TWM638854U - Flyback Power Converter Based on Primary Side Feedback - Google Patents

Flyback Power Converter Based on Primary Side Feedback Download PDF

Info

Publication number
TWM638854U
TWM638854U TW111210739U TW111210739U TWM638854U TW M638854 U TWM638854 U TW M638854U TW 111210739 U TW111210739 U TW 111210739U TW 111210739 U TW111210739 U TW 111210739U TW M638854 U TWM638854 U TW M638854U
Authority
TW
Taiwan
Prior art keywords
switch tube
tube
power
current
power switch
Prior art date
Application number
TW111210739U
Other languages
Chinese (zh)
Inventor
張秀紅
林武平
張允超
Original Assignee
大陸商昂寶電子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商昂寶電子(上海)有限公司 filed Critical 大陸商昂寶電子(上海)有限公司
Publication of TWM638854U publication Critical patent/TWM638854U/en

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

提供了一種基於原邊回饋的返馳式電源變換器,包括變壓器、第一和第二功率開關管、第一和第二電流源、第一、第二、第三、和第四開關管、及開關控制電路。第一、第二、第三、和第四開關管的第一電極分別連接到開關控制電路的第一、第二、第三、和第四輸出端,第二開關管的第二電極連接到第一功率開關管的基極,第四開關管的第二電極連接到第二功率開關管的基極,第二開關管的第三電極接地或連接到第四開關管的第二電極,第四開關管的第三電極接地,第一功率開關管的集極連接到變壓器的一次繞組、基極連接到第二開關管的第二電極、發射極連接到第二功率開關管的基極,第二功率開關管的集極連接到變壓器的一次繞組、發射極經由電流感測電阻接地。 A flyback power converter based on primary side feedback is provided, including a transformer, first and second power switch tubes, first and second current sources, first, second, third, and fourth switch tubes, and switch control circuit. The first electrodes of the first, second, third, and fourth switch tubes are respectively connected to the first, second, third, and fourth output ends of the switch control circuit, and the second electrodes of the second switch tube are connected to the The base of the first power switch tube, the second electrode of the fourth switch tube is connected to the base of the second power switch tube, the third electrode of the second switch tube is grounded or connected to the second electrode of the fourth switch tube, and the second electrode of the fourth switch tube is connected to the base of the second power switch tube. The third electrode of the four switching tubes is grounded, the collector of the first power switching tube is connected to the primary winding of the transformer, the base is connected to the second electrode of the second switching tube, and the emitter is connected to the base of the second power switching tube, The collector of the second power switch tube is connected to the primary winding of the transformer, and the emitter is grounded through the current sensing resistor.

Description

基於原邊回饋的返馳式電源變換器 Flyback Power Converter Based on Primary Side Feedback

本創作涉及積體電路領域,尤其涉及一種基於原邊回饋的返馳式電源變換器。 This creation relates to the field of integrated circuits, in particular to a flyback power converter based on primary side feedback.

在中小功率電源變換器領域,基於原邊回饋的返馳式電源變換器以其電路簡單、空間體積小、系統成本低、轉換效率高等優勢佔據應用市場的絕對主導地位。今年來,功率開關管(又稱雙極型電晶體)因其良好的開關特性和低廉的價格優勢被廣泛應用於10W以下的小功率市場。 In the field of small and medium power power converters, flyback power converters based on primary side feedback occupy an absolute dominant position in the application market due to their advantages of simple circuit, small space, low system cost, and high conversion efficiency. In recent years, power switching tubes (also known as bipolar transistors) have been widely used in low-power markets below 10W because of their good switching characteristics and low price advantages.

隨著手機、平板電腦等移動設備的功能越來越多,為移動設備供電的電池的容量爆發式增加,並且為移動設備供電的充電器或適配器的輸出功率不斷提高,已經從原來的5W~10W發展到20W、30W、45W、65W甚至更高。如何在低成本的基礎上提高電源變換器的系統整體效率和功率密度,使得電源變換器既滿足充電器或適配器小型化的發展需求也滿足越來越嚴苛的電源能效標準,成為當今研究的重點。 With more and more functions of mobile devices such as mobile phones and tablets, the capacity of batteries powering mobile devices has increased explosively, and the output power of chargers or adapters powering mobile devices has continued to increase, from the original 5W~ 10W develops to 20W, 30W, 45W, 65W or even higher. How to improve the overall efficiency and power density of the power converter system on the basis of low cost, so that the power converter can not only meet the development needs of the charger or adapter miniaturization, but also meet the increasingly stringent power energy efficiency standards, has become the research topic of today. focus.

根據本創作實施例的基於原邊回饋的返馳式電源變換器,包括變壓器、第一和第二功率開關管、第一和第二電流源、第一、第二、第三、和第四開關管、以及開關控制電路,其中:第一、第二、第三、和第四開關管的第一電極分別連接到開關控制電路的第一、第二、第三、和第四輸出端,第二開關管的第二電極連接到第一功率開 關管的基極,第四開關管的第二電極連接到第二功率開關管的基極,第二開關管的第三電極接地或者連接到第四開關管的第二電極,第四開關管的第三電極接地,第一功率開關管的集極連接到變壓器的一次繞組、基極連接到第二開關管的第二電極、發射極連接到第二功率開關管的基極,用於第一功率開關管和第二功率開關管的第一驅動電流由第一電流源在第一開關管的控制下提供,第二功率開關管的集極連接到變壓器的一次繞組、基極連接到第四開關管的第二電極、發射極經由電流感測電阻接地,用於第二功率開關管的第二驅動電流由第二電流源在第三開關管的控制下提供。 The primary-side feedback-based flyback power converter according to an embodiment of the invention includes a transformer, a first and a second power switch tube, a first and a second current source, a first, a second, a third, and a fourth A switch tube, and a switch control circuit, wherein: the first electrodes of the first, second, third, and fourth switch tubes are respectively connected to the first, second, third, and fourth output terminals of the switch control circuit, The second electrode of the second switch tube is connected to the first power switch The base of the switching tube, the second electrode of the fourth switching tube is connected to the base of the second power switching tube, the third electrode of the second switching tube is grounded or connected to the second electrode of the fourth switching tube, and the fourth switching tube The third electrode of the first power switching tube is connected to the ground, the collector of the first power switching tube is connected to the primary winding of the transformer, the base is connected to the second electrode of the second switching tube, and the emitter is connected to the base of the second power switching tube for the first The first drive current of the first power switch tube and the second power switch tube is provided by the first current source under the control of the first switch tube, the collector of the second power switch tube is connected to the primary winding of the transformer, and the base is connected to the first switch tube. The second electrodes and emitters of the four switching tubes are grounded through the current sensing resistor, and the second driving current for the second power switching tube is provided by the second current source under the control of the third switching tube.

1,2,3,4,5,6,7,8:引腳 1,2,3,4,5,6,7,8: pins

100A,100B:返馳式電源變換器 100A, 100B: flyback power converter

102:開關控制電路 102: switch control circuit

104:晶片供電電路 104: chip power supply circuit

106:回饋控制電路 106: Feedback control circuit

108:恒壓控制電路 108: Constant voltage control circuit

110:恒流控制電路 110: Constant current control circuit

112:電流感測控制電路 112: Current sensing control circuit

114:振盪器電路 114: Oscillator circuit

116:邏輯控制電路 116: logic control circuit

118:保護電路 118: Protection circuit

CS:電流感測腳 CS: current sense pin

D1:第一開關管 D1: the first switch tube

D2:第二開關管 D2: The second switch tube

D3:第三開關管 D3: The third switch tube

D4:第四開關管 D4: The fourth switch tube

FB,VDD:引腳 FB, VDD: pin

GND:接地腳 GND: ground pin

IB1:第一驅動電流 I B1 : the first driving current

IB2:第二驅動電流 I B2 : the second driving current

Ic:電流 Ic: current

Io:電流常量 Io: current constant

Iref:參考電流 Iref: reference current

Is:原邊電流 Is: Primary current

ISB1:第一電流源 I SB1 : the first current source

ISB2:第二電流源 I SB2 : Second current source

ISBN:基準電流源 I SBN : Reference current source

OVP:過壓保護腳 OVP: overvoltage protection pin

PWM:脈寬調變 PWM: pulse width modulation

Q1:第一功率開關管 Q1: The first power switch tube

Q2:第二功率開關管 Q2: The second power switch tube

Rs:電流感測電阻 Rs: current sense resistor

T:變壓器 T: Transformer

U1,U1A,U1B:控制晶片 U1, U1A, U1B: control chip

UVLO:欠壓鎖定 UVLO: undervoltage lockout

UVP:欠壓保護 UVP: under voltage protection

Vcs:電壓 Vcs: voltage

Vref:參考電壓 Vref: reference voltage

α:預定係數 α: predetermined coefficient

從下面結合圖式對本創作的具體實施方式的描述中可以更好地理解本創作,其中: This creation can be better understood from the following description of the specific implementation manner of this creation in conjunction with the drawings, wherein:

圖1A示出了根據本創作實施例的基於原邊回饋的返馳式電源變換器的示例電路圖。 FIG. 1A shows an example circuit diagram of a primary-side feedback-based flyback power converter according to an embodiment of the present invention.

圖1B示出了根據本創作實施例的基於原邊回饋的返馳式電源變換器的另一示例電路圖。 FIG. 1B shows another example circuit diagram of a primary-side feedback-based flyback power converter according to an embodiment of the present invention.

圖2示出了圖1A/1B所示的基於原邊回饋的返馳式電源變換器中的多個信號的工作波形圖。 FIG. 2 shows the working waveform diagram of multiple signals in the primary-side feedback-based flyback power converter shown in FIG. 1A/1B .

圖3A示出了圖1A所示的基於原邊回饋的返馳式電源變換器中的控制晶片的示例框圖。 FIG. 3A shows an example block diagram of a control chip in the primary-side feedback-based flyback power converter shown in FIG. 1A .

圖3B示出了圖1B所示的基於原邊回饋的返馳式電源變換器中的控制晶片的示例框圖。 FIG. 3B shows an example block diagram of a control chip in the primary-side feedback-based flyback power converter shown in FIG. 1B .

圖4A示出了與第一/第二電流源和第一/第三開關管有關的電路部分的示例替代實現方式的示意圖。 FIG. 4A shows a schematic diagram of an example alternative implementation of circuit parts related to the first/second current source and the first/third switch tube.

圖4B示出了與第一/第二電流源和第一/第三開關管有關的電路部分的另一示例替代實現方式的示意圖。 FIG. 4B shows a schematic diagram of another exemplary alternative implementation of circuit parts related to the first/second current source and the first/third switch tube.

圖4C示出了與第一/第二電流源和第一/第三開關管有關的電路 部分的又一示例替代實現方式的示意圖。 Figure 4C shows the circuit related to the first/second current source and the first/third switch tube A schematic diagram of yet another example alternative implementation of a section.

圖5示出了圖1A/1B所示的基於原邊回饋的返馳式電源變換器中的第一和第二功率開關管的示例封裝示意圖。 FIG. 5 shows a schematic diagram of an example package of the first and second power switch tubes in the primary-side feedback-based flyback power converter shown in FIG. 1A/1B .

圖6示出了圖1A/1B所示的基於原邊回饋的返馳式電源變換器中的第一和第二功率開關管以及控制晶片的示例封裝示意圖。 FIG. 6 shows a schematic diagram of an example package of the first and second power switch tubes and the control chip in the primary-side feedback-based flyback power converter shown in FIG. 1A/1B .

下面將詳細描述本創作的各個方面的特徵和示例性實施例。在下面的詳細描述中,提出了許多具體細節,以便提供對本創作的全面理解。但是,對於本領域技術人員來說很明顯的是,本創作可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本創作的示例來提供對本創作的更好的理解。本創作決不限於下面所提出的任何具體配置,而是在不脫離本創作的精神的前提下覆蓋了元素和部件的任何修改、替換和改進。在圖式和下面的描述中,沒有示出公知的結構和技術,以便避免對本創作造成不必要的模糊。另外,需要說明的是,這裡使用的用語“A與B連接”可以表示“A與B直接連接”也可以表示“A與B經由一個或多個其他元件間接連接”。 Features and exemplary embodiments of various aspects of the present invention will be described in detail below. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the invention may be practiced without some of these specific details. The following description of the embodiments is only to provide a better understanding of the invention by showing an example of the invention. The invention is in no way limited to any specific configuration set forth below, but rather covers any modifications, substitutions and improvements of elements and parts without departing from the spirit of the invention. In the drawings and the following description, well-known structures and techniques have not been shown in order to avoid unnecessarily obscuring the present invention. In addition, it should be noted that the term "A is connected to B" used herein may mean "A and B are directly connected" or "A and B are indirectly connected via one or more other elements".

目前,功率開關管只能應用於小功率市場的主要原因在於,功率開關管的導通是電流驅動的,必須有足夠的驅動電流才可以使功率開關管導通。另外,功率開關管的驅動損耗大、導通損耗大、且關斷速度慢,這些因素也限制了其在更高功率市場上的應用。 At present, the main reason why the power switch tube can only be used in the low-power market is that the conduction of the power switch tube is driven by current, and there must be sufficient driving current to make the power switch tube conduct. In addition, the driving loss of the power switch tube is large, the conduction loss is large, and the turn-off speed is slow, these factors also limit its application in the higher power market.

鑒於上述情況,提出了根據本創作實施例的基於原邊回饋的返馳式電源變換器,其中,採用四個開關管來組合驅動功率開關管,以降低功率開關管的驅動電流損耗、提高功率開關管的開通速度和/或關斷速度、和/或降低功率開關管的關斷損耗。 In view of the above situation, a flyback power converter based on primary side feedback is proposed according to the embodiment of this invention, in which four switching tubes are used to drive the power switching tube in combination to reduce the driving current loss of the power switching tube and increase the power Turn-on speed and/or turn-off speed of the switch tube, and/or reduce turn-off loss of the power switch tube.

圖1A示出了根據本創作實施例的基於原邊回饋的返馳式電源變換器100A的示例電路圖。如圖1A所示,基於原邊回饋 的返馳式電源變換器100A包括變壓器T、第一和第二功率開關管Q1和Q2、第一和第二電流源ISB1和ISB2、第一、第二、第三、和第四開關管D1至D4、以及開關控制電路102,其中:第一、第二、第三、和第四開關管D1至D4的第一電極分別連接到開關控制電路102的第一、第二、第三、和第四輸出端,第一和第三開關管D1和D3的第二電極分別連接到第一和第二電流源ISB1和ISB2,第二開關管D2的第二電極連接到第一開關管D1的第三電極和第一功率開關管Q1的基極,第四開關管D4的第二電極連接到第三開關管D3的第三電極和第二功率開關管Q2的基極,第二和第四開關管D2和D4的第三電極接地,第一功率開關管Q1的集極連接到變壓器T的一次繞組、基極連接到第一開關管D1的第三電極和第二開關管D2的第二電極、發射極連接到第二功率開關管Q2的基極,第二功率開關管Q2的集極連接到變壓器T的一次繞組、基極連接到第三開關管D3的第三電極和第四開關管D4的第二電極、發射極經由電流感測電阻Rs接地。 FIG. 1A shows an example circuit diagram of a primary-side feedback-based flyback power converter 100A according to an embodiment of the present invention. As shown in FIG. 1A , the flyback power converter 100A based on primary side feedback includes a transformer T, first and second power switch tubes Q1 and Q2, first and second current sources I SB1 and I SB2 , first, The second, third, and fourth switch tubes D1 to D4, and the switch control circuit 102, wherein: the first electrodes of the first, second, third, and fourth switch tubes D1 to D4 are respectively connected to the switch control circuit The first, second, third, and fourth output terminals of 102, the second electrodes of the first and third switching tubes D1 and D3 are respectively connected to the first and second current sources ISB1 and ISB2 , and the second switch The second electrode of the tube D2 is connected to the third electrode of the first switching tube D1 and the base of the first power switching tube Q1, and the second electrode of the fourth switching tube D4 is connected to the third electrode of the third switching tube D3 and the base of the first power switching tube Q1. The base of the second power switching tube Q2, the third electrodes of the second and fourth switching tubes D2 and D4 are grounded, the collector of the first power switching tube Q1 is connected to the primary winding of the transformer T, and the base is connected to the first switching tube The third electrode of D1 and the second electrode and emitter of the second switching tube D2 are connected to the base of the second power switching tube Q2, and the collector of the second power switching tube Q2 is connected to the primary winding and base of the transformer T The third electrode of the third switching tube D3 and the second electrode and emitter of the fourth switching tube D4 are grounded via the current sensing resistor Rs.

圖1B示出了根據本創作實施例的基於原邊回饋的返馳式電源變換器100B的另一示例電路圖。圖1B所示的基於原邊回饋的返馳式電源變換器100B與圖1A所示的基於原邊回饋的返馳式電源變換器100A在結構上的主要不同在於,第二開關管D2的第三電極連接到第三開關管D3的第三電極和第四開關管D4的第二電極(即,連接到第一功率開關管Q1的發射極和第二功率開關管Q2的基極),其他部分的連接關係與圖1所示的相應部分相同,在此不再贅述。 FIG. 1B shows another example circuit diagram of a primary-side feedback-based flyback power converter 100B according to an embodiment of the present invention. The main difference in structure between the primary-side feedback-based flyback power converter 100B shown in FIG. 1B and the primary-side feedback-based flyback power converter 100A shown in FIG. 1A is that the second switching tube D2 The three electrodes are connected to the third electrode of the third switching tube D3 and the second electrode of the fourth switching tube D4 (that is, connected to the emitter of the first power switching tube Q1 and the base of the second power switching tube Q2), and other Partial connections are the same as the corresponding parts shown in FIG. 1 , and will not be repeated here.

圖2示出了圖1A/1B所示的基於原邊回饋的返馳式電源變換器100A/100B中的多個信號的工作波形圖,其中,D1至D4分別表示用於驅動第一至第四開關管D1至D4的導通與關斷的驅動信號,IB1表示用於第二功率開關管Q2的第一驅動電流,IB2表示用於第二功率開關管Q2的第二驅動電流,Is表示流過電流感測電阻Rs 的原邊電流。 Fig. 2 shows the working waveform diagram of a plurality of signals in the flyback power converter 100A/100B based on the primary side feedback shown in Fig. 1A/1B, wherein D1 to D4 respectively represent the The turn-on and turn-off drive signals of the four switch tubes D1 to D4, I B1 represents the first drive current for the second power switch tube Q2, I B2 represents the second drive current for the second power switch tube Q2, Is Indicates the primary current flowing through the current sense resistor Rs.

如圖1A/B和圖2所示,在一些實施例中,在一個脈寬調變(Pulse Width Modulation,PWM)開關週期開始時,第一開關管D1從關斷狀態變為導通狀態,第一驅動電流IB1傳導到第一功率開關管Q1的基極,使得第一功率開關管Q1從關斷狀態變為導通狀態;由於第一功率開關管Q1的發射極連接到第二功率開關管Q2的基極,從第一功率開關管Q1的發射極注入第二功率開關管Q2的基極的電流足以使第二功率開關管Q2從關斷狀態變為導通狀態,從而使得流過電流感測電阻Rs的原邊電流Is增大。當流過電流感測電阻Rs的原邊電流Is達到預定水準時,第一開關管D1從導通狀態變為關斷狀態,第二開關管D2從關斷狀態變為導通狀態,使得第一功率開關管Q1從導通狀態變為關斷狀態;此時第三開關管D3從關斷狀態變為導通狀態,第二驅動電流IB2傳導到第二功率開關管Q2,使得第二功率開關管Q2保持在導通狀態。當流過電流感測電阻Rs的原邊電流Is達到預定水準時,第三開關管D3從導通狀態變為關斷狀態,第四開關管D4從關斷狀態變為導通狀態,使得第二功率開關管Q2從導通狀態變為關斷狀態,直到下一個PWM開關週期開始為止。 As shown in FIG. 1A/B and FIG. 2 , in some embodiments, at the beginning of a pulse width modulation (Pulse Width Modulation, PWM) switching cycle, the first switching tube D1 changes from the off state to the on state, and the second A driving current I B1 is conducted to the base of the first power switch tube Q1, so that the first power switch tube Q1 changes from the off state to the on state; since the emitter of the first power switch tube Q1 is connected to the second power switch tube The base of Q2, the current injected into the base of the second power switch Q2 from the emitter of the first power switch Q1 is enough to make the second power switch Q2 change from the off state to the on state, so that the current sense The primary current Is of the measuring resistor Rs increases. When the primary current Is flowing through the current sensing resistor Rs reaches a predetermined level, the first switch tube D1 changes from the on state to the off state, and the second switch tube D2 changes from the off state to the on state, so that the first power The switch tube Q1 changes from the on state to the off state; at this time, the third switch tube D3 changes from the off state to the on state, and the second drive current I B2 is conducted to the second power switch tube Q2, so that the second power switch tube Q2 remain in the on state. When the primary current Is flowing through the current sensing resistor Rs reaches a predetermined level, the third switch tube D3 changes from the on state to the off state, and the fourth switch tube D4 changes from the off state to the on state, so that the second power The switch tube Q2 changes from the on state to the off state until the next PWM switching cycle starts.

如圖1A/1B和圖2所示,在一些實施例中,在第二功率開關管Q2從關斷狀態變為導通狀態的過程中,第一開關管D1和第一功率開關管Q1處於導通狀態且第二、第三、和第四開關管D2至D4處於關斷狀態,第二功率開關管Q2的基極電流由第一電流源ISB1經由第一開關管D1和第一功率開關管Q1提供(即,使用第一驅動電流IB1作為第二功率開關管Q2的驅動電流)。 As shown in FIG. 1A/1B and FIG. 2 , in some embodiments, when the second power switch tube Q2 changes from the off state to the on state, the first switch tube D1 and the first power switch tube Q1 are in conduction. state and the second, third, and fourth switching tubes D2 to D4 are in the off state, the base current of the second power switching tube Q2 is supplied by the first current source ISB1 via the first switching tube D1 and the first power switching tube Q1 provides (that is, uses the first driving current I B1 as the driving current of the second power switch transistor Q2 ).

如圖1A/1B和圖2所示,在一些實施例中,在第二功率開關管Q2處於導通狀態期間,在電流感測電阻Rs的電壓Vcs達到預定設置值之前(即,流過電流感測電阻Rs的原邊電流Is達到預定水準之前),第一開關管D1和第一功率開關管Q1處於導通狀態 且第二、第三、和第四開關管D2至D4處於關斷狀態,第二功率開關管Q2的基極電流由第一電流源ISB1經由第一開關管D1和第一功率開關管Q1提供(即,使用第一驅動電流IB1作為第二功率開關管Q2的驅動電流)。 As shown in FIG. 1A/1B and FIG. 2, in some embodiments, during the period when the second power switch Q2 is in the on state, before the voltage Vcs of the current sensing resistor Rs reaches a predetermined setting value (that is, flows through the current sense Before the primary side current Is of the measuring resistor Rs reaches a predetermined level), the first switch tube D1 and the first power switch tube Q1 are in the conduction state and the second, third, and fourth switch tubes D2 to D4 are in the off state. The base current of the second power switch tube Q2 is provided by the first current source ISB1 via the first switch tube D1 and the first power switch tube Q1 (that is, the first drive current I B1 is used as the drive current of the second power switch tube Q2 ).

如圖1A/1B和圖2所示,在一些實施例中,在第二功率開關管Q2處於導通狀態期間,在電流感測電阻Rs上的電壓Vcs達到預定設置值之後(即,流過電流感測電阻Rs的原邊電流Is達到預定水準之後),第一開關管D1、第四開關管D4、以及第一功率開關管Q1處於關斷狀態,第二和第三開關管D2和D3處於導通狀態,第二功率開關管Q2的基極電流由第二電流源ISB2經由第三開關管D3提供(即,使用第二驅動電流IB2作為第二功率開關管Q2的驅動電流)。 As shown in FIG. 1A/1B and FIG. 2 , in some embodiments, during the period when the second power switch tube Q2 is in the on state, after the voltage Vcs on the current sensing resistor Rs reaches a predetermined setting value (that is, the current flows After the primary side current Is of the sensing resistor Rs reaches a predetermined level), the first switch tube D1, the fourth switch tube D4, and the first power switch tube Q1 are in the off state, and the second and third switch tubes D2 and D3 are in the off state. In the ON state, the base current of the second power switch Q2 is provided by the second current source I SB2 via the third switch D3 (that is, the second drive current I B2 is used as the drive current of the second power switch Q2 ).

如圖1A/1B和圖2所示,在一些實施例中,在第二功率開關管Q2處於關斷狀態期間,第一開關管D1、第三開關管D3、以及第一功率開關管Q1處於關斷狀態,第二和第四開關管D2和D4處於導通狀態。 As shown in FIG. 1A/1B and FIG. 2, in some embodiments, when the second power switch tube Q2 is in the off state, the first switch tube D1, the third switch tube D3, and the first power switch tube Q1 are in the off state. In the off state, the second and fourth switch tubes D2 and D4 are in the on state.

在圖1A/1B所示的基於原邊回饋的返馳式電源變換器100A/100B中,第一和第二開關管D1和D2用於控制第一驅動電流IB1是否被用作第二功率開關管Q2的驅動電流(第一驅動電流IB1也用作第一功率開關管Q1的驅動電流,所以第一和第二開關管D1和D2實際用於控制第一功率開關管Q1的導通與關斷),第三和第四開關管D3和D4用於控制第二驅動電流IB2是否被用作第二功率開關管Q2的驅動電流。在第二功率開關管Q2處於導通狀態期間,分時段使用第一和第二驅動電流IB1和IB2作為第二功率開關管Q2的驅動電流。在第二功率開關管Q2從關斷狀態變為導通狀態的過程中,使用第一驅動電流IB1作為第二功率開關管Q2的驅動電流,在這種情況下第一驅動電流IB1要足夠大,使得第二功率開關管Q2能夠迅速進 入飽和區,以最大限度地降低第二功率開關管Q2的開通損耗,提高第二功率開關管Q2的開關速度。但是,第二功率開關管Q2的驅動電流過大會降低第二功率開關管Q2的關斷速度,增加第二功率開關管Q2的關斷損耗,因此在第二功率開關管Q2從導通狀態變為關斷狀態的過程開始之前,將第二功率開關管Q2的驅動電流從第一驅動電流IB1切換到第二驅動電流IB2(也稱為預關斷驅動電流),可以使第二功率開關管Q2處於導通狀態期間存儲在基極區的少數載流子迅速複合以減小第二功率開關管Q2的關斷時間,降低第二功率開關管Q2的關斷損耗,提高返馳式電源變換器100A/100B的系統效率和輸出功率。 In the flyback power converter 100A/100B based on primary side feedback shown in FIG. 1A/1B, the first and second switch tubes D1 and D2 are used to control whether the first drive current I B1 is used as the second power The driving current of the switching tube Q2 (the first driving current I B1 is also used as the driving current of the first power switching tube Q1, so the first and second switching tubes D1 and D2 are actually used to control the conduction and switching of the first power switching tube Q1 off), the third and fourth switching tubes D3 and D4 are used to control whether the second driving current I B2 is used as the driving current of the second power switching tube Q2. When the second power switch tube Q2 is in the conduction state, the first and second drive currents I B1 and I B2 are used as the drive current of the second power switch tube Q2 in different periods. In the process of the second power switch tube Q2 changing from the off state to the on state, the first drive current I B1 is used as the drive current of the second power switch tube Q2, in this case the first drive current I B1 should be sufficient is large, so that the second power switch tube Q2 can quickly enter the saturation region, so as to minimize the turn-on loss of the second power switch tube Q2 and increase the switching speed of the second power switch tube Q2. However, if the driving current of the second power switch tube Q2 is too high, the turn-off speed of the second power switch tube Q2 will be reduced, and the turn-off loss of the second power switch tube Q2 will be increased. Before the process of the off-state starts, the driving current of the second power switch tube Q2 is switched from the first driving current I B1 to the second driving current I B2 (also referred to as the pre-shutdown driving current), which can make the second power switch The minority carriers stored in the base region rapidly recombine when the tube Q2 is in the on-state to reduce the turn-off time of the second power switch tube Q2, reduce the turn-off loss of the second power switch tube Q2, and improve the flyback power conversion The system efficiency and output power of the converter 100A/100B.

具體地,在第二功率開關管Q2從關斷狀態變為導通狀態的過程中,使用第一驅動電流IB1作為第二功率開關管Q2的驅動電流,由於第一功率開關管Q1的放大作用,第二功率開關管Q2的基極電流為hfe*IB1(hfe是第一功率開關管Q1的放大倍數),較大的基極電流促使第二功率開關管Q2迅速進入飽和區,降低了第二功率開關管Q2的開通損耗;在第二功率開關管Q2處於導通狀態期間,流過電流感測電阻Rs的原邊電流Is=Ic+hfe*IB1(Ic是流過變壓器T的一次繞組的電流);電流感測電阻Rs上的電壓Vcs達到預定設置值(例如,電流感測電阻Rs上的最大電壓值Vcsmax的90%)之後,使用第二驅動電流IB2作為第二功率開關管Q2的驅動電流,由於IB2<<IB1,所以在使用第二驅動電流IB2維持第二功率開關管Q2處於導通狀態期間,第二功率開關管Q2存儲在基極區的載流子較少,第二功率開關管Q2關斷時其基極區較少的載流子能迅速複合以減小第二功率開關管Q2的關斷時間,降低第二功率開關管Q2的關斷損耗。 Specifically, in the process of changing the second power switch tube Q2 from the off state to the on state, the first drive current I B1 is used as the drive current of the second power switch tube Q2, due to the amplification effect of the first power switch tube Q1 , the base current of the second power switch tube Q2 is hfe*I B1 (hfe is the amplification factor of the first power switch tube Q1), and the larger base current impels the second power switch tube Q2 to enter the saturation region rapidly, reducing the The turn-on loss of the second power switch tube Q2; during the period when the second power switch tube Q2 is in the conduction state, the primary side current Is=Ic+hfe*I B1 flowing through the current sensing resistor Rs (Ic is the primary current Is=Ic+hfe*I B1 flowing through the transformer T winding current); after the voltage Vcs on the current sensing resistor Rs reaches a predetermined setting value (for example, 90% of the maximum voltage value Vcsmax on the current sensing resistor Rs), use the second drive current I B2 as the second power switch The drive current of tube Q2, because I B2 << I B1 , so when using the second drive current I B2 to maintain the second power switch tube Q2 in the on state, the second power switch tube Q2 stores the carriers in the base region Less, when the second power switch tube Q2 is turned off, the carriers with fewer base regions can quickly recombine to reduce the turn-off time of the second power switch tube Q2 and reduce the turn-off loss of the second power switch tube Q2 .

圖3A示出了圖1A所示的基於原邊回饋的返馳式電源變換器100A中的控制晶片U1A的示例框圖。圖3B示出了圖1B所示的基於原邊回饋的返馳式電源變換器100B中的控制晶片U1B的 示例框圖。下面為了簡單,將控制晶片U1A和U1B統稱為控制晶片U1。如圖3A/3B所示,第一至第四開關管D1至D4以及開關控制電路102可以被包括在控制晶片U1中,並且控制晶片U1還可以包括: FIG. 3A shows an example block diagram of the control chip U1A in the primary-side feedback-based flyback power converter 100A shown in FIG. 1A . FIG. 3B shows the control chip U1B in the primary-side feedback-based flyback power converter 100B shown in FIG. 1B. Example block diagram. In the following, for simplicity, the control chips U1A and U1B are collectively referred to as the control chip U1. As shown in FIG. 3A/3B, the first to fourth switch tubes D1 to D4 and the switch control circuit 102 may be included in the control chip U1, and the control chip U1 may also include:

晶片供電電路104:連接到控制晶片U1的VDD引腳,包括欠壓保護(Under Voltage Lock Out,UVLO)、過壓保護腳(Over Voltage Protection,OVP)、參考電壓與參考電流(Vref&Iref)三部分,用於為晶片內部電路提供工作電壓、參考電壓Vref、以及參考電流Iref。當VDD引腳處的電壓超過UVLO電壓後,晶片內部電路開始工作。當VDD引腳處的電壓超過OVP閾值時,晶片內部電路進入自動恢復保護狀態,以防止控制晶片U1損壞。 Chip power supply circuit 104: connected to the VDD pin of the control chip U1, including three parts: undervoltage protection (Under Voltage Lock Out, UVLO), overvoltage protection pin (Over Voltage Protection, OVP), reference voltage and reference current (Vref&Iref) , for providing the working voltage, the reference voltage Vref, and the reference current Iref for the internal circuit of the chip. When the voltage at the VDD pin exceeds the UVLO voltage, the internal circuit of the chip starts to work. When the voltage at the VDD pin exceeds the OVP threshold, the internal circuit of the chip enters an automatic recovery protection state to prevent damage to the control chip U1.

回饋控制電路106:連接到控制晶片U1的FB引腳、恒壓(Constant Pressure,CV)控制電路108、以及邏輯控制電路116,包括取樣器、誤差放大器(Error Amplifier,EA)、壓降補償、以及輸出過壓/欠壓保護(OVP/UVP)等部分。取樣器根據從變壓器T的輔助繞組接收到的、表徵變壓器T的二次繞組上的系統輸出電壓的輸出電壓回饋信號,生成輸出電壓取樣信號並將輸出電壓取樣信號提供給運算放大器。運算放大器根據輸出電壓取樣信號和參考電壓Vref生成誤差放大信號,並將誤差放大信號提供給恒壓(CV)控制電路108和壓降補償部分。壓降補償部分基於誤差放大信號生成壓降補償信號(此環路為正回饋)。輸出OVP和UVP部分根據輸出電壓回饋信號生成OVP信號和UVP信號,並將OVP信號和UVP信號提供給邏輯控制電路116。 Feedback control circuit 106: connected to the FB pin of the control chip U1, a constant voltage (Constant Pressure, CV) control circuit 108, and a logic control circuit 116, including a sampler, an error amplifier (Error Amplifier, EA), a voltage drop compensation, And output overvoltage/undervoltage protection (OVP/UVP) and other parts. The sampler generates an output voltage sampling signal and provides the output voltage sampling signal to the operational amplifier according to the output voltage feedback signal received from the auxiliary winding of the transformer T representing the system output voltage on the secondary winding of the transformer T. The operational amplifier generates an error amplification signal according to the output voltage sampling signal and the reference voltage Vref, and provides the error amplification signal to a constant voltage (CV) control circuit 108 and a voltage drop compensation part. The drop compensation section generates a drop compensation signal based on the error amplifier signal (this loop is positive feedback). The output OVP and UVP part generates the OVP signal and the UVP signal according to the output voltage feedback signal, and provides the OVP signal and the UVP signal to the logic control circuit 116 .

CV控制電路108:連接到控制晶片U1的CS電流感測腳和回饋控制電路106,用於控制基於原邊回饋的返馳式電源變換器100A/100B的輸出電壓恒定。 CV control circuit 108 : connected to the CS current sensing pin of the control chip U1 and the feedback control circuit 106 , used to control the output voltage of the flyback power converter 100A/100B based on the primary side feedback to be constant.

恒流(Constant Current,CC)控制電路110:連接到控制晶片U1的FB引腳和邏輯控制電路116,用於控制基於原邊回饋 的返馳式電源變換器100A/100B的輸出電流恒定,並且可以通過電流感測電阻Rs來調整基於原邊回饋的返馳式電源變換器100A/100B的輸出電流的大小。 Constant Current (CC) control circuit 110: connected to the FB pin of the control chip U1 and the logic control circuit 116, used to control the The output current of the flyback power converter 100A/100B is constant, and the output current of the flyback power converter 100A/100B based on primary side feedback can be adjusted through the current sensing resistor Rs.

電流感測控制電路112:連接到控制晶片U1的CS電流感測腳和邏輯控制電路116,包括前沿消隱(Leading-Edge Blanking,LEB)和過流保護(Over Current Protection,OCP)比較器兩個部分,用於實現基於原邊回饋的返馳式電源變換器00A/100B的過流保護。 Current sensing control circuit 112: connected to the CS current sensing pin of the control chip U1 and the logic control circuit 116, including leading-edge blanking (Leading-Edge Blanking, LEB) and over-current protection (Over Current Protection, OCP) comparator two A part is used to realize the overcurrent protection of the flyback power converter 00A/100B based on the primary side feedback.

振盪器(Oscillator,OSC)電路114:用於產生高頻鋸齒波信號提供給邏輯控制電路116,供邏輯控制電路116用以生成占空比可調的方波信號。 Oscillator (Oscillator, OSC) circuit 114 : used to generate a high-frequency sawtooth wave signal and provide it to the logic control circuit 116 for the logic control circuit 116 to generate a square wave signal with an adjustable duty cycle.

邏輯控制電路116:用於將來自各個電路模組的輸入信號進行邏輯分析,輸出邏輯控制信號給開關控制電路102。 Logic control circuit 116 : used for logically analyzing the input signals from various circuit modules, and outputting logic control signals to the switch control circuit 102 .

保護電路118:用於在檢測到異常故障資訊時,使控制晶片U1進入自動恢復保護狀態,避免控制晶片U1損壞。 The protection circuit 118 is used to enable the control chip U1 to enter an automatic recovery protection state when abnormal fault information is detected, so as to prevent the control chip U1 from being damaged.

這裡,需要說明的是,開關控制電路102用於根據邏輯控制電路116提供的邏輯控制信號產生分別用於控制第一至第四開關管D1至D4的導通與關斷的四個控制信號,第一至第四開關管D1至D4在開關控制電路102的控制下導通和關斷,從而形成第一和第二驅動電流IB1和IB2。第一至第四開關管D1、D2、D3、D4可以採用N型金屬氧化物半導體場效應電晶體(N-Metal-Oxide-Semiconductor Field-Effect Transistor,N-MOSFET)或雙極性接面電晶體(Bipolar Junction Transistor,BJT)來實現。第一和第三開關管D1和D3也可以採用P型金屬氧化物半導體場效應電晶體(P-Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET,P-MOSFET)來實現。 Here, it should be noted that the switch control circuit 102 is used to generate four control signals for respectively controlling the on and off of the first to fourth switch transistors D1 to D4 according to the logic control signal provided by the logic control circuit 116, the first The first to fourth switching transistors D1 to D4 are turned on and off under the control of the switch control circuit 102 to form the first and second driving currents I B1 and I B2 . The first to fourth switch tubes D1, D2, D3, and D4 can use N-type metal-oxide-semiconductor field-effect transistors (N-Metal-Oxide-Semiconductor Field-Effect Transistor, N-MOSFET) or bipolar junction transistors (Bipolar Junction Transistor, BJT) to achieve. The first and third switching transistors D1 and D3 can also be realized by using P-type metal-oxide-semiconductor field-effect transistors (P-Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET, P-MOSFET).

在圖1A/B所示的基於原邊回饋返馳式電源變換器100A/100B中,雖然第一電流源ISB1和第一開關管D1被示出為直接 連接在一起,但是第一電流源ISB1並不是一定要直接連接一個開關管,只要第一電流源ISB1能夠在第二功率開關管Q2處於導通狀態時提供第一驅動電流IB1,在第二功率開關管Q2處於關斷狀態時不提供第一驅動電流IB1即可;類似地,雖然第二電流源ISB2和第三開關管D3被示出為直接連接在一起,但是第二電流源ISB2並不是一定要直接連接一個開關管,只要第二電流源ISB2能夠在第二功率開關管Q2處於導通狀態時提供第二驅動電流IB2,在第二功率開關管Q2處於關斷狀態時不提供第二驅動電流IB2即可。另外,第一驅動電流IB1可以是斜坡上升電流、恒定電流、或者隨流過電流感測電阻Rs的原邊電流Is以一定比例關係變化的電流,即ISB1=Io+α*Is,其中,Io是一個電流常量,α是預定係數;第二驅動電流IB2可以是恒定電流。 In the primary-side feedback-based flyback power converter 100A/100B shown in FIG. 1A/B, although the first current source ISB1 and the first switch tube D1 are shown as directly connected together, the first I SB1 does not have to be directly connected to a switch tube, as long as the first current source I SB1 can provide the first driving current I B1 when the second power switch tube Q2 is in the on state, and when the second power switch tube Q2 is in the off state It is sufficient not to provide the first driving current I B1 ; similarly, although the second current source I SB2 and the third switch tube D3 are shown as being directly connected together, the second current source I SB2 is not necessarily directly connected. One switch tube, as long as the second current source I SB2 can provide the second drive current I B2 when the second power switch tube Q2 is in the on state, and will not provide the second drive current I B2 when the second power switch tube Q2 is in the off state B2 will do. In addition, the first driving current I B1 can be a ramp-up current, a constant current, or a current that changes in a certain proportion with the primary current Is flowing through the current sensing resistor Rs, that is, I SB1 =Io+α*Is, where , Io is a current constant, α is a predetermined coefficient; the second driving current I B2 may be a constant current.

換句話說,圖1A/B所示的基於原邊回饋的返馳式電源變換器100A/100B中與第一/第二電流源ISB1/ISB2和第一/第三開關管D1/D3有關的電路部分也可以實現為其他形式,其中,用於第一功率開關管Q1和第二功率開關管Q2的第一驅動電流IB1由第一電流源ISB1在第一開關管D1的控制下提供,用於第二功率開關管Q2的第二驅動電流IB2由第二電流源ISB2在第三開關管D3的控制下提供。 In other words , in the flyback power converter 100A/100B based on the primary side feedback shown in FIG . Relevant circuit parts can also be implemented in other forms, wherein the first drive current I B1 for the first power switch tube Q1 and the second power switch tube Q2 is controlled by the first current source I SB1 in the first switch tube D1 The second drive current I B2 for the second power switch tube Q2 is provided by the second current source ISB2 under the control of the third switch tube D3.

圖4A示出了與第一/第二電流源ISB1/ISB2和第一/第三開關管D1/D3有關的電路部分的示例替代實現方式的示意圖。如圖4A所示,第一/第二驅動電流IB1/IB2由第一/第二電流源ISB1/ISB2在第一/第三開關管D1/D3的控制下提供,其中:當第一/第三開關管D1/D3處於導通狀態時,第一/第二電流源ISB1/ISB2的電流全部流經第一/第三開關管D1/D3並用作第一/第二驅動電流IB1/IB2;當第一/第三開關管D1/D3處於關斷狀態時,第一/第二電流源ISB1/ISB2的電流不流過第一/第三開關管D1/D3,第一/第二驅動電流IB1/IB2為零。在這種情況下,第一/第三開關管D1/D3的面積相對較大。 FIG. 4A shows a schematic diagram of an exemplary alternative implementation of circuit parts related to the first/second current source ISB1 / ISB2 and the first/third switching transistor D1 / D3 . As shown in FIG. 4A, the first/second drive current I B1 /I B2 is provided by the first/second current source I SB1 /I SB2 under the control of the first/third switch tube D1/D3, wherein: when When the first/third switch tube D1/D3 is in the conduction state, the current of the first/second current source I SB1 / ISB2 all flows through the first/third switch tube D1/D3 and is used as the first/second drive Current I B1 /I B2 ; when the first/third switch tube D1/D3 is in an off state, the current of the first/second current source I SB1 / ISB2 does not flow through the first/third switch tube D1/ D3, the first/second driving current I B1 /I B2 is zero. In this case, the area of the first/third switching transistor D1/D3 is relatively large.

圖4B示出了與第一/第二電流源ISB1/ISB2和第一/第三 開關管D1/D3有關的電路部分的另一示例替代實現方式的示意圖。如圖4B所示,第一/第二電流源ISB1/ISB2被實現為鏡像電流源,用於鏡像電流源的基準電流源ISBN在第一/第三開關管D1/D3的控制下被包括在鏡像電流源中或不被包括在鏡像電流源中,其中:當第一/第三開關管D1/D3處於導通狀態時,基準電流源ISBN的電流經鏡像產生作為第一/第二電流源ISB1/ISB2的鏡像電流,基準電流源ISBN的電流僅為第一驅動電流IB1的1/n;當第一/第三開關管D1/D3處於關斷狀態時,基準電流源ISBN的電流不被鏡像,第一/第二驅動電流IB1/IB2為零。在這種情況下,流經第一開關管D1的電流比較小,第一開關管D1的面積相對圖4A所示的情況大大減小。 FIG. 4B shows a schematic diagram of another exemplary alternative implementation of circuit parts related to the first/second current source ISB1 / ISB2 and the first/third switch transistor D1 / D3 . As shown in Figure 4B, the first/second current source ISB1 / ISB2 is implemented as a mirror current source, and the reference current source ISBN for the mirror current source is under the control of the first/third switch tube D1/D3 Included in the mirror current source or not included in the mirror current source, wherein: when the first/third switch tube D1/D3 is in the conduction state, the current of the reference current source ISBN is generated by mirroring as the first/second The mirror current of the two current sources I SB1 / ISB2 , the current of the reference current source I SBN is only 1/n of the first driving current I B1 ; when the first/third switching tube D1/D3 is in the off state, the reference The current of the current source I SBN is not mirrored, and the first/second driving current I B1 /I B2 is zero. In this case, the current flowing through the first switch tube D1 is relatively small, and the area of the first switch tube D1 is greatly reduced compared to the situation shown in FIG. 4A .

圖4C示出了與第一/第二電流源ISB1/ISB2和第一/第三開關管D1/D3有關的電路部分的又一示例替代實現方式的示意圖。如圖4C所示,第一/第二電流源ISB1/ISB2被實現為鏡像電流源,第一/第三開關管D1/D3用於鏡像電流源的開關控制,其中:當第一/第三開關管D1/D3處於導通狀態時,用於第一/第二電流源ISB1/ISB2的基準電流源ISBN的電流經鏡像產生作為第一/第二電流源ISB1/ISB2的鏡像電流,基準電流源ISBN的電流僅為第一驅動電流IB1的1/n;當第一/第三開關管D1/D3處於關斷狀態時,基準電流源ISBN的電流不被鏡像。在這種情況下,流經第一/第三開關管D1/D3的電流是第一驅動電流IB1的1/n,第一/第三開關管D1/D3的面積相對圖4A所示的情況大大減小。 FIG. 4C shows a schematic diagram of yet another alternative implementation of circuit parts related to the first/second current source ISB1 / ISB2 and the first/third switch tube D1 / D3 . As shown in FIG. 4C, the first/second current source ISB1 / ISB2 is implemented as a mirror current source, and the first/third switch tube D1/D3 is used for switching control of the mirror current source, wherein: when the first/third When the third switching tube D1/D3 is in the conducting state, the current of the reference current source I SBN used for the first/second current source I SB1 /I SB2 is mirrored and generated as the first/second current source I SB1 /I SB2 mirror current, the current of the reference current source ISBN is only 1/n of the first drive current I B1 ; when the first/third switch tube D1/D3 is in the off state, the current of the reference current source ISBN is not mirror image. In this case, the current flowing through the first/third switch tube D1/D3 is 1/n of the first driving current I B1 , and the area of the first/third switch tube D1/D3 is relatively as shown in FIG. 4A The situation is greatly reduced.

在一些實施例中,可以通過第一開關控制電路來控制第一和第二開關管D1和D2的導通與關斷,並通過第二開關控制電路來控制第三和第四開關管D3和D4的導通與關斷。另外,第一和第二功率開關管Q1和Q2可以是兩個獨立的功率開關管,也可以形成在一個晶片封裝中;或者控制晶片U1可以與第一和第二功率開關管Q1和Q2形成在一個三晶片封裝中。 In some embodiments, the first and second switch tubes D1 and D2 can be controlled to be turned on and off by the first switch control circuit, and the third and fourth switch tubes D3 and D4 can be controlled by the second switch control circuit. on and off. In addition, the first and second power switch tubes Q1 and Q2 can be two independent power switch tubes, and can also be formed in one chip package; or the control chip U1 can be formed with the first and second power switch tubes Q1 and Q2 in a three-die package.

圖5示出了圖1A/B所示的基於原邊回饋的返馳式電源變換器100A/100B中的第一和第二功率開關管Q1和Q2的示例封裝示意圖。如圖5所示,第一和第二功率開關管Q1和Q2可以被包括在同一個單基島晶片封裝中(其中,第一和第二功率開關管Q1和Q2的集極相連),並且該單基島晶片封裝的詳細引腳資訊如下:1引腳為第一電流引腳,用於接收第一驅動電流IB1,連接到第一功率開關管Q1的基極區;2引腳為第二電流引腳,用於接收第二驅動電流IB2,連接到第一功率開關管Q1的發射極區和第二功率開關管Q2的基極區;3/4引腳為發射極引腳,連接到第二功率開關管Q2的發射極區,為了增大散熱面積、降低溫度,可以採用多根打線、多引腳封裝,例如分別通過兩組打線連接兩個引腳,每組打線包含的打線的具體根數可以根據第二功率開關管Q2的發射極區的面積確定;5~8引腳為集極引腳,連接到第一和第二功率開關管Q1和Q2的集極區,為了散熱和印刷電路板佈局方便,採用多引腳封裝,第一和第二功率開關管Q1和Q2的集極區位於電晶體背面,所以第一和第二功率開關管Q1和Q2可以採用導電膠和晶片基島連接,無需打線,阻抗最小。 FIG. 5 shows a schematic diagram of an example package of the first and second power switch tubes Q1 and Q2 in the primary-side feedback-based flyback power converter 100A/100B shown in FIG. 1A/B. As shown in FIG. 5, the first and second power switch transistors Q1 and Q2 may be included in the same single-substrate island chip package (wherein, the collectors of the first and second power switch transistors Q1 and Q2 are connected), and The detailed pin information of the single-base island chip package is as follows: pin 1 is the first current pin, which is used to receive the first driving current I B1 and is connected to the base region of the first power switch tube Q1; pin 2 is The second current pin is used to receive the second driving current I B2 , and is connected to the emitter area of the first power switch tube Q1 and the base area of the second power switch tube Q2; 3/4 pins are emitter pins , connected to the emitter region of the second power switch tube Q2, in order to increase the heat dissipation area and reduce the temperature, multiple bonding wires and multi-pin packaging can be used, for example, two pins are connected by two sets of bonding wires, and each group of bonding wires contains The specific number of bonding wires can be determined according to the area of the emitter area of the second power switch tube Q2; pins 5~8 are collector pins, connected to the collector areas of the first and second power switch tubes Q1 and Q2 , for the convenience of heat dissipation and printed circuit board layout, a multi-pin package is used, and the collector regions of the first and second power switch tubes Q1 and Q2 are located on the back of the transistor, so the first and second power switch tubes Q1 and Q2 can be used The conductive glue is connected to the chip base island, no need to wire, and the impedance is the smallest.

圖6示出了圖1A/B所示的基於原邊回饋的返馳式電源變換器100A/100B中的第一和第二功率開關管Q1和Q2以及控制晶片U1的示例封裝示意圖。如圖6所示,第一和第二功率開關管Q1和Q2採用平鋪形式封裝,控制晶片U1和第二功率開關管Q2採用疊代形式封裝。具體的封裝形式可以根據基島個數和形狀進行調整,不局限於8引腳封裝形式。圖6所示的示例封裝的詳細引腳資訊如下:1、2、3引腳為用於控制晶片U1的控制引腳,連接到 控制晶片U1的內部焊墊;4引腳為發射極引腳,連接到第二功率開關管Q2的發射極區,為了增大散熱面積、降低溫度,可以採用多根打線方式降低打線阻抗,打線的具體根數可以根據第二功率開關管Q2的發射極區的面積確定;5~8引腳為集極引腳,連接到第一和第二功率開關管Q1和Q2的集極區,為了散熱和印刷電路板佈局方便,採用多引腳封裝,第一和第二功率開關管Q1和Q2的集極區位於電晶體背面,採用導電膠和基島連接,無需打線,阻抗最小。 FIG. 6 shows an example package diagram of the first and second power switch transistors Q1 and Q2 and the control chip U1 in the primary-side feedback-based flyback power converter 100A/100B shown in FIG. 1A/B. As shown in FIG. 6 , the first and second power switch tubes Q1 and Q2 are packaged in a flat form, and the control chip U1 and the second power switch tube Q2 are packaged in an iterative form. The specific package form can be adjusted according to the number and shape of the base islands, and is not limited to the 8-pin package form. The detailed pin information of the example package shown in Figure 6 is as follows: pins 1, 2, and 3 are control pins for controlling chip U1, connected to The internal pad of the control chip U1; the 4th pin is the emitter pin, which is connected to the emitter area of the second power switch tube Q2. The specific number of roots can be determined according to the area of the emitter region of the second power switch tube Q2; pins 5 to 8 are collector pins, connected to the collector regions of the first and second power switch tubes Q1 and Q2, for Heat dissipation and printed circuit board layout are convenient, and multi-pin packaging is adopted. The collector areas of the first and second power switch tubes Q1 and Q2 are located on the back of the transistor, and are connected to the base island with conductive glue, no need for wiring, and the impedance is the smallest.

圖6所示的示例封裝可以增加多餘引腳,不增加系統引腳成本,整個系統電路簡單、週邊器件少、系統成本低。 The example package shown in Figure 6 can add redundant pins without increasing the cost of system pins. The entire system circuit is simple, with few peripheral components and low system cost.

綜上所述,在根據本創作實施例的基於原邊回饋的返馳式電源變換器中,採用四個開關管來組合驅動功率開關管,降低了功率開關管的驅動電流損耗,提高了功率開關管的開通速度。另外,通過在功率開關管從導通狀態變為關斷狀態過程開始之前設置預關斷驅動電流,減少了功率開關管處於導通狀態期間基極區的載流子,使得關斷時能迅速抽取功率開關管的基極區中剩餘的少數載流子,提高關斷速度,降低關斷損耗,從而可以提高功率開關管在中功率系統上的應用範圍。 To sum up, in the flyback power converter based on primary side feedback according to the embodiment of this invention, four switching tubes are used to drive the power switching tubes in combination, which reduces the driving current loss of the power switching tubes and improves the power The turn-on speed of the switch tube. In addition, by setting the pre-turn-off drive current before the power switch tube turns from the on state to the off state, the carriers in the base region during the on state of the power switch tube are reduced, so that the power can be quickly extracted when the power switch tube is turned off. The remaining minority carriers in the base region of the switch tube can increase the turn-off speed and reduce the turn-off loss, so that the application range of the power switch tube in the medium power system can be improved.

本創作可以以其他的具體形式實現,而不脫離其精神和本質特徵。當前的實施例在所有方面都被看作是示例性的而非限定性的,本創作的範圍由所附權利要求而非上述描述定義,並且落入權利要求的含義和等同物的範圍內的全部改變都被包括在本創作的範圍中。 This creation can be realized in other specific forms without departing from its spirit and essential characteristics. The current embodiments are to be considered in all respects as illustrative rather than restrictive, the scope of the invention is defined by the appended claims rather than the above description, and what falls within the meaning and range of equivalents of the claims All changes are included within the scope of this work.

100A:返馳式電源變換器 100A: flyback power converter

102:開關控制電路 102: switch control circuit

CS:電流感測腳 CS: current sense pin

D1:第一開關管 D1: the first switch tube

D2:第二開關管 D2: The second switch tube

D3:第三開關管 D3: The third switch tube

D4:第四開關管 D4: The fourth switch tube

FB,VDD:引腳 FB, VDD: pin

GND:接地腳 GND: ground pin

IB1:第一驅動電流 I B1 : the first driving current

IB2:第二驅動電流 I B2 : the second driving current

Ic:電流 Ic: current

IS1:第一功率開關管的發射極電流 I S1 : emitter current of the first power switch tube

IS2:第二功率開關管的發射極電流 I S2 : the emitter current of the second power switch tube

ISB1:第一電流源 I SB1 : the first current source

ISB2:第二電流源 I SB2 : Second current source

Q1:第一功率開關管 Q1: The first power switch tube

Q2:第二功率開關管 Q2: The second power switch tube

Rs:電流感測電阻 Rs: current sense resistor

U1A:控制晶片 U1A: Control chip

Claims (15)

一種基於原邊回饋的返馳式電源變換器,其特徵在於,包括變壓器、第一和第二功率開關管、第一和第二電流源、第一、第二、第三、和第四開關管、以及開關控制電路,其中: A flyback power converter based on primary side feedback, characterized in that it includes a transformer, first and second power switch tubes, first and second current sources, first, second, third, and fourth switches Tube, and switch control circuit, wherein: 所述第一、第二、第三、和第四開關管的第一電極分別連接到所述開關控制電路的第一、第二、第三、和第四輸出端,所述第二開關管的第二電極連接到所述第一功率開關管的基極,所述第四開關管的第二電極連接到所述第二功率開關管的基極,所述第二開關管的第三電極接地或者連接到所述第四開關管的第二電極,所述第四開關管的第三電極接地, The first electrodes of the first, second, third, and fourth switch tubes are respectively connected to the first, second, third, and fourth output terminals of the switch control circuit, and the second switch tube The second electrode of the first power switch tube is connected to the base of the first power switch tube, the second electrode of the fourth switch tube is connected to the base of the second power switch tube, and the third electrode of the second switch tube grounded or connected to the second electrode of the fourth switch tube, the third electrode of the fourth switch tube is grounded, 所述第一功率開關管的集極連接到所述變壓器的一次繞組、基極連接到所述第二開關管的第二電極、發射極連接到所述第二功率開關管的基極,用於所述第一功率開關管和所述第二功率開關管的第一驅動電流由所述第一電流源在所述第一開關管的控制下提供, The collector of the first power switch tube is connected to the primary winding of the transformer, the base is connected to the second electrode of the second switch tube, and the emitter is connected to the base of the second power switch tube. The first drive current for the first power switch tube and the second power switch tube is provided by the first current source under the control of the first switch tube, 所述第二功率開關管的集極連接到所述變壓器的一次繞組、基極連接到所述第四開關管的第二電極、發射極經由電流感測電阻接地,用於所述第二功率開關管的第二驅動電流由所述第二電流源在所述第三開關管的控制下提供。 The collector of the second power switch tube is connected to the primary winding of the transformer, the base is connected to the second electrode of the fourth switch tube, and the emitter is grounded through a current sensing resistor for the second power switch. The second driving current of the switch tube is provided by the second current source under the control of the third switch tube. 如請求項1所述的基於原邊回饋的返馳式電源變換器,其中,在所述第二功率開關管從關斷狀態變為導通狀態的過程中,所述第一開關管和所述第一功率開關管處於導通狀態且所述第二、第三、和第四開關管處於關斷狀態,所述第二功率開關管的基極電流由所述第一電流源經由所述第一開關管和所述第一功率開關管提供。 The primary-side feedback-based flyback power converter according to claim 1, wherein, during the process of the second power switch tube changing from the off state to the on state, the first switch tube and the The first power switch tube is in the on state and the second, third, and fourth switch tubes are in the off state, and the base current of the second power switch tube is supplied by the first current source through the first A switch tube and the first power switch tube are provided. 如請求項1所述的基於原邊回饋的返馳式電源變換器,其中,在所述第二功率開關管處於導通狀態期間,在所述電流感測電阻上的電壓達到預定設置值之前,所述第一開關管和所述第一功 率開關管處於導通狀態且所述第二、第三、和第四開關管處於關斷狀態,所述第二功率開關管的基極電流由所述第一電流源經由所述第一開關管和所述第一功率開關管提供。 The primary-side feedback-based flyback power converter according to claim 1, wherein, during the period when the second power switch is in the on state, before the voltage on the current sensing resistor reaches a predetermined setting value, The first switching tube and the first work The power switch tube is in the on state and the second, third, and fourth switch tubes are in the off state, and the base current of the second power switch tube is supplied by the first current source through the first switch tube and the first power switch tube is provided. 如請求項1所述的基於原邊回饋的返馳式電源變換器,其中,在所述第二功率開關管處於導通狀態期間,在所述電流感測電阻上的電壓達到預定設置值之後,所述第一開關管、所述第四開關管、以及所述第一功率開關管處於關斷狀態,所述第二和第三開關管處於導通狀態,所述第二功率開關管的基極電流由所述第二電流源經由所述第三開關管提供。 The primary-side feedback-based flyback power converter according to claim 1, wherein, during the period when the second power switch is in the on state, after the voltage on the current sensing resistor reaches a predetermined setting value, The first switch tube, the fourth switch tube, and the first power switch tube are in an off state, the second and third switch tubes are in a conduction state, and the base of the second power switch tube The current is provided by the second current source via the third switch tube. 如請求項1所述的基於原邊回饋的返馳式電源變換器,其中,在所述第二功率開關管處於關斷狀態期間,所述第一開關管、所述第三開關管、以及所述第一功率開關管處於關斷狀態,所述第二和第四開關管處於導通狀態。 The primary-side feedback-based flyback power converter according to claim 1, wherein, during the period when the second power switch tube is in the off state, the first switch tube, the third switch tube, and The first power switch tube is in an off state, and the second and fourth switch tubes are in a conduction state. 如請求項1所述的基於原邊回饋的返馳式電源變換器,其中,所述第一、第二、第三、和第四開關管被實現為功率開關管或場效應電晶體。 The primary-side feedback-based flyback power converter according to claim 1, wherein the first, second, third, and fourth switching transistors are implemented as power switching transistors or field effect transistors. 如請求項1所述的基於原邊回饋的返馳式電源變換器,其中,還包括控制晶片,所述第一、第二、第三、和第四開關管以及所述開關控制電路被包括在所述控制晶片中。 The primary-side feedback-based flyback power converter according to claim 1, further comprising a control chip, the first, second, third, and fourth switch tubes and the switch control circuit are included in the control wafer. 如請求項1所述的基於原邊回饋的返馳式電源變換器,其中,所述第一和第二功率開關管被包括在同一個單基島晶片封裝中。 The primary-side feedback-based flyback power converter according to claim 1, wherein the first and second power switch tubes are included in the same single-island chip package. 如請求項8所述的基於原邊回饋的返馳式電源變換器,其中,所述單基島晶片封裝具有第一電流引腳、第二電流引腳、至少一個發射極引腳、以及至少一個集極引腳。 The flyback power converter based on primary side feedback as described in claim 8, wherein the single-base island chip package has a first current pin, a second current pin, at least one emitter pin, and at least a collector pin. 如請求項7所述的基於原邊回饋的返馳式電源變換器,其中,所述第一和第二功率開關管以及所述控制晶片被包括在 同一個晶片封裝中。 The primary-side feedback-based flyback power converter as described in claim 7, wherein the first and second power switch tubes and the control chip are included in in the same chip package. 如請求項10所述的基於原邊回饋的返馳式電源變換器,其中,所述第一和第二功率開關管採用平鋪形式封裝,並且所述控制晶片和所述第二功率開關管採用疊代形式封裝。 The primary-side feedback-based flyback power converter according to claim 10, wherein the first and second power switch tubes are packaged in a tiled form, and the control chip and the second power switch tube Packaged in an iterative form. 如請求項1所述的基於原邊回饋的返馳式電源變換器,其中,所述第一開關管的第二電極連接到所述第一電流源,並且所述第一開關管的第三電極連接到所述第二開關管的第二電極。 The primary-side feedback-based flyback power converter according to claim 1, wherein the second electrode of the first switch tube is connected to the first current source, and the third electrode of the first switch tube The electrode is connected to the second electrode of the second switch tube. 如請求項1所述的基於原邊回饋的返馳式電源變換器,其中,所述第三開關管的第二電極連接到所述第二電流源,並且所述第三開關管的第三電極連接到所述第四開關管的第二電極。 The primary-side feedback-based flyback power converter according to claim 1, wherein the second electrode of the third switching tube is connected to the second current source, and the third switching tube of the third switching tube The electrode is connected to the second electrode of the fourth switch tube. 如請求項1所述的基於原邊回饋的返馳式電源變換器,其中,所述第一電流源被實現為鏡像電流源,所述第一開關管用於控制用於所述第一電流源的基準電流源是否被包括在所述鏡像電流源中或者用於實現所述鏡像電流源的開關控制。 The primary-side feedback-based flyback power converter according to claim 1, wherein the first current source is implemented as a mirror current source, and the first switch tube is used to control the current source used for the first current source Whether the reference current source is included in the mirror current source or is used to implement switch control of the mirror current source. 如請求項1所述的基於原邊回饋的返馳式電源變換器,其中,所述第二電流源被實現為鏡像電流源,所述第三開關管用於控制用於所述第三電流源的基準電流源是否被包括在所述鏡像電流源中或者用於實現所述鏡像電流源的開關控制。 The primary-side feedback-based flyback power converter according to claim 1, wherein the second current source is implemented as a mirror current source, and the third switch tube is used to control the current source used for the third current source Whether the reference current source is included in the mirror current source or is used to implement switch control of the mirror current source.
TW111210739U 2022-06-02 2022-09-30 Flyback Power Converter Based on Primary Side Feedback TWM638854U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221383732.X 2022-06-02
CN202221383732.XU CN218041214U (en) 2022-06-02 2022-06-02 Flyback power converter based on primary side feedback

Publications (1)

Publication Number Publication Date
TWM638854U true TWM638854U (en) 2023-03-21

Family

ID=84373562

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111210739U TWM638854U (en) 2022-06-02 2022-09-30 Flyback Power Converter Based on Primary Side Feedback

Country Status (2)

Country Link
CN (1) CN218041214U (en)
TW (1) TWM638854U (en)

Also Published As

Publication number Publication date
CN218041214U (en) 2022-12-13

Similar Documents

Publication Publication Date Title
US7102898B2 (en) Isolated drive circuitry used in switch-mode power converters
JP2004521588A (en) Isolated drive circuit used in switch mode power converter
US20090109711A1 (en) Three-pin integrated synchronous rectifier and a flyback synchronous rectifying circuit
KR20040091137A (en) Three-terminal, low voltage pulse width modulation controller ic
JP2007166810A (en) Dc-dc converter
CN111564973A (en) DC-DC adaptive power supply and conversion control method thereof
CN218124557U (en) Flyback power converter based on primary side feedback
TWI829374B (en) Flyback power converter based on primary side feedback
TWM638854U (en) Flyback Power Converter Based on Primary Side Feedback
TWI812476B (en) power converter
CN218041230U (en) Power converter
CN113872428B (en) Drive control circuit, method, equipment and medium of gallium nitride transistor
TWI826145B (en) Flyback power converter based on primary side feedback
CN218868111U (en) Flyback power converter based on primary side feedback
TWI832463B (en) Flyback power converter based on primary side feedback
CN218771785U (en) Flyback power converter based on primary side feedback
Tian et al. A passive component based gate drive scheme for negative gate voltage spike mitigation in a sic-based dual-active bridge
CN115833599A (en) Flyback power converter based on primary side feedback
Fan et al. A high-voltage low-power switched-capacitor DC-DC converter based on GaN and SiC devices for LED drivers
KR101278937B1 (en) Circuit and module for correcting a power factor
Vartanian et al. GaN based integrated power stages (IPS) for low power adapter/charger applications
CN217824725U (en) Power supply control circuit
CN219659585U (en) Power factor correction start control circuit
CN115955088A (en) SiC power tube control circuit
TWM640754U (en) Asymmetric half-bridge fly-back switching power supply and control chip thereof