尿素型聚醯亞胺樹脂,熱變形溫度為Tg在200~300℃。 As described in Claim 1, the polyurea-type polyimide resin is used in the reinforced material structure, wherein the heat distortion temperature of the polyurea-type polyimide resin is 200-300°C. 如請求項1所述之利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,其中聚尿素型聚醯亞胺樹脂的耐熱性佳,其黏度值之範圍為0.83~0.91dl/g。 As stated in claim 1, the polyurea-type polyimide resin is used in the reinforced material structure, wherein the polyurea-type polyimide resin has good heat resistance, and its viscosity ranges from 0.83 to 0.91dl/g. 如請求項1所述之利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,其中碳纖維複合材料的纖維含有率為55%~57%。 As described in claim 1, the polyurea-type polyimide resin is applied to the reinforced material structure, wherein the fiber content of the carbon fiber composite material is 55% to 57%. 如請求項1所述之利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,其中碳纖維複合材料之碳纖維五種規格,其(維度-織密)採取2D(2維度 -0.0mm)、3D-5.0(3維度-5mm)、5D-5.0(5維度-5mm)、3D-7.5(3維度-7.5mm)、5D-7.5(5維度-7.5mm)。 As described in claim 1, the use of polyurea-type polyimide resin to apply to the reinforced material structure, wherein the carbon fiber composite material has five specifications of carbon fibers, and its (dimension-weaving density) adopts 2D (2 dimensions -0.0mm), 3D-5.0(3 dimension-5mm), 5D-5.0(5 dimension-5mm), 3D-7.5(3 dimension-7.5mm), 5D-7.5(5 dimension-7.5mm). 如請求項1所述之利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,其中將製備成碳纖維複合材料的彎曲強度在300~388Mpa之間。 As described in Claim 1, the polyurea-type polyimide resin is used in the reinforced material structure, wherein the flexural strength of the prepared carbon fiber composite material is between 300 and 388Mpa. 如請求項1所述之利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,其中將製備成碳纖維複合材料的抗剪強度在35~42.5Mpa之間。 As stated in Claim 1, the polyurea-type polyimide resin is applied to the reinforced material structure, wherein the shear strength of the prepared carbon fiber composite material is between 35 and 42.5Mpa. 如請求項1所述之利用聚尿素型聚醯亞胺樹脂應用於強化材料結構體,其中金屬複合材料的剝離強度的範圍1.9kgf/cm~2.65kgf/cm。 As described in Claim 1, the polyurea-type polyimide resin is used in the reinforced material structure, wherein the peel strength of the metal composite material ranges from 1.9kgf/cm to 2.65kgf/cm.
TW111212725U 2022-11-21 2022-11-21 The utilizing polyurea-type polyimide resin in reinforcing material structures TWM643971U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111212725U TWM643971U (en) 2022-11-21 2022-11-21 The utilizing polyurea-type polyimide resin in reinforcing material structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111212725U TWM643971U (en) 2022-11-21 2022-11-21 The utilizing polyurea-type polyimide resin in reinforcing material structures

Publications (1)

Publication Number Publication Date
TWM643971U true TWM643971U (en) 2023-07-21

Family

ID=88148695

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111212725U TWM643971U (en) 2022-11-21 2022-11-21 The utilizing polyurea-type polyimide resin in reinforcing material structures

Country Status (1)

Country Link
TW (1) TWM643971U (en)

Similar Documents

Publication Publication Date Title
JP5327412B2 (en) Carbon fiber reinforced carbon composite and method for producing the same
Petrucci et al. Mechanical characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion
Kim et al. Mechanical properties of woven laminates and felt composites using carbon fibers. Part 1: in-plane properties
CN102501491B (en) Polyethylene composite bulletproof plate and manufacturing method thereof
JPH01136737A (en) Laminate of thermoplastic synthetic material reinforced by metallic sheet and continuous filament and manufacture of such laminate
KR101659591B1 (en) Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby
Mandell et al. Effects of fiber waviness on composites for wind turbine blades
Wang et al. The natural fiber reinforced thermoplastic composite made of woven bamboo fiber and polypropylene
CN113292822B (en) Aramid fiber-epoxy resin based composite material and preparation method and application thereof
TWM643971U (en) The utilizing polyurea-type polyimide resin in reinforcing material structures
TW202421693A (en) A kind of application of ur type polyimide resin to reinforcing material structure
CN102765229B (en) Compound plastic cloth as well as application and application method thereof
CN207847405U (en) A kind of high-strength light window frame
CN110951217B (en) Aramid fiber reinforced carbon fiber resin prepreg and preparation method thereof
CN112677602B (en) Toughening material for prepreg, high-toughness composite material and preparation method thereof
CN209869584U (en) Light high-strength unidirectional carbon fiber laminated board
US20240166831A1 (en) Ur-type polyimide resin applicable to reinforced material structure
JP2018079630A (en) Carbon fiber composite decorative plate
CN110744886A (en) Metal protective film and preparation method thereof
CN111251670A (en) High-bending-strength high-modulus light epoxy composite board and preparation method thereof
CN105157479A (en) Soft burster block and manufacturing method thereof
JP4116361B2 (en) Intermediate material for FRP molding and manufacturing method thereof
CN112341813B (en) Method for improving damping performance of carbon fiber reinforced tube
CN114103292B (en) Prestressed carbon plate material for bridge reinforcement
CN115231929B (en) High-temperature-resistant incombustible fiber composite material and preparation method thereof