TWM625840U - Organic lighting module - Google Patents

Organic lighting module Download PDF

Info

Publication number
TWM625840U
TWM625840U TW110212526U TW110212526U TWM625840U TW M625840 U TWM625840 U TW M625840U TW 110212526 U TW110212526 U TW 110212526U TW 110212526 U TW110212526 U TW 110212526U TW M625840 U TWM625840 U TW M625840U
Authority
TW
Taiwan
Prior art keywords
light
electrode
transport layer
charge transport
layer
Prior art date
Application number
TW110212526U
Other languages
Chinese (zh)
Inventor
蔡秉諭
Original Assignee
瑩耀科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑩耀科技股份有限公司 filed Critical 瑩耀科技股份有限公司
Priority to TW110212526U priority Critical patent/TWM625840U/en
Publication of TWM625840U publication Critical patent/TWM625840U/en

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本新型揭示一種有機發光模組,包含一基板、一第一電極、一第二電極、一第一電荷傳輸層、一第二電荷傳輸層、一發光層以及多數量子點。第一電極設置於基板上。第二電極相對第一電極設置。第一電荷傳輸層設置靠近第一電極。第二電荷傳輸層設置靠近第二電極。發光層設置於第一電荷傳輸層及第二電荷傳輸層之間。多數量子點可選地散佈於各層結構之間或各層結構內。發光層發射之光線可激發所述多數量子點,進而形成具有全彩頻譜及廣色域之光色。藉由引入量子點,有機發光模組具有更好的光性或電性表現。 The present invention discloses an organic light-emitting module comprising a substrate, a first electrode, a second electrode, a first charge transport layer, a second charge transport layer, a light-emitting layer and a plurality of quantum dots. The first electrode is disposed on the substrate. The second electrode is disposed opposite to the first electrode. The first charge transport layer is disposed close to the first electrode. The second charge transport layer is disposed close to the second electrode. The light-emitting layer is disposed between the first charge transport layer and the second charge transport layer. The majority of quantum dots are optionally interspersed between or within the layer structures. The light emitted by the light-emitting layer can excite the majority of the quantum dots, thereby forming light colors with a full-color spectrum and a wide color gamut. By introducing quantum dots, the organic light-emitting module has better optical or electrical performance.

Description

有機發光模組 organic light emitting module

本新型係關於一種發光模組;更特別言之,本新型係關於一種結合有機發光二極體及量子點之有機發光模組。 The new model relates to a light-emitting module; more particularly, the new model relates to an organic light-emitting module combining organic light-emitting diodes and quantum dots.

迄今,顯示裝置已被迅速發展而成為電子裝置之重要人機介面。諸如可攜式電子裝置、電腦或電視,已透過顯示裝置而能提供複雜之訊息呈現。 So far, display devices have been rapidly developed and become important human-machine interfaces for electronic devices. Display devices, such as portable electronic devices, computers or televisions, have been able to provide complex information presentation.

基於對顯示裝置的可視面積、輕薄性以及能源功耗之需求,液晶顯示裝置(LCD)現已受到歡迎而成為主流。一種習知液晶顯示器之結構中,由下而上大致係設置有一背光模組、一第一偏光片、一第一基板、一電晶體層、一第一電極、一液晶層、一第二電極、一彩色濾光片、一第二基板以及一第二偏光片。概略述及其運作原理,係基於液晶層之液晶分子受電壓而產生扭轉之特性,透過電晶體層之一個或複數個電晶體,控制液晶層之液晶分子之扭轉方向,作為光通過之開關。再者,背光模組所發出之光係透過第一偏光片、第二偏光片之配合產生不同方向之偏振光,以便配合液晶分子之扭轉方向而產生亮度之變化,藉此形成所需之灰階。為形成所需之彩色光,彩色濾光片上通常設置多個畫素(pixel)單元,並且各畫素 單元係對應不同光色,以構成具不同色彩而為肉眼可視之圖像。另外,於第一基板及第二基板則可配置配向膜,以輔助液晶層之液晶分子扭轉回復。透過第一電極及第二電極則可提供電晶體層所需之電壓。 Liquid crystal display devices (LCDs) are now popular and become mainstream based on the requirements for the viewing area, lightness, and power consumption of display devices. In a conventional liquid crystal display structure, a backlight module, a first polarizer, a first substrate, a transistor layer, a first electrode, a liquid crystal layer, and a second electrode are generally arranged from bottom to top , a color filter, a second substrate and a second polarizer. The overview and its operation principle are based on the characteristic that the liquid crystal molecules of the liquid crystal layer are twisted by voltage, and the twist direction of the liquid crystal molecules of the liquid crystal layer is controlled by one or more transistors in the transistor layer, as a switch for light passing. In addition, the light emitted by the backlight module passes through the cooperation of the first polarizer and the second polarizer to generate polarized light in different directions, so as to match the twist direction of the liquid crystal molecules to produce changes in brightness, thereby forming the desired gray. order. In order to form the required color light, a plurality of pixel units are usually set on the color filter, and each pixel The units correspond to different light colors to form images with different colors that are visible to the naked eye. In addition, an alignment film can be arranged on the first substrate and the second substrate to assist the twist recovery of the liquid crystal molecules in the liquid crystal layer. The voltage required by the transistor layer can be provided through the first electrode and the second electrode.

上述液晶顯示器,基於僅能有少部份由背光模組所發出之光得以穿透液晶層,因此其轉換效率仍低,以及亮度(對比)仍不足。再者,控制液晶分子扭轉所需之電晶體,其製造複雜度高,導致整體液晶顯示裝置製造成本仍高。並且,其可視角亦有所限制。再者,現今對於顯示效果之要求已日益增高。習知形成全彩光之方式不僅效率低,且其產生光色之色域不足,已無法滿足現今對顯示裝置的高解析度及高彩度的需求。 The above-mentioned liquid crystal display, because only a small part of the light emitted by the backlight module can penetrate the liquid crystal layer, the conversion efficiency is still low, and the brightness (contrast) is still insufficient. Furthermore, the transistor required to control the twist of the liquid crystal molecules has high manufacturing complexity, resulting in a still high manufacturing cost of the entire liquid crystal display device. Moreover, its viewing angle is also limited. Furthermore, the requirements for display effects are increasing day by day. The conventional method of forming full-color light is not only inefficient, but also has insufficient color gamut to generate light colors, which can no longer meet the demands for high resolution and high chroma of display devices.

因此,開發製造成本低、高的發光功率及轉換效率、廣視角、壽命期長、廣色域以及輕薄可攜之顯示裝置仍有必要。 Therefore, it is still necessary to develop display devices with low manufacturing cost, high luminous power and conversion efficiency, wide viewing angle, long lifespan, wide color gamut, and light, thin and portable display devices.

本新型係提供一種有機發光模組,將量子點材料引入整體結構中,配合發光層之光色選取,可獲得廣色域、高色彩均勻性及高色彩飽和度。再者,藉有機材料特性,使本新型之有機發光模組具有高的發光功率及轉換效率。 The novel system provides an organic light-emitting module, which incorporates quantum dot materials into the overall structure, and can obtain wide color gamut, high color uniformity and high color saturation by cooperating with the light color selection of the light-emitting layer. Furthermore, by virtue of the characteristics of organic materials, the organic light-emitting module of the present invention has high luminous power and conversion efficiency.

於一實施方式,本新型提供一種有機發光模組,其包含一基板、一第一電極、一第二電極、一第一電荷傳輸層、一第二電荷傳輸層、一發光層以及多數量子點。第一電極設置於基板上。第二電極相對第一電極設置。第一電荷傳輸層設置 靠近第一電極。第二電荷傳輸層設置靠近第二電極。發光層設置於第一電荷傳輸層及第二電荷傳輸層之間。多數量子點可選地設置於發光層及第一電荷傳輸層之間、發光層及第二電荷傳輸層之間、第一電荷傳輸層及第一電極之間或第二電荷傳輸層及第二電極之間,且所述多數量子點具有一紅色、一綠色、一藍色或前述顏色任意組合之光色。其中發光層發射之一光線激發所述多數量子點而形成具有全彩頻譜之光色。 In one embodiment, the present invention provides an organic light-emitting module, which includes a substrate, a first electrode, a second electrode, a first charge transport layer, a second charge transport layer, a light-emitting layer, and a plurality of quantum dots . The first electrode is disposed on the substrate. The second electrode is disposed opposite to the first electrode. First charge transport layer setup close to the first electrode. The second charge transport layer is disposed close to the second electrode. The light-emitting layer is disposed between the first charge transport layer and the second charge transport layer. The majority of quantum dots are optionally disposed between the light-emitting layer and the first charge transport layer, between the light-emitting layer and the second charge transport layer, between the first charge transport layer and the first electrode, or between the second charge transport layer and the second charge transport layer. Between the electrodes, the plurality of quantum dots have a light color of red, green, blue or any combination of the foregoing colors. Wherein, a light emitted by the light-emitting layer excites the plurality of quantum dots to form a light color with a full-color spectrum.

於一實施例,基板可為一透明基板。 In one embodiment, the substrate may be a transparent substrate.

於一實施例,第一電極或第二電極可為一透明電極。 In one embodiment, the first electrode or the second electrode may be a transparent electrode.

於一實施例,第一電極或第二電極可為一反射電極。 In one embodiment, the first electrode or the second electrode may be a reflective electrode.

於一實施例,第一電荷傳輸層及第二電荷傳輸層其中之一為一電子傳輸層,另一為一電洞傳輸層。 In one embodiment, one of the first charge transport layer and the second charge transport layer is an electron transport layer, and the other is a hole transport layer.

於一實施例,第一電荷傳輸層、第二電荷傳輸層及發光層可包含有機材料。 In one embodiment, the first charge transport layer, the second charge transport layer and the light emitting layer may include organic materials.

於一實施例,發光層發射之光線具有一藍色或一紫色之光色。 In one embodiment, the light emitted by the light-emitting layer has a blue or a violet light color.

於一實施例,發光層發射之光線之波長隨施加於第一電極及第二電極間之電壓變化而改變。 In one embodiment, the wavelength of light emitted by the light-emitting layer changes with the voltage applied between the first electrode and the second electrode.

於一實施例,所述多數量子點彼此堆疊排列構成對應由發光層發射之光線所構成之可視圖像之複數畫素單元。 In one embodiment, the plurality of quantum dots are stacked and arranged to form a plurality of pixel units corresponding to the visible image formed by the light emitted by the light-emitting layer.

於一實施方式,本新型提供一種有機發光模組,其包含一基板、一第一電極、一第二電極、一第一電荷傳輸層、一第二電荷傳輸層、一發光層以及多數量子點。第一電極設置 於基板上。第二電極相對第一電極設置。第一電荷傳輸層設置靠近第一電極。第二電荷傳輸層設置靠近第二電極。發光層設置於第一電荷傳輸層及第二電荷傳輸層之間。多數量子點可選地設置於發光層內、第一電荷傳輸層內或第二電荷傳輸層內,且所述多數量子點具有一紅色、一綠色、一藍色或前述顏色任意組合之光色。其中發光層發射之一光線激發所述多數量子點而形成具有全彩頻譜之光色。 In one embodiment, the present invention provides an organic light-emitting module, which includes a substrate, a first electrode, a second electrode, a first charge transport layer, a second charge transport layer, a light-emitting layer, and a plurality of quantum dots . first electrode setup on the substrate. The second electrode is disposed opposite to the first electrode. The first charge transport layer is disposed close to the first electrode. The second charge transport layer is disposed close to the second electrode. The light-emitting layer is disposed between the first charge transport layer and the second charge transport layer. The majority of quantum dots are optionally arranged in the light-emitting layer, the first charge transport layer or the second charge transport layer, and the majority of quantum dots have a light color of red, green, blue or any combination of the foregoing colors . Wherein, a light emitted by the light-emitting layer excites the plurality of quantum dots to form a light color with a full-color spectrum.

於一實施例,基板可為一透明基板。 In one embodiment, the substrate may be a transparent substrate.

於一實施例,第一電極或第二電極可為一透明電極。 In one embodiment, the first electrode or the second electrode may be a transparent electrode.

於一實施例,第一電極或第二電極可為一反射電極。 In one embodiment, the first electrode or the second electrode may be a reflective electrode.

於一實施例,第一電荷傳輸層及第二電荷傳輸層其中之一為一電子傳輸層,另一為一電洞傳輸層。 In one embodiment, one of the first charge transport layer and the second charge transport layer is an electron transport layer, and the other is a hole transport layer.

於一實施例,第一電荷傳輸層、第二電荷傳輸層及發光層可包含有機材料。 In one embodiment, the first charge transport layer, the second charge transport layer and the light emitting layer may include organic materials.

於一實施例,發光層發射之光線具有一藍色或一紫色之光色。 In one embodiment, the light emitted by the light-emitting layer has a blue or a violet light color.

於一實施例,發光層發射之光線之波長隨施加於第一電極及第二電極間之電壓變化而改變。 In one embodiment, the wavelength of light emitted by the light-emitting layer changes with the voltage applied between the first electrode and the second electrode.

於一實施例,所述多數量子點彼此堆疊排列構成對應由發光層發射之光線所構成之可視圖像之複數畫素單元。 In one embodiment, the plurality of quantum dots are stacked and arranged to form a plurality of pixel units corresponding to the visible image formed by the light emitted by the light-emitting layer.

100:有機發光模組 100: organic light-emitting module

101:基板 101: Substrate

102:第一電極 102: The first electrode

102a:反射金屬 102a: Reflective Metal

103:第一電荷注入層 103: the first charge injection layer

104:第一電荷傳輸層 104: the first charge transport layer

105:發光層 105: Light-emitting layer

106:第二電荷傳輸層 106: Second charge transport layer

107:第二電荷注入層 107: Second charge injection layer

108:第二電極 108: Second electrode

300:量子點 300: Quantum Dots

400:量子點 400: Quantum Dots

500:量子點 500: Quantum Dots

200:有機發光模組 200: organic light-emitting module

201:基板 201: Substrate

202:第一電極 202: First electrode

203:第一電荷注入層 203: the first charge injection layer

204:第一電荷傳輸層 204: the first charge transport layer

205:發光層 205: Light Emitting Layer

206:第二電荷傳輸層 206: Second charge transport layer

207:第二電荷注入層 207: Second charge injection layer

208:第二電極 208: Second electrode

300:量子點 300: Quantum Dots

400:量子點 400: Quantum Dots

500:量子點 500: Quantum Dots

S101、S102、S103、S104、S105、S106、S107:步驟 S101, S102, S103, S104, S105, S106, S107: Steps

S201、S202、S203、S204、S205、S206、S207:步驟 S201, S202, S203, S204, S205, S206, S207: Steps

第1圖係繪示依據本新型第一實施例之有機發光模組之結構示意圖; FIG. 1 is a schematic structural diagram of an organic light-emitting module according to a first embodiment of the present invention;

第2圖係繪示依據本新型第二實施例之有機發光模組之結構示意圖; FIG. 2 is a schematic structural diagram of an organic light-emitting module according to a second embodiment of the present invention;

第3圖係繪示依據本新型第三實施例之有機發光模組之結構示意圖; FIG. 3 is a schematic structural diagram of an organic light-emitting module according to a third embodiment of the present invention;

第4圖係繪示依據本新型第四實施例之有機發光模組之結構示意圖; FIG. 4 is a schematic structural diagram of an organic light-emitting module according to a fourth embodiment of the present invention;

第5圖係繪示依據本新型第五實施例之有機發光模組之結構示意圖; FIG. 5 is a schematic structural diagram of an organic light-emitting module according to a fifth embodiment of the present invention;

第6圖係繪示依據本新型第六實施例之有機發光模組之結構示意圖; FIG. 6 is a schematic structural diagram of an organic light-emitting module according to a sixth embodiment of the present invention;

第7圖係繪示依據本新型第七實施例之有機發光模組之結構示意圖; FIG. 7 is a schematic structural diagram of an organic light-emitting module according to a seventh embodiment of the present invention;

第8圖係繪示依據本新型第八實施例之有機發光模組之結構示意圖; FIG. 8 is a schematic structural diagram of an organic light-emitting module according to an eighth embodiment of the present invention;

第9圖係繪示依據本新型第九實施例之有機發光模組之結構示意圖; FIG. 9 is a schematic structural diagram of an organic light-emitting module according to a ninth embodiment of the present invention;

第10圖係繪示依據本新型第十實施例之有機發光模組之結構示意圖; FIG. 10 is a schematic structural diagram of an organic light-emitting module according to a tenth embodiment of the present invention;

第11圖係繪示依據本新型第十一實施例之有機發光模組之結構示意圖; FIG. 11 is a schematic structural diagram of an organic light-emitting module according to an eleventh embodiment of the present invention;

第12圖係繪示依據本新型第十二實施例之有機發光模組之結構示意圖; FIG. 12 is a schematic structural diagram of an organic light-emitting module according to a twelfth embodiment of the present invention;

第13圖係繪示依據本新型第十三實施例之有機發光模組製造方法之流程示意圖;以及 FIG. 13 is a schematic flowchart of a method for manufacturing an organic light-emitting module according to a thirteenth embodiment of the present invention; and

第14圖係繪示依據本新型第十四實施例之有機發光模組製造方法之流程示意圖。 FIG. 14 is a schematic flowchart of a method for manufacturing an organic light-emitting module according to a fourteenth embodiment of the present invention.

以下將參照圖式說明本新型之複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本新型。也就是說,在本新型部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式及著重於本案主要技術特徵,一些習知慣用、非必要的結構與元件,將在圖式中以簡單示意的方式繪示或省略之。並且,相類似的元件亦可能使用相同的編號表示之。 Several embodiments of the present invention will be described below with reference to the drawings. For the sake of clarity, many practical details are set forth in the following description. It should be understood, however, that these practical details should not be used to limit the invention. That is, in some embodiments of the novel, these practical details are unnecessary. In addition, in order to simplify the drawings and focus on the main technical features of the present application, some conventional, non-essential structures and elements will be shown in a simple and schematic manner or omitted in the drawings. Also, similar elements may be designated by the same reference numerals.

本新型中,用語「第一」、「第二」、「上」、「下」、「之間」係為描述一相對位置,實際上因應實際狀況,不排除有排列次序更動之可能。舉例而言,當基板位於最上層時,其餘各層結構可能為向下延伸排列,此時「第一」、「第二」、「上」、「下」之相對位置關係亦可能相對應改變。 In this new model, the terms "first", "second", "up", "down" and "between" are used to describe a relative position. In fact, according to the actual situation, the possibility of changing the arrangement order is not excluded. For example, when the substrate is located on the top layer, the other layers may be arranged to extend downward, and the relative positional relationship of “first”, “second”, “upper” and “lower” may also change accordingly.

請一併參照第1圖、第2圖及第3圖。第1圖係繪示依據本新型第一實施例之有機發光模組100之結構示意圖。第2圖係繪示依據本新型第二實施例之有機發光模組100之結構示意圖。第3圖係繪示依據本新型第三實施例之有機發光模組100之結構示意圖。第1圖、第2圖及第3圖中之有機發光模組 100具有類似之結構,因此,先以第1圖說明有機發光模組100中各結構之材料及功能,續再說明第1圖、第2圖及第3圖之差異。 Please refer to Figure 1, Figure 2 and Figure 3 together. FIG. 1 is a schematic structural diagram of an organic light emitting module 100 according to a first embodiment of the present invention. FIG. 2 is a schematic diagram showing the structure of the organic light emitting module 100 according to the second embodiment of the present invention. FIG. 3 is a schematic diagram showing the structure of the organic light emitting module 100 according to the third embodiment of the present invention. The organic light-emitting module in Fig. 1, Fig. 2 and Fig. 3 100 has a similar structure. Therefore, the material and function of each structure in the organic light emitting module 100 will be described with reference to FIG. 1 first, and then the differences between FIG. 1, FIG. 2 and FIG. 3 will be described.

請參照第1圖。有機發光模組100包含一基板101、一第一電極102、一第二電極108、一第一電荷傳輸層104、一第二電荷傳輸層106、一發光層105以及多數量子點300、400、500。第一電極102設置於基板101上。第二電極108相對第一電極102設置。第一電荷傳輸層104設置靠近第一電極102。第二電荷傳輸層106設置靠近第二電極108。發光層105設置於第一電荷傳輸層104及第二電荷傳輸層106之間。 Please refer to Figure 1. The organic light emitting module 100 includes a substrate 101, a first electrode 102, a second electrode 108, a first charge transport layer 104, a second charge transport layer 106, a light emitting layer 105, and a plurality of quantum dots 300, 400, 500. The first electrode 102 is disposed on the substrate 101 . The second electrode 108 is disposed opposite to the first electrode 102 . The first charge transport layer 104 is disposed close to the first electrode 102 . The second charge transport layer 106 is disposed close to the second electrode 108 . The light-emitting layer 105 is disposed between the first charge transport layer 104 and the second charge transport layer 106 .

多數量子點300、400、500可自由選擇地設置於發光層105及第一電荷傳輸層104之間、發光層105及第二電荷傳輸層106之間、第一電荷傳輸層104及第一電極102之間或第二電荷傳輸層106及第二電極108之間,端視整體有機發光模組100所需之結構而變化。後續將解說本新型中,多數量子點300、400、500設置位置之原則。 Most of the quantum dots 300 , 400 and 500 can be freely arranged between the light-emitting layer 105 and the first charge transport layer 104 , between the light-emitting layer 105 and the second charge transport layer 106 , the first charge transport layer 104 and the first electrode Between 102 or between the second charge transport layer 106 and the second electrode 108, depending on the required structure of the overall organic light emitting module 100, it varies. In the following, the principle of setting the positions of most quantum dots 300, 400 and 500 in the present invention will be explained.

量子點300、400、500為尺寸低至奈米級的小型半導體晶體。它們的性質與塊狀半導體具有極大差異。量子點300、400、500最顯著的特徵是通過改變它們的尺寸和離散能級來調節半導體帶隙(即所謂的量子侷限效應,Quantum Confinement Effect)。此外,將量子點300、400、500應用於顯示器時,基於其較窄的發射線寬(例如,發射半高寬(FWHM)約為20至30奈米),可獲得較窄的光譜。通過窄光譜可獲得極高的色彩飽和度,可覆蓋最嚴格的Rec.2020色域標 準的90%以上,因此可得到廣色域的視覺效果。量子點300、400、500的窄發射線寬也令它們相當適合作為例如8K或更高解析度之高清顯示器中的LED有源元件。 The quantum dots 300, 400, 500 are small semiconductor crystals with dimensions down to nanometers. Their properties are very different from bulk semiconductors. The most notable feature of quantum dots 300, 400, 500 is the tuning of the semiconductor band gap by changing their size and discrete energy levels (the so-called Quantum Confinement Effect). Furthermore, when the quantum dots 300, 400, 500 are applied to a display, a narrower spectrum can be obtained based on their narrow emission linewidth (eg, emission at half maximum width (FWHM) of about 20 to 30 nanometers). Very high color saturation with narrow spectrum to cover the strictest Rec.2020 color gamut The accuracy is more than 90%, so a wide color gamut visual effect can be obtained. The narrow emission linewidths of quantum dots 300, 400, 500 also make them well suited as LED active components in high-definition displays such as 8K and higher resolutions.

上述量子點300、400、500之材料可包含II-VI族元素化合物、III-V族元素化合物、鈣鈦礦(Perovskite)量子點、由上述II-VI族元素化合物及/或III-V族元素化合物包覆形成之核殼結構化合物或摻雜納米晶顆粒。其中,II-VI族元素可包括硒化鎘(CdSe)、碲化鎘(CdTe)、硫化鎂(MgS)、硒化鎂(MgSe)、碲化鎂(MgTe)、硫化鈣(CaS)、硒化鈣(CaSe)、碲化鈣(CaTe)、硫化鍶(SrS)、硒化鍶(SrSe)、碲化鍶(SrTe)、硫化鋇(BaS)、硒化鋇(BaSe)、碲化鋇(BaTe)、硫化鋅(ZnS)、硒化鋅(ZnSe)、碲化鋅(ZnTe)或硫化鎘(CdS)等;III-V族元素化合物可包括氮化鎵(GaN)、磷化鎵(GaP)、砷化鎵(GaAs)、氮化銦(lnN)、磷化銦(lnP)或砷化銦(InAs)等,惟不以上述材質為限。 The materials of the quantum dots 300, 400, and 500 may include II-VI group element compounds, III-V group element compounds, perovskite quantum dots, compounds composed of the above-mentioned II-VI group element compounds and/or III-V group elements Core-shell structure compound or doped nanocrystalline particles formed by coating with elemental compound. Among them, the II-VI group elements may include cadmium selenide (CdSe), cadmium telluride (CdTe), magnesium sulfide (MgS), magnesium selenide (MgSe), magnesium telluride (MgTe), calcium sulfide (CaS), selenium Calcium (CaSe), calcium telluride (CaTe), strontium sulfide (SrS), strontium selenide (SrSe), strontium telluride (SrTe), barium sulfide (BaS), barium selenide (BaSe), barium telluride ( BaTe), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe) or cadmium sulfide (CdS), etc.; III-V group element compounds may include gallium nitride (GaN), gallium phosphide (GaP) ), gallium arsenide (GaAs), indium nitride (lnN), indium phosphide (lnP) or indium arsenide (InAs), etc., but not limited to the above materials.

第一電極102係可作為陽極(Anode),且可由高功函數(Work Function)的材料組成,其可驅使電洞注入到發光層105中。在若干實施例中,第一電極102可由透明氧化物組成,其可包含例如氧化銅錫(ITO)、氧化銅、氧化銦鋅(IZO)或其他具有類似特性的材料。第一電極102可利用各種化學方式(例如:化學氣相沉積、氣相磊晶等)或物理方式(例如:蒸鍍、濺鍍、旋塗、轉印、電鍍等)形成於基板101上。 The first electrode 102 can be used as an anode, and can be composed of a material with a high work function, which can drive holes to be injected into the light-emitting layer 105 . In several embodiments, the first electrode 102 may be composed of a transparent oxide, which may include, for example, copper tin oxide (ITO), copper oxide, indium zinc oxide (IZO), or other materials with similar properties. The first electrode 102 can be formed on the substrate 101 by various chemical methods (eg, chemical vapor deposition, vapor epitaxy, etc.) or physical methods (eg, evaporation, sputtering, spin coating, transfer printing, electroplating, etc.).

第一電荷傳輸層104係靠近第一電極102設置。第一電荷傳輸層104用以增益電洞之傳輸,一般可以「電洞傳輸 層」稱之。第一電荷傳輸層104可由具有與P型半導體相類似特性的無機或有機材料組成,惟不以此為限。於本新型之有機發光模組100中,第一電荷傳輸層104可由有機材料組成,以取得材料特性優點。舉例而言,當第一電荷傳輸層104選擇由高分子量聚合物材料例如POT、PSS、PPV、PVK、TFB、PFB或聚-TPD組成時,可對氧氣或水氣具有較強的抵抗力,從而提高整體有機發光模組100之生命週期。第一電荷傳輸層104亦對整體有機發光模組100之電性操作有所助益,例如可降低啟動電壓(起始工作電壓)。第一電荷傳輸層104可利用各種化學方式(例如:化學氣相沉積、氣相磊晶等)或物理方式(例如:蒸鍍、濺鍍、旋塗、轉印、電鍍等)形成於第一電極102上。 The first charge transport layer 104 is disposed close to the first electrode 102 . The first charge transport layer 104 is used to enhance the transport of holes, and generally can be "hole transport". layer" is called. The first charge transport layer 104 may be composed of inorganic or organic materials having properties similar to P-type semiconductors, but not limited thereto. In the organic light emitting module 100 of the present invention, the first charge transport layer 104 can be composed of organic materials, so as to obtain the advantages of material properties. For example, when the first charge transport layer 104 is selected to be composed of high molecular weight polymer materials such as POT, PSS, PPV, PVK, TFB, PFB or poly-TPD, it can have strong resistance to oxygen or moisture, Thus, the life cycle of the overall organic light emitting module 100 is improved. The first charge transport layer 104 also contributes to the electrical operation of the overall organic light emitting module 100 , such as reducing the startup voltage (initial operating voltage). The first charge transport layer 104 can be formed on the first charge transport layer 104 by various chemical methods (eg, chemical vapor deposition, vapor epitaxy, etc.) or physical methods (eg, evaporation, sputtering, spin coating, transfer printing, electroplating, etc.). on electrode 102.

由於第一電荷傳輸層(電洞傳輸層)104之最高占據分子軌域(Highest Occupied Molecular Orbital,簡稱HOMO)值與第一電極(陽極)102仍可能有所差距,且第一電極102若選取透明氧化物(例如:ITO)為主要材料,於長時間操作後,仍有可能釋放出氧氣,因而破壞有機層。故另一方式,於第一電極102及第一電荷傳輸層104之間,可插入一第一電荷注入層(電洞注入層)103,其HOMO值介於第一電極102及第一電荷傳輸層104之間,將有助於將電洞注入發光層105,且藉其材料特性,可阻隔第一電極102釋放之氧氣進入有機發光模組100結構中,因此可延長元件壽命。惟須知此第一電荷注入層103可視實際狀況增設或不增設,非一定必要使用。當無增設此第一電荷注入層103時,則第一電荷傳輸層104 係直接設置於第一電極102上。 Because the highest occupied molecular orbital (Highest Occupied Molecular Orbital, HOMO) value of the first charge transport layer (hole transport layer) 104 may still be different from that of the first electrode (anode) 102, and if the first electrode 102 is selected Transparent oxide (eg: ITO) is the main material, and after long-term operation, oxygen may still be released, thus destroying the organic layer. Therefore, in another way, between the first electrode 102 and the first charge transport layer 104, a first charge injection layer (hole injection layer) 103 can be inserted, and its HOMO value is between the first electrode 102 and the first charge transport layer Between the layers 104 , holes can be injected into the light-emitting layer 105 , and by virtue of its material properties, the oxygen released from the first electrode 102 can be blocked from entering the structure of the organic light-emitting module 100 , thereby prolonging the life of the device. However, it should be noted that the first charge injection layer 103 may or may not be added depending on the actual situation, and is not necessarily used. When the first charge injection layer 103 is not added, the first charge transport layer 104 is directly disposed on the first electrode 102 .

第二電荷傳輸層106係靠近第二電極108設置。第二電荷傳輸層106用以增益電子之傳輸,一般可以「電子傳輸層」稱之。第二電荷傳輸層106可由具有與n型半導體相類似特性的無機或有機材料組成,惟不以此為限。舉例而言,第二電荷傳輸層106可包含例如TiO2、ZrO2等具有類似材料特性的金屬氧化物、與S3N4等具有類似特性的無機料或與n型半導體或聚合物具有類似材料特性的無機或有機半導體材料。於本新型之有機發光模組100中,第二電荷傳輸層106可由有機材料組成,以取得材料特性優點。當選用上述無機材料或有機聚合物時,可避免氧化或腐蝕所引起的有機發光模組100結構的損害。第二電荷傳輸層106亦對整體有機發光模組100之電性操作有所助益,例如可降低啟動電壓(起始工作電壓)。第二電荷傳輸層106可利用各種化學方式(例如:化學氣相沉積、氣相磊晶等)或物理方式(例如:蒸鍍、濺鍍、旋塗、轉印、電鍍等)形成於發光層105上。 The second charge transport layer 106 is disposed close to the second electrode 108 . The second charge transport layer 106 is used to enhance the transport of electrons, and is generally referred to as an "electron transport layer". The second charge transport layer 106 may be composed of, but not limited to, inorganic or organic materials having properties similar to n-type semiconductors. For example, the second charge transport layer 106 may include metal oxides with similar material properties such as TiO 2 , ZrO 2 , inorganic materials with similar properties to S 3 N 4 , or n-type semiconductors or polymers. Material properties of inorganic or organic semiconductor materials. In the organic light emitting module 100 of the present invention, the second charge transport layer 106 can be composed of organic materials to obtain the advantages of material properties. When the above-mentioned inorganic materials or organic polymers are selected, damage to the structure of the organic light emitting module 100 caused by oxidation or corrosion can be avoided. The second charge transport layer 106 also contributes to the electrical operation of the overall organic light emitting module 100 , such as reducing the startup voltage (initial operating voltage). The second charge transport layer 106 can be formed on the light-emitting layer by various chemical methods (eg, chemical vapor deposition, vapor phase epitaxy, etc.) or physical methods (eg, evaporation, sputtering, spin coating, transfer printing, electroplating, etc.) 105 on.

第二電極108係可作為陰極(cathode),且可由低功函數(Work Function)的材料組成,其可驅使電子注入到發光層105中。在若干實施例中,第二電極108可由例如Ca、Mg、K、Ti、In、Yt、Li、Gd、Al、Ag、Sn、Pb、Cs、Ba的金屬或例如LiF/Al、LiO2/Al、LiF/Ca、BaF2/Ca等的合金組成。另外一種方式,可增設一第二電荷注入層(電子注入層)107於第二電極108及第二電荷傳輸層106之間,其可形成為一極薄之低功函數金屬鹵化物或氧化物,如LiF或LiO2,可大幅降 低陰極與電子傳輸層之能障,降低驅動電壓。第二電極108亦可利用各種化學方式(例如:化學氣相沉積、氣相磊晶等)或物理方式(例如:蒸鍍、濺鍍、旋塗、轉印、電鍍等)形成於第二電荷注入層107上。惟須知此第一電荷注入層103可視實際狀況增設或不增設,非一定必要使用。當無增設此第二電荷注入層107時,則第二電極108係直接設置於第二電荷傳輸層106上。 The second electrode 108 can act as a cathode, and can be composed of a low work function material, which can drive electrons to be injected into the light emitting layer 105 . In several embodiments, the second electrode 108 may be made of metals such as Ca, Mg, K, Ti, In, Yt, Li, Gd, Al, Ag, Sn, Pb, Cs, Ba or metals such as LiF/Al, LiO 2 / Alloy composition of Al, LiF/Ca, BaF 2 /Ca, etc. Alternatively, a second charge injection layer (electron injection layer) 107 can be added between the second electrode 108 and the second charge transport layer 106, which can be formed as a very thin low work function metal halide or oxide , such as LiF or LiO 2 , can greatly reduce the energy barrier between the cathode and the electron transport layer, reducing the driving voltage. The second electrode 108 can also be formed on the second electric charge by various chemical methods (eg, chemical vapor deposition, vapor epitaxy, etc.) or physical methods (eg, evaporation, sputtering, spin coating, transfer printing, electroplating, etc.) on the injection layer 107 . However, it should be noted that the first charge injection layer 103 may or may not be added depending on the actual situation, and is not necessarily used. When the second charge injection layer 107 is not added, the second electrode 108 is directly disposed on the second charge transport layer 106 .

已知第一電極102驅使之電洞與第二電極108驅使之電子,個別透過第一電荷傳輸層104及第二電荷傳輸層106之傳輸,即可結合形成激子(Exciton)而發光。一般可理解發光效率可取決第一電荷傳輸層104及第二電荷傳輸層106之材料特性。然第一電荷傳輸層104或第二電荷傳輸層106材料之選擇仍可能受到限制,因其必須兼顧電性及發光特性二者間之平衡,因而可能使發光效率降低。為盡可能彌補於材料選取上之誤差,現今之作法為設置一發光層105於第一電荷傳輸層104及第二電荷傳輸層106之間。發光層105內具有可供電子-電洞對結合而發光之區域,並且,有研究發現可透過材料選擇,令發光層105亦具有傳輸電子或電洞之能力,因此可透過調節發光層105之材料特性增加發光效率。發光層105亦可加入摻雜物(dopant)而改變其所發出光線之光色。 It is known that the holes driven by the first electrode 102 and the electrons driven by the second electrode 108 can combine to form excitons and emit light through the transport of the first charge transport layer 104 and the second charge transport layer 106 respectively. It is generally understood that the luminous efficiency may depend on the material properties of the first charge transport layer 104 and the second charge transport layer 106 . However, the choice of materials for the first charge transport layer 104 or the second charge transport layer 106 may still be limited, as a balance between electrical properties and light-emitting properties must be taken into account, which may reduce the light-emitting efficiency. In order to compensate for the error in material selection as much as possible, the current practice is to provide a light-emitting layer 105 between the first charge transport layer 104 and the second charge transport layer 106 . The light-emitting layer 105 has an area where electron-hole pairs can combine to emit light, and studies have found that the selection of permeable materials enables the light-emitting layer 105 to also have the ability to transport electrons or holes. Therefore, the light-emitting layer 105 can be adjusted by adjusting the Material properties increase luminous efficiency. The light-emitting layer 105 can also add dopant to change the color of the light emitted by the light-emitting layer 105 .

第1圖、第2圖及第3圖實施例中係呈現為一頂射型(Top Emission)有機發光模組100。換言之,自發光層105發射之光線,係向上穿透過第二電荷傳輸層(電子傳輸層)106、第二電荷注入層(電子注入層)107及第二電極(陰極)108 而出。基於發光層105係朝四面八方發光、故仍有可能有部分光線向下穿透過第一電荷傳輸層(電洞傳輸層)104以及第一電荷注入層(電洞注入層)103而至第一電極102。為提高出光效率,第一電極102可包含一高反射金屬102a,以反射到達第一電極102之光線而改變其出光路徑,令其出光路徑朝上。此時,第一電極102具有反射光線作用,係作為一反射電極,而第二電極108透過減薄其厚度以增加其透光度,係作為一透明電極。 FIG. 1 , FIG. 2 , and FIG. 3 show a top emission type organic light emitting module 100 in the embodiment. In other words, the light emitted from the light-emitting layer 105 penetrates upward through the second charge transport layer (electron transport layer) 106 , the second charge injection layer (electron injection layer) 107 and the second electrode (cathode) 108 out. Since the light-emitting layer 105 emits light in all directions, it is still possible that part of the light penetrates down through the first charge transport layer (hole transport layer) 104 and the first charge injection layer (hole injection layer) 103 to the first electrode 102. In order to improve the light extraction efficiency, the first electrode 102 may include a highly reflective metal 102a to reflect the light reaching the first electrode 102 to change the light extraction path so that the light extraction path is upward. At this time, the first electrode 102 has the function of reflecting light and acts as a reflective electrode, and the second electrode 108 acts as a transparent electrode by reducing its thickness to increase its transmittance.

多數量子點300、400、500可具有一紅色、一綠色、一藍色或前述顏色任意組合之光色。發光層105發射之光線可激發上述量子點300、400、500而形成具有全彩頻譜之光色。換言之,上述量子點300、400、500具有轉換光色之功效。發光層105發射之光線,最終係呈現至人眼而形成彩色圖像。可理解地,彩色圖像係由多個畫素(pixel)所構成。因此,上述量子點300、400、500可彼此堆疊排列構成對應由發光層105發射之光線所構成之可視圖像之多個畫素單元。不同排列方式之量子點300、400、500可形成不同排列之畫素單元而形成不同色彩飽和度。舉例而言,量子點300、400、500可排列成方形陣列、三角形陣列或馬賽克陣列而形成不同排列形式之畫素單元,獲致不同之顯色效果。於不同實施例中,發光層105可發出藍色、紫色或其餘顏色之光線,亦可透過不同顏色之量子點300、400、500轉換成不同光色。透過量子點300、400、500的使用,有機發光模組100具有高光致發光效率、高轉換效率、高光穩定性、溶液加工性、低製造本和顏色可調性,從而可為高清微型有機LED顯示設備提供強大的全彩解決方 案。於本新型實施例中,量子點300為紅色量子點、量子點400為綠色量子點、量子點500為藍色量子點,惟不以此為限。 Most quantum dots 300, 400, 500 can have a light color of red, green, blue, or any combination of the foregoing. The light emitted by the light-emitting layer 105 can excite the quantum dots 300 , 400 and 500 to form light colors with full color spectrum. In other words, the quantum dots 300, 400 and 500 have the effect of converting light color. The light emitted by the light-emitting layer 105 is finally presented to the human eye to form a color image. Understandably, a color image is composed of a plurality of pixels. Therefore, the above-mentioned quantum dots 300 , 400 and 500 can be stacked and arranged to form a plurality of pixel units corresponding to the visible image formed by the light emitted by the light-emitting layer 105 . The quantum dots 300 , 400 and 500 in different arrangements can form pixel units in different arrangements to form different color saturations. For example, the quantum dots 300 , 400 and 500 can be arranged in a square array, a triangular array or a mosaic array to form pixel units of different arrangement forms to obtain different color rendering effects. In different embodiments, the light emitting layer 105 can emit light of blue, purple or other colors, and can also be converted into different light colors through the quantum dots 300 , 400 and 500 of different colors. Through the use of quantum dots 300, 400 and 500, the organic light emitting module 100 has high photoluminescence efficiency, high conversion efficiency, high photostability, solution processability, low manufacturing cost and color tunability, so that it can be used for high-definition micro organic LEDs. Display devices provide a powerful full-color solution case. In this novel embodiment, the quantum dots 300 are red quantum dots, the quantum dots 400 are green quantum dots, and the quantum dots 500 are blue quantum dots, but not limited thereto.

上述量子點300、400、500可呈微粒狀,其微粒直徑可介於1奈米至10奈米之間,且各量子點300、400、500之重量比例可進行不同調配以形成不同畫素單元。 The quantum dots 300, 400, 500 can be in the form of particles, and the particle diameter can be between 1 nanometer to 10 nanometers, and the weight ratio of each quantum dot 300, 400, 500 can be adjusted differently to form different pixels unit.

形成上述各量子點300、400、500之堆疊排列可透過諸如化學溶膠法(chemical colloidal method)、自組成法(self-assembly method)、微影蝕刻法(lithography and etching)或分閘法(split-gate approach)等方式。透過化學溶膠法合成,可製作多層層疊(multilayered)量子點300、400、500,過程簡易且適於量產。自組成法(self-assembly method)可採用化學氣相沉積(chemical vapor deposition)製程,令量子點300、400、500在特定基材表面自聚生長,可大量生產規則排列的量子點300、400、500。微影蝕刻法(lithography and etching)以光束或電子束直接於基材上蝕刻製作出所要之圖案。分閘法(split-gate approach)則以外加電壓的方式在二維量子井平面上產生二維侷限,可改變量子點300、400、500的形狀與大小。 The stacking arrangement of the quantum dots 300, 400 and 500 can be formed by methods such as chemical colloidal method, self-assembly method, lithography and etching or split method. -gate approach) etc. The multi-layered quantum dots 300, 400 and 500 can be fabricated through chemical sol method synthesis, which is simple and suitable for mass production. The self-assembly method can use a chemical vapor deposition process to make the quantum dots 300, 400, 500 self-aggregate on the surface of a specific substrate, and can mass-produce regularly arranged quantum dots 300, 400 , 500. The lithography and etching method uses a beam or an electron beam to directly etch the desired pattern on the substrate. The split-gate approach generates a two-dimensional confinement on the plane of the two-dimensional quantum well by applying a voltage, which can change the shape and size of the quantum dots 300 , 400 and 500 .

為令發光層105發射之光線可激發量子點300、400、500而轉換光色,以對應形成具有紅色、綠色、藍色或前述顏色任意組合光色之畫素單元,進而形成全彩之圖像,並且透過量子點300、400、500窄發射線寬之特性,形成均勻發光及廣色域,因此可調整量子點300、400、500之設置位置以達不同出光效果。第1圖中,係將紅色量子點300、綠色量子 點400以及藍色量子點500,設置於發光層105及第二電荷傳輸層106之間;第2圖中,係將紅色量子點300、綠色量子點400以及藍色量子點500,設置於第二電荷傳輸層106及第二電荷注入層(電子注入層)107之間;第3圖中,係將紅色量子點300、綠色量子點400以及藍色量子點500,設置於二電荷注入層(電子注入層)107層及第二電極108之間。因此,可依據實際製程需求,將各色量子點300、400、500設置於光線之出光路徑上之不同位置,以達到不同出光效果。再者,於一實施例,發光層105發射之光線之波長可隨施加於第一電極102及第二電極間108之電壓變化而改變,進而可調變對各色量子點300、400、500之激發效率。此係因各色量子點300、400、500對其激發光源之波長之響應不一,而隨施加之電壓變化,將令發光層105發射之光線之波長產生藍移(波長峰值往短波長偏移)或紅移(波長峰值往長波長偏移)之變化,因此對各色量子點300、400、500之激發效率亦相應發生變化。 In order to enable the light emitted by the light-emitting layer 105 to excite the quantum dots 300, 400, and 500 to convert the light color, correspondingly form a pixel unit with red, green, blue or any combination of the foregoing colors, thereby forming a full-color image And through the narrow emission line width of the quantum dots 300, 400, 500, uniform light emission and wide color gamut are formed, so the setting position of the quantum dots 300, 400, 500 can be adjusted to achieve different light emitting effects. In Figure 1, the red quantum dots 300 and the green quantum dots are The dots 400 and the blue quantum dots 500 are arranged between the light-emitting layer 105 and the second charge transport layer 106; in the second figure, the red quantum dots 300, the green quantum dots 400 and the blue quantum dots 500 are arranged on the first Between the two charge transport layers 106 and the second charge injection layer (electron injection layer) 107; in Figure 3, red quantum dots 300, green quantum dots 400 and blue quantum dots 500 are arranged on the two charge injection layers ( between the electron injection layer) 107 layer and the second electrode 108. Therefore, according to actual process requirements, the quantum dots 300 , 400 and 500 of various colors can be arranged at different positions on the light output path of the light to achieve different light output effects. Furthermore, in one embodiment, the wavelength of the light emitted by the light-emitting layer 105 can be changed with the change of the voltage applied between the first electrode 102 and the second electrode 108 , so that the wavelength of the light emitted by the quantum dots 300 , 400 and 500 of each color can be changed. Inspire efficiency. This is because the different color quantum dots 300, 400, 500 have different responses to the wavelength of the excitation light source, and with the change of the applied voltage, the wavelength of the light emitted by the light-emitting layer 105 will be blue-shifted (wavelength peak shifts to short wavelengths) Or the change of red shift (the shift of the wavelength peak to the long wavelength), so the excitation efficiency of the quantum dots 300, 400 and 500 of each color also changes accordingly.

請一併參照第4圖、第5圖及第6圖。第4圖係繪示依據本新型第四實施例之有機發光模組200之結構示意圖;第5圖係繪示依據本新型第五實施例之有機發光模組200之結構示意圖;第6圖係繪示依據本新型第六實施例之有機發光模組200之結構示意圖。 Please refer to Figure 4, Figure 5 and Figure 6 together. FIG. 4 is a schematic structural diagram of an organic light-emitting module 200 according to a fourth embodiment of the present invention; FIG. 5 is a schematic structural diagram of an organic light-emitting module 200 according to a fifth embodiment of the present invention; A schematic diagram of the structure of the organic light emitting module 200 according to the sixth embodiment of the present invention is shown.

第4圖、第5圖及第6圖實施例中,係呈現為一底射型(Bottom Emission)有機發光模組200。類似前述第1圖、第2圖及第3圖之有機發光模組100,有機發光模組200亦包含包含一基板201、一第一電極202、一第二電極208、一第一電 荷傳輸層204、一第二電荷傳輸層206、一發光層205以及多數量子點300、400、500。第一電極202設置於基板201上。第二電極208相對第一電極202設置。第一電荷傳輸層204設置靠近第一電極202。第二電荷傳輸層206設置靠近第二電極208。發光層205設置於第一電荷傳輸層204及第二電荷傳輸層206之間。並且,亦選擇性地設置有一第一電荷注入層(電洞注入層)203於第一電極202及第一電荷傳輸層204之間;以及設置有一第二電荷注入層(電子注入層)207於第二電極208及第二電荷傳輸層206之間。有機發光模組200與有機發光模組100主要差異在於,自發光層205發射之光線,係向下穿透過第一電荷傳輸層(電洞傳輸層)204、第一電荷注入層(電洞注入層)203、第一電極(陽極)202及基板201而出。此時,第一電極(陽極)202係作為透明電極,以及基板201係作為透明基板,以供發光層205發射之光線穿透。基於發光層205係朝四面八方發光,故仍有可能有部分光線向上穿透過第二電荷傳輸層(電子傳輸層)206以及第二電荷注入層(電子注入層)207而至第二電極208。為提高出光效率,第二電極208可包含一高反射金屬或增加其厚度,以反射到達第二電極208之光線而改變其出光路徑,令其出光路徑朝下。此時,第二電極208具有反射光線作用,係作為一反射電極。 In the embodiment shown in FIG. 4 , FIG. 5 and FIG. 6 , it is shown as a bottom emission type organic light emitting module 200 . Similar to the organic light emitting module 100 in the aforementioned FIGS. 1 , 2 and 3, the organic light emitting module 200 also includes a substrate 201 , a first electrode 202 , a second electrode 208 , a first electrode The charge transport layer 204 , a second charge transport layer 206 , a light emitting layer 205 and a plurality of quantum dots 300 , 400 and 500 . The first electrode 202 is disposed on the substrate 201 . The second electrode 208 is disposed opposite to the first electrode 202 . The first charge transport layer 204 is disposed close to the first electrode 202 . The second charge transport layer 206 is disposed close to the second electrode 208 . The light-emitting layer 205 is disposed between the first charge transport layer 204 and the second charge transport layer 206 . In addition, a first charge injection layer (hole injection layer) 203 is also selectively disposed between the first electrode 202 and the first charge transport layer 204; and a second charge injection layer (electron injection layer) 207 is disposed on the between the second electrode 208 and the second charge transport layer 206 . The main difference between the organic light-emitting module 200 and the organic light-emitting module 100 is that the light emitted from the light-emitting layer 205 penetrates downward through the first charge transport layer (hole transport layer) 204 and the first charge injection layer (hole injection layer). layer) 203, the first electrode (anode) 202 and the substrate 201. At this time, the first electrode (anode) 202 serves as a transparent electrode, and the substrate 201 serves as a transparent substrate for the light emitted by the light-emitting layer 205 to penetrate. Since the light emitting layer 205 emits light in all directions, it is still possible that some light rays penetrate upward through the second charge transport layer (electron transport layer) 206 and the second charge injection layer (electron injection layer) 207 to the second electrode 208 . In order to improve the light extraction efficiency, the second electrode 208 may include a highly reflective metal or increase its thickness, so as to reflect the light reaching the second electrode 208 and change the light output path, so that the light output path faces downward. At this time, the second electrode 208 has the function of reflecting light, and acts as a reflecting electrode.

為令發光層205發射之光線可激發量子點300、400、500而轉換光色,以對應形成具有紅色、綠色、藍色或前述顏色任意組合光色之畫素單元,進而形成全彩之圖像,並且透過量子點300、400、500窄發射線寬之特性,形成均勻發 光及廣色域,因此調整量子點300、400、500之設置位置以達到不同發光效果。第4圖中,係將紅色量子點300、綠色量子點400以及藍色量子點500,設置於發光層205及第一電荷傳輸層204之間;第5圖中,係將紅色量子點300、綠色量子點400以及藍色量子點500,設置於第一電荷傳輸層204及第一電荷注入層(電洞注入層)203之間;第6圖中,係將紅色量子點300、綠色量子點400以及藍色量子點500,設置於第一電荷注入層(電洞注入層)203及第一電極202之間。因此,可依據實際製程需求,將各色量子點300、400、500設置於光線之出光路徑上之不同位置,以達到不同出光效果。類似地,於一實施例,發光層205發射之光線之波長可隨施加於第一電極202及第二電極間208之電壓變化而改變,進而可調變對各色量子點300、400、500之激發效率。 In order to enable the light emitted by the light-emitting layer 205 to excite the quantum dots 300, 400, and 500 to convert the light color, correspondingly form a pixel unit with red, green, blue or any combination of the aforementioned colors, thereby forming a full-color image image, and through the characteristics of the narrow emission line width of quantum dots 300, 400, 500, forming a uniform emission Light and wide color gamut, so adjust the setting positions of quantum dots 300, 400, 500 to achieve different lighting effects. In the fourth figure, the red quantum dots 300, the green quantum dots 400 and the blue quantum dots 500 are arranged between the light-emitting layer 205 and the first charge transport layer 204; in the fifth figure, the red quantum dots 300, The green quantum dots 400 and the blue quantum dots 500 are disposed between the first charge transport layer 204 and the first charge injection layer (hole injection layer) 203; in Figure 6, the red quantum dots 300 and the green quantum dots are 400 and blue quantum dots 500 are disposed between the first charge injection layer (hole injection layer) 203 and the first electrode 202 . Therefore, according to actual process requirements, the quantum dots 300 , 400 and 500 of various colors can be arranged at different positions on the light output path of the light to achieve different light output effects. Similarly, in one embodiment, the wavelength of the light emitted by the light-emitting layer 205 can be changed with the voltage applied between the first electrode 202 and the second electrode 208 , so that the wavelength of the light emitted by the quantum dots 300 , 400 and 500 of each color can be changed. Inspire efficiency.

請一併參照第7圖、第8圖及第9圖。第7圖係繪示依據本新型第七實施例之有機發光模組100之結構示意圖;第8圖係繪示依據本新型第八實施例之有機發光模組100之結構示意圖;第9圖係繪示依據本新型第九實施例之有機發光模組100之結構示意圖。 Please refer to Figure 7, Figure 8 and Figure 9 together. FIG. 7 is a schematic diagram showing the structure of the organic light-emitting module 100 according to the seventh embodiment of the present invention; FIG. 8 is a schematic diagram showing the structure of the organic light-emitting module 100 according to the eighth embodiment of the present invention; A schematic diagram of the structure of the organic light emitting module 100 according to the ninth embodiment of the present invention is shown.

第7圖、第8圖及第9圖中之有機發光模組100結構與第1圖、第2圖及第3圖中之有機發光模組100結構大部分類似,同屬於頂射型結構,因此將僅就差異性進行說明,且亦使用相同的編號表示類似的元件。前已述及,本新型將不同顏色之量子點300、400、500引入有機發光模組100結構中,以獲得更好的光轉換效率及色彩上之特性(例如:更高的色彩飽和 度、發光均勻度及更廣的色域)。差異在於,第1圖、第2圖及第3圖中之有機發光模組100中,係將量子點300、400、500設置於結構中各層之間,而第7圖、第8圖及第9圖中之有機發光模組100,係將量子點300、400、500設置於結構中各層之內。舉例而言,第7圖中,係將量子點300、400、500設置於發光層105內;第8圖中,係將量子點300、400、500設置於第二電荷傳輸層106內;而第9圖中,係將量子點300、400、500設置於第二電荷注入層(電子注入層)107內。相較於將量子點300、400、500設置於結構中各層之間的方式,將量子點300、400、500設置於結構中各層內可獲致不同的出光效果。 The structure of the organic light emitting module 100 in FIGS. 7 , 8 and 9 is similar to the structure of the organic light emitting module 100 in FIGS. 1 , 2 and 3 for the most part, and both belong to the top-emission type structure. Therefore only the differences will be explained, and the same numbers will also be used to refer to similar elements. As mentioned above, the present invention introduces quantum dots 300, 400, 500 of different colors into the structure of the organic light-emitting module 100 to obtain better light conversion efficiency and color characteristics (eg, higher color saturation) brightness, luminous uniformity and wider color gamut). The difference is that, in the organic light emitting module 100 in Fig. 1, Fig. 2 and Fig. 3, the quantum dots 300, 400, 500 are arranged between the layers in the structure, while Fig. 7, Fig. 8 and Fig. 3 In the organic light-emitting module 100 shown in Figure 9, the quantum dots 300, 400, and 500 are arranged in each layer of the structure. For example, in Figure 7, the quantum dots 300, 400, and 500 are arranged in the light-emitting layer 105; in Figure 8, the quantum dots 300, 400, and 500 are arranged in the second charge transport layer 106; and In FIG. 9 , the quantum dots 300 , 400 and 500 are provided in the second charge injection layer (electron injection layer) 107 . Compared with the way of disposing the quantum dots 300 , 400 and 500 between the layers in the structure, disposing the quantum dots 300 , 400 and 500 in each layer in the structure can achieve different light extraction effects.

請一併參照第10圖、第11圖及第12圖。第10圖係繪示依據本新型第十實施例之有機發光模組200之結構示意圖;第11圖係繪示依據本新型第十一實施例之有機發光模組200之結構示意圖;第12圖係繪示依據本新型第十二實施例之有機發光模組200之結構示意圖。 Please refer to Figure 10, Figure 11 and Figure 12 together. FIG. 10 is a schematic structural diagram of an organic light-emitting module 200 according to a tenth embodiment of the present invention; FIG. 11 is a schematic structural diagram of an organic light-emitting module 200 according to an eleventh embodiment of the present invention; and FIG. 12 It is a schematic diagram showing the structure of the organic light emitting module 200 according to the twelfth embodiment of the present invention.

第10圖、第11圖及第12圖中之有機發光模組200結構與第4圖、第5圖及第6圖中之有機發光模組200結構大部分類似,同屬於底射型結構。因此將僅就差異性進行說明,且亦使用相同的編號表示類似的元件。前已述及,本新型將不同顏色之量子點300、400、500引入有機發光模組200結構中,以獲得更好的光轉換效率及色彩上之特性(例如:更高的色彩飽和度、發光均勻度及更廣的色域)。差異在於,第4圖、第5圖及第6圖中之有機發光模組200中,係將量子點300、400、500設置於結構中各層之間,而第10圖、第11圖及第12圖中之 有機發光模組200,係將量子點300、400、500設置於結構中各層內。舉例而言,第10圖中,係將量子點300、400、500設置於發光層205內;第11圖中,係將量子點300、400、500設置於第一電荷傳輸層204內;而第12圖中,係將量子點300、400、500設置於第一電荷注入層(電洞注入層)203內。相較於將量子點300、400、500設置於結構中各層之間的方式,將量子點300、400、500設置於結構中各層內可獲致不同的出光效果。 The structure of the organic light emitting module 200 in FIGS. 10 , 11 and 12 is mostly similar to the structure of the organic light emitting module 200 in FIGS. 4 , 5 and 6 , and both belong to the bottom-emission structure. Therefore only the differences will be explained, and the same numbers will also be used to refer to similar elements. As mentioned above, the present invention introduces quantum dots 300, 400, 500 of different colors into the structure of the organic light-emitting module 200 to obtain better light conversion efficiency and color characteristics (for example, higher color saturation, luminous uniformity and wider color gamut). The difference is that, in the organic light emitting module 200 shown in Figs. 4, 5 and 6, the quantum dots 300, 400 and 500 are arranged between the layers in the structure, while Fig. 10, Fig. 11 and Fig. 12 in the picture In the organic light-emitting module 200 , the quantum dots 300 , 400 and 500 are arranged in each layer of the structure. For example, in Figure 10, the quantum dots 300, 400, and 500 are arranged in the light-emitting layer 205; in Figure 11, the quantum dots 300, 400, and 500 are arranged in the first charge transport layer 204; and In FIG. 12 , the quantum dots 300 , 400 and 500 are arranged in the first charge injection layer (hole injection layer) 203 . Compared with the way of disposing the quantum dots 300 , 400 and 500 between the layers in the structure, disposing the quantum dots 300 , 400 and 500 in each layer in the structure can achieve different light extraction effects.

請一併參照第13圖及第14圖。第13圖係繪示依據本新型第十三實施例之有機發光模組製造方法之流程示意圖;第14圖係繪示依據本新型第十四實施例之有機發光模組製造方法之流程示意圖。 Please refer to Figure 13 and Figure 14 together. FIG. 13 is a schematic flow chart illustrating a method for manufacturing an organic light emitting module according to the thirteenth embodiment of the present invention; and FIG. 14 is a schematic flowchart illustrating a manufacturing method for an organic light emitting module according to the fourteenth embodiment of the present invention.

第13圖中,有機發光模組製造方法包含以下步驟:步驟S101為提供一基板;步驟S102為提供一第一電極,將其設置於基板上;步驟S103為提供一第一電荷傳輸層,將其設置於第一電極上;步驟S104為提供一發光層,將其設置於第一電荷傳輸層上;步驟S105為提供一第二電荷傳輸層,將其設置於發光層上;步驟S106為提供一第二電極,將其設置於第二電荷傳輸層上;步驟S107為提供多數量子點,以一散佈手段將所述多數量子點設置於發光層及第一電荷傳輸層之間、發光層及第二電荷傳輸層之間、第一電荷傳輸層及第一電極之間或第二電荷傳輸層及第二電極之間。 As shown in FIG. 13, the method for manufacturing an organic light emitting module includes the following steps: step S101 is to provide a substrate; step S102 is to provide a first electrode, which is arranged on the substrate; step S103 is to provide a first charge transport layer, It is arranged on the first electrode; Step S104 is to provide a light-emitting layer, and it is arranged on the first charge transport layer; Step S105 is to provide a second charge transport layer, and it is arranged on the light-emitting layer; Step S106 is to provide A second electrode is disposed on the second charge transport layer; in step S107, a plurality of quantum dots are provided, and the plurality of quantum dots are disposed between the light-emitting layer and the first charge transport layer, the light-emitting layer and the between the second charge transport layers, between the first charge transport layer and the first electrode, or between the second charge transport layer and the second electrode.

於第13圖中,將多數量子點設置於有機發光模組何層之間,將視實際製程狀況而定。舉例而言,若有機發光模 組屬於頂射型結構,則將多數量子點以散佈手段設置於發光層及第二電荷傳輸層之間或第二電荷傳輸層及第二電極之間;若有機發光模組屬於底射型結構,則將多數量子點以散佈手段設置於發光層及第一電荷傳輸層之間或第一電荷傳輸層及第一電極之間。 In Fig. 13, where most of the quantum dots are arranged between the layers of the organic light emitting module will depend on the actual process conditions. For example, if the organic light-emitting mode If the group belongs to the top-emission type structure, most quantum dots are disposed between the light-emitting layer and the second charge transport layer or between the second charge transport layer and the second electrode by means of dispersion; if the organic light-emitting module belongs to the bottom-emission type structure , most quantum dots are disposed between the light-emitting layer and the first charge transport layer or between the first charge transport layer and the first electrode by means of scattering.

第14圖中,有機發光模組製造方法包含以下步驟:步驟S201為提供一基板;步驟S202為提供一第一電極,將其設置於基板上;步驟S203為提供一第一電荷傳輸層,將其設置於第一電極上;步驟S204為提供一發光層,將其設置於第一電荷傳輸層上;步驟S205為提供一第二電荷傳輸層,將其設置於發光層上;步驟S206為提供一第二電極,將其設置於第二電荷傳輸層上;步驟207為提供多數量子點,以一散佈手段將所述的多數量子點設置於發光層內、第一電荷傳輸層內或第二電荷傳輸層內。 As shown in FIG. 14, the method for manufacturing an organic light emitting module includes the following steps: step S201 is to provide a substrate; step S202 is to provide a first electrode, which is arranged on the substrate; step S203 is to provide a first charge transport layer, to It is arranged on the first electrode; Step S204 is to provide a light-emitting layer, and it is arranged on the first charge transport layer; Step S205 is to provide a second charge transport layer, and it is arranged on the light-emitting layer; Step S206 is to provide A second electrode is disposed on the second charge transport layer; step 207 is to provide a plurality of quantum dots, and the plurality of quantum dots are disposed in the light-emitting layer, in the first charge transport layer or in the second in the charge transport layer.

於第14圖中,將多數量子點設置於有機發光模組何層內,將視實際製程狀況而定。舉例而言,若有機發光模組屬於頂射型結構,則將多數量子點以散佈手段設置於發光層或第二電荷傳輸層內;若有機發光模組屬於底射型結構,則將多數量子點以散佈手段設置於發光層內或第一電荷傳輸層內。 In Fig. 14, the layer in which most of the quantum dots are arranged in the organic light emitting module will depend on the actual process conditions. For example, if the organic light-emitting module is a top-emission type structure, most quantum dots are disposed in the light-emitting layer or the second charge transport layer by means of dispersion; if the organic light-emitting module is a bottom-emission type structure, most quantum dots The dots are disposed in the light emitting layer or in the first charge transport layer by means of scattering.

上述第13圖及第14圖中,散佈手段可使用例如化學溶膠法(chemical colloidal method)、自組成法(self-assembly method)、微影蝕刻法(lithography and etching)、分閘法(split-gate approach)、化學氣相沉積、氣相磊晶、蒸鍍、濺鍍、旋塗、轉印、電鍍等各式化學或物理方 法為之。因此可知,本新型所提出之有機發光模組,可使用已發展成熟的各式製程方法,將量子點引入結構中,無須額外開發新製程,可大幅降低製造成本。 As shown in Fig. 13 and Fig. 14 above, the dispersion method can be, for example, a chemical colloidal method, a self-assembly method, a lithography and etching method, or a split-gate method. gate approach), chemical vapor deposition, vapor phase epitaxy, evaporation, sputtering, spin coating, transfer printing, electroplating and other chemical or physical methods law for it. Therefore, it can be seen that the organic light-emitting module proposed by the present invention can use various well-developed process methods to introduce quantum dots into the structure, without the need to develop a new process, and can greatly reduce the manufacturing cost.

據上,本新型揭示之有機發光模組100、200,可精簡複雜之背光控制元件,降低製造成本。再者,將量子點300、400、500引入機發光模組100、200結構中,透過量子點300、400、500之材料特性,本新型揭示之有機發光模組100、200具有高的轉換效率、更廣視角、更廣色域及更長的生命週期。 According to the above, the organic light emitting modules 100 and 200 disclosed in the present invention can simplify the complicated backlight control elements and reduce the manufacturing cost. Furthermore, the quantum dots 300, 400 and 500 are introduced into the structure of the organic light-emitting modules 100 and 200. Through the material properties of the quantum dots 300, 400 and 500, the organic light-emitting modules 100 and 200 disclosed in the present invention have high conversion efficiency. , wider viewing angle, wider color gamut and longer life cycle.

雖然本新型已以實施方式揭露如上,然其並非用以限定本新型,任何熟習此技藝者,在不脫離本新型之精神和範圍內,當可作各種之更動與潤飾,因此本新型之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be determined by the scope of the appended patent application.

100:有機發光模組 100: organic light-emitting module

101:基板 101: Substrate

102:第一電極 102: The first electrode

102a:高反射金屬 102a: Highly reflective metal

103:第一電荷注入層 103: the first charge injection layer

104:第一電荷傳輸層 104: the first charge transport layer

105:發光層 105: Light-emitting layer

106:第二電荷傳輸層 106: Second charge transport layer

107:第二電荷注入層 107: Second charge injection layer

108:第二電極 108: Second electrode

300:量子點 300: Quantum Dots

400:量子點 400: Quantum Dots

500:量子點 500: Quantum Dots

Claims (18)

一種有機發光模組,其包含: An organic light-emitting module, comprising: 一基板; a substrate; 一第一電極,其設置於該基板上; a first electrode disposed on the substrate; 一第二電極,其相對該第一電極設置; a second electrode disposed opposite to the first electrode; 一第一電荷傳輸層,其設置靠近該第一電極; a first charge transport layer disposed close to the first electrode; 一第二電荷傳輸層,其設置靠近該第二電極; a second charge transport layer disposed close to the second electrode; 一發光層,其設置於該第一電荷傳輸層及該第二電荷傳輸層之間;以及 a light-emitting layer disposed between the first charge transport layer and the second charge transport layer; and 多數量子點,該些量子點可選地設置於該發光層及該第一電荷傳輸層之間、該發光層及該第二電荷傳輸層之間、該第一電荷傳輸層及該第一電極之間或該第二電荷傳輸層及該第二電極之間; A plurality of quantum dots, the quantum dots are optionally disposed between the light-emitting layer and the first charge transport layer, between the light-emitting layer and the second charge transport layer, the first charge transport layer and the first electrode between or between the second charge transport layer and the second electrode; 其中該些量子點具有一紅色、一綠色、一藍色或前述顏色任意組合之光色,且該發光層發射之一光線激發該些量子點而形成具有全彩頻譜之光色。 The quantum dots have a light color of red, green, blue or any combination of the foregoing colors, and a light emitted by the light-emitting layer excites the quantum dots to form a light color with a full-color spectrum. 如申請專利範圍第1項所述的有機發光模組,其中該基板為一透明基板。 The organic light-emitting module according to the claim 1, wherein the substrate is a transparent substrate. 如申請專利範圍第1項所述的有機發光模組,其中該第一電極或該第二電極為一透明電極。 The organic light emitting module as described in claim 1, wherein the first electrode or the second electrode is a transparent electrode. 如申請專利範圍第1項所述的有機發光模組,其中該第一電極或該第二電極為一反射電極。 The organic light-emitting module as described in claim 1, wherein the first electrode or the second electrode is a reflective electrode. 如申請專利範圍第1項所述的有機發光模組,其中該第一電荷傳輸層及該第二電荷傳輸層其中之一為一電子傳輸層,另一為一電洞傳輸層。 The organic light-emitting module of claim 1, wherein one of the first charge transport layer and the second charge transport layer is an electron transport layer, and the other is a hole transport layer. 如申請專利範圍第1項所述的有機發光模組,其中該第一電荷傳輸層、該第二電荷傳輸層及該發光層包含有機材料。 The organic light-emitting module of claim 1, wherein the first charge transport layer, the second charge transport layer and the light-emitting layer comprise organic materials. 如申請專利範圍第1項所述的有機發光模組,其中該發光層發射之該光線具有一藍色或一紫色之光色。 The organic light-emitting module as described in claim 1, wherein the light emitted by the light-emitting layer has a blue or a violet light color. 如申請專利範圍第7項所述的有機發光模組,其中該發光層發射之該光線之波長隨施加於該第一電極及該第二電極間之電壓變化而改變。 The organic light-emitting module as claimed in claim 7, wherein the wavelength of the light emitted by the light-emitting layer changes as the voltage applied between the first electrode and the second electrode changes. 如申請專利範圍第1項所述的有機發光模組,其中該些量子點彼此堆疊排列構成對應由該發光層發射之該光線所構成之一可視圖像之多數畫素單元。 The organic light-emitting module of claim 1, wherein the quantum dots are stacked and arranged to form a plurality of pixel units corresponding to a visible image formed by the light emitted by the light-emitting layer. 一種有機發光模組,其包含: An organic light-emitting module, comprising: 一基板; a substrate; 一第一電極,其設置於該基板上; a first electrode disposed on the substrate; 一第二電極,其相對該第一電極設置; a second electrode disposed opposite to the first electrode; 一第一電荷傳輸層,其設置靠近該第一電極; a first charge transport layer disposed close to the first electrode; 一第二電荷傳輸層,其設置靠近該第二電極; a second charge transport layer disposed close to the second electrode; 一發光層,其設置於該第一電荷傳輸層及該第二電荷傳輸層之間; a light-emitting layer disposed between the first charge transport layer and the second charge transport layer; 多數量子點,該些量子點可選地設置於該發光層內、該第一電荷傳輸層內或該第二電荷傳輸層內,且該些量子點具有一紅色、一綠色、一藍色或前述顏色任意組合之光色; Most quantum dots, the quantum dots are optionally disposed in the light-emitting layer, the first charge transport layer or the second charge transport layer, and the quantum dots have a red, a green, a blue or Light color of any combination of the aforementioned colors; 其中該發光層發射之一光線激發該些量子點而形成具有全彩頻譜之光色。 Wherein the light emitting layer emits a light to excite the quantum dots to form a light color with a full color spectrum. 如申請專利範圍第10項所述的有機發光模組,其中該基板為一透明基板。 The organic light-emitting module of claim 10, wherein the substrate is a transparent substrate. 如申請專利範圍第10項所述的有機發光模組,其中該第一電極或該第二電極為一透明電極。 The organic light emitting module of claim 10, wherein the first electrode or the second electrode is a transparent electrode. 如申請專利範圍第10項所述的有機發光模組,其中該第一電極或該第二電極為一反射電極。 The organic light-emitting module of claim 10, wherein the first electrode or the second electrode is a reflective electrode. 如申請專利範圍第10項所述的有機發光模組,其中該第一電荷傳輸層及該第二電荷傳輸層其中之一為一電子傳輸層,另一為一電洞傳輸層。 The organic light-emitting module of claim 10, wherein one of the first charge transport layer and the second charge transport layer is an electron transport layer, and the other is a hole transport layer. 如申請專利範圍第10項所述的有機發光模組,其中該第一電荷傳輸層、該第二電荷傳輸層及該發光層包含有機材料。 The organic light-emitting module of claim 10, wherein the first charge transport layer, the second charge transport layer and the light-emitting layer comprise organic materials. 如申請專利範圍第10項所述的有機發光模組,其中該發光層發射之該光線具有一藍色或一紫色之光色。 The organic light-emitting module of claim 10, wherein the light emitted by the light-emitting layer has a blue or a purple light color. 如申請專利範圍第16項所述的有機發光模組,其中該發光層發射之該光線之波長隨施加於該第一電極及該第二電極間之電壓變化而改變。 The organic light-emitting module of claim 16, wherein the wavelength of the light emitted by the light-emitting layer changes with the voltage applied between the first electrode and the second electrode. 如申請專利範圍第10項所述的有機發光模組,其中該些量子點彼此堆疊排列構成對應由該發光層發射之該光線所構成之一可視圖像之多數畫素單元。 The organic light-emitting module of claim 10, wherein the quantum dots are stacked and arranged to form a plurality of pixel units corresponding to a visible image formed by the light emitted by the light-emitting layer.
TW110212526U 2021-10-25 2021-10-25 Organic lighting module TWM625840U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110212526U TWM625840U (en) 2021-10-25 2021-10-25 Organic lighting module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110212526U TWM625840U (en) 2021-10-25 2021-10-25 Organic lighting module

Publications (1)

Publication Number Publication Date
TWM625840U true TWM625840U (en) 2022-04-21

Family

ID=82198299

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110212526U TWM625840U (en) 2021-10-25 2021-10-25 Organic lighting module

Country Status (1)

Country Link
TW (1) TWM625840U (en)

Similar Documents

Publication Publication Date Title
US6608439B1 (en) Inorganic-based color conversion matrix element for organic color display devices and method of fabrication
Wood et al. Colloidal quantum dot light-emitting devices
US9419174B2 (en) Transparent quantum dot light-emitting diodes with dielectric/metal/dielectric electrode
KR101274068B1 (en) Quantum Dot Light Emitting Diode Device and Display Using the Same
JP5176459B2 (en) White light emitting device
CN100440528C (en) Circuit arrangement for AC driving of organic diodes
WO2017140047A1 (en) Light-emitting device, preparation method therefor and display apparatus
EP3091588A1 (en) Display panel and display device
WO2014201712A1 (en) Light emitting device, display panel and manufacturing method thereof
US20140374697A1 (en) Light-emitting element, display panel and manufacturing method thereof
WO2016058223A1 (en) Method for fabrication of oled device, and oled device resulting from said method
WO2016058224A1 (en) Method for fabrication of oled device, and oled device resulting from said method
CN111048671B (en) Inorganic light emitting body, light emitting diode having the same, and light emitting device
CN106856205B (en) Organic light emitting display device, method of manufacturing the same, and organic light emitting display apparatus
JP5049503B2 (en) Light emitting device and method for manufacturing light emitting device
TWI740379B (en) Lighting module
US20240013710A1 (en) Display device and pixel lighting control method therefor
TWM625840U (en) Organic lighting module
TW202318656A (en) Organic lighting module and manufacturing method thereof
KR102364411B1 (en) Quantum dot light-emitting device, method of fabricating the same and display device including quantum dot light-emitting device
US20210167123A1 (en) Micro led display device
KR100864758B1 (en) Full color organic electroluminescence device
Kovác et al. Advanced light emitting devices for optoelectronic applications
KR20150114388A (en) White organic light emitting device
KR20200038404A (en) Organic electroluminescence device and display panel comprising the same