TWM624923U - 生物感測晶片 - Google Patents
生物感測晶片 Download PDFInfo
- Publication number
- TWM624923U TWM624923U TW110214802U TW110214802U TWM624923U TW M624923 U TWM624923 U TW M624923U TW 110214802 U TW110214802 U TW 110214802U TW 110214802 U TW110214802 U TW 110214802U TW M624923 U TWM624923 U TW M624923U
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- oxide
- high dielectric
- dielectric film
- biosensor chip
- Prior art date
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
本創作提供一種生物感測晶片,其包含基板、第一氧化層、高介電薄膜層、第二氧化層、閘極金屬層、電解質層及覆蓋層。其中,基板包含感測器區域及記憶體區域,且第一氧化層設置於基板上,並且高介電薄膜層設置於第一氧化層上。並且,第二氧化層設置於記憶體區域的高介電薄膜層上,且閘極金屬層設置於第二氧化層上。此外,電解質層設置於感測器區域的高介電薄膜層上,而覆蓋層設置於感測器區域的高介電薄膜層上且暴露出電解質層的一部分。藉由上述配置,本創作之生物感測晶片將感測器結構及記憶體結構形成於同一基板上,並使其共用高介電薄膜層,進而大幅簡化生物感測晶片之製程,並且提升生物感測晶片進行微型化設計之可行性。
Description
本創作涉及一種生物感測晶片,且特別涉及一種整合有感測器結構及記憶體結構的生物感測晶片。
全球已逐漸邁入高齡化的社會形態,老年人口之比例大幅增加,醫療保健及照護為當前相當重要之課題,其中尤以「居家照顧(Home care)」即時監控系統的建置最具發展潛力與市場價值。此外,近年來5G通訊技術逐漸發展成熟,帶動了5G遠距醫療技術的開發,其中以生物感測元件為主要關鍵技術之一。
生物感測晶片為結合半導體精密製程技術與生物醫學科技,且具微小化、快速、即時監控之感測元件。其中,上述生物感測晶片可以用於量測晶片的下電極與待測流體的參考電極之間的電位-電容變化,並且其具有初始反應快速、微型化潛力、半導體記憶體製程技術相容性及低成本等優點。
然而,一般感測元件通常需要透過設置額外的結構以電性連接另一個記憶體元件,進而透過記憶體元件將感測元件所量測到的電訊號進行及時訊號放大/處理,其將不利於生物感測晶片的微型化設計。因此,如果可以整合感測元件及作為及時訊號放大/處理之記憶體元件於同一基板上,以形成整合有感測元件及記憶體元件之生物感測晶片,將可以大幅簡化製程步驟、降低製程成本,並且可以提升生物感測晶片進一步微型化設計之可行性。
為此,如何設計出一種整合有感測元件及記憶體元件的生物感測晶片,進而解決先前技術的技術問題,乃為本創作之創作人所研究的重要課題。
有鑑於此,本創作人乃累積多年相關領域之研究及實務經驗,創作出一種生物感測晶片,以改善先前技術中所述的問題。
為了解決上述先前技術中存在的問題,本創作提供一種生物感測晶片生物感測晶片,其包含:基板,係具有第一表面,且第一表面包含感測器區域及記憶體區域;第一氧化層,係設置於第一表面上;高介電薄膜層,係設置於第一氧化層上;第二氧化層,係設置於記憶體區域的高介電薄膜層上;閘極金屬層,係設置於第二氧化層上;以及電解質層,係設置於感測器區域的高介電薄膜層上。
較佳地,生物感測晶片包含一覆蓋層,其設置於感測器區域的高介電薄膜層上並包圍電解質層,且覆蓋層暴露電解質層的一部分。
較佳地,覆蓋層包含環氧樹脂膠。
較佳地,基板包含相對於第一表面的一第二表面,並且一印刷電路板與基板之第二表面透過一黏著層以連接。
較佳地,黏著層包含銀膠。
較佳地,生物感測晶片於感測器區域形成有電解質-絕緣層-半導體(electrolyte-insulator-semiconductor,EIS)結構,並且於記憶體區域形成有金屬-氧化層-高介電材料-氧化層-半導體(metal-oxide-high-k dielectric-oxide-semiconductor,MOHOS)結構,並且印刷電路板包含電性連接電解質-絕緣層-半導體結構及金屬-氧化層-高介電材料-氧化層-半導體結構的至少一焊墊。
較佳地,感測器區域與記憶體區域之間相間隔預定距離。
較佳地,高介電薄膜層的厚度介於12至50nm,且高介電薄膜層為摻雜或未摻雜。
較佳地,第一氧化層及第二氧化層包含二氧化矽,且第二氧化層的厚度介於10至20nm。
較佳地,高介電薄膜層之材料係選自於由氧化鋁(Al
2O
3)、五氧化二鉭(Ta
2O
5)、三氧化鎢(WO
3)、二氧化錫(SnO
2)、氧化鋅(ZnO)、氧化鋯(ZrO
2)、二氧化鉿(HfO
2)、二氧化鈦(TiO
2)、氧化釓(Gd
2O
3)、三氧化二釤(Sm
2O
3)、三氧化二鐠(Pr
2O
3)及氮化矽(Si
3N
4)所組成之群組中的至少一者。
綜上所述,本創作之生物感測晶片於基板之感測器區域形成有電解質-絕緣層-半導體(electrolyte-insulator-semiconductor,EIS)結構作為感測單元,且於同一基板之記憶體區域形成有金屬-氧化層-高介電材料-氧化層-半導體(metal-oxide-high-k dielectric-oxide-semiconductor,MOHOS)結構作為記憶體單元,並且上述感測單元及記憶體單元共用高介電薄膜層,使得高介電薄膜層可以分別作為感測薄膜及記憶體薄膜使用。藉由上述配置,本創作之生物感測晶片可以將感測器結構及記憶體結構整合至同一基板上,以大幅簡化生物感測晶片之製程步驟、降低製程成本,並且可以減少設置感測器及記憶體所需的空間,進而提升生物感測晶片進一步微型化設計之可行性。
為利 貴審查員瞭解本創作之技術特徵、內容與優點及其所能達成之功效,茲將本創作配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明之用,未必為本創作實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本創作於實際實施上的權利範圍,合先敘明。
應當理解的是,儘管術語「第一」、「第二」等在本創作中可用於描述各種元件、部件、區域、層及/或部分,但是這些元件、部件、區域、層及/或部分不應受這些術語的限制。這些術語僅用於將一個元件、部件、區域、層及/或部分與另一個元件、部件、區域、層及/或部分區分開。因此,下文討論的「第一元件」、「第一部件」、「第一區域」、「第一層」及/或「第一部分」可以被稱為「第二元件」、「第二部件」、「第二區域」、「第二層」及/或「第二部分」,而不悖離本創作的精神和教示。
另外,術語「包含」及/或「包括」指所述特徵、區域、整體、步驟、操作、元件及/或部件的存在,但不排除一個或多個其他特徵、區域、整體、步驟、操作、元件、部件及/或其組合的存在或添加。
除非另有定義,本創作所使用的所有術語(包括技術和科學術語)具有與本創作所屬技術領域具有通常知識者通常理解的相同含義。可以理解的是,諸如在通常使用的字典中定義的那些術語應當被解釋為具有與它們在相關技術和本創作的上下文中的含義一致的定義,並且將不被解釋為理想化或過度正式的意義,除非本文中明確地這樣定義。
請參閱第1圖至第3圖,第1圖為根據本創作實施例之生物感測晶片的示意圖;第2圖為根據本創作實施例之生物感測晶片的電解質-絕緣層-半導體結構的示意圖;第3圖為根據本創作實施例之生物感測晶片的金屬-氧化層-高介電材料-氧化層-半導體結構的示意圖。
如第1圖所繪示,本創作提供一種生物感測晶片1,其包含基板20、第一氧化層221、241、高介電薄膜層222、242、第二氧化層243、閘極金屬層244、電解質層223及覆蓋層224。其中,基板20包含彼此相間隔一預定距離的感測器區域22及記憶體區域24,且第一氧化層221、241設置於基板20的第一表面上,並且高介電薄膜層222、242設置於第一氧化層221、241上。
進一步地,電解質層223設置於感測器區域22的高介電薄膜層222上,而覆蓋層224設置於感測器區域22的高介電薄膜層222上並包圍電解質層223,以暴露出電解質層223的一部分。並且,第二氧化層243設置於記憶體區域24的高介電薄膜層242上,且閘極金屬層244設置於第二氧化層243上。
此外,在本實施例中,使用矽基板作為基板20,但本創作不限定於此,在其他實施例中,可以根據使用者需求及製程需求選擇其他種類的合適基板。
進一步地,第一氧化層221、241及第二氧化層243包含二氧化矽,且第二氧化層243的厚度介於10至20nm。並且,高介電薄膜層222、242的厚度介於12至50nm,且高介電薄膜層222、242可以為摻雜或未摻雜。其中,高介電薄膜層222、242之材料係選自於由氧化鋁(Al
2O
3)、五氧化二鉭(Ta
2O
5)、三氧化鎢(WO
3)、二氧化錫(SnO
2)、氧化鋅(ZnO)、氧化鋯(ZrO
2)、二氧化鉿(HfO
2)、二氧化鈦(TiO
2)、氧化釓(Gd
2O
3)、三氧化二釤(Sm
2O
3)、三氧化二鐠(Pr
2O
3)及氮化矽(Si
3N
4)所組成之群組中的至少一者,且在本實施例中,使用氧化鋁作為高介電薄膜層222、242之材料。
藉由上述配置,本創作之生物感測晶片1可以於感測器區域22形成有電解質-絕緣層-半導體(electrolyte-insulator-semiconductor,EIS)結構,其可以作為生物感測晶片1之感測單元,並且可以於記憶體區域24形成有金屬-氧化層-高介電材料-氧化層-半導體(metal-oxide-high-k dielectric-oxide-semiconductor,MOHOS)結構,其可以作為生物感測晶片1之記憶體單元。其中,上述電解質-絕緣層-半導體結構以及金屬-氧化層-高介電材料-氧化層-半導體結構將在下文中參照第2圖及第3圖以詳細說明。
如第2圖所繪示,形成於感測器區域22的電解質-絕緣層-半導體結構係作為本創作之生物感測晶片1的感測單元,其包含矽基板20、第一氧化層221、高介電薄膜層222、電解質層223及覆蓋層224。其中,第一氧化層221設置於矽基板20的第一表面上,高介電薄膜層222設置於第一氧化層221上,且呈液態的電解質層223設置於高介電薄膜層222上,並且覆蓋層224設置為包覆矽基板20、第一氧化層221、高介電薄膜層222及電解質層223,且暴露出電解質層223的一部分。在本實施例中,使用環氧樹脂膠作為覆蓋層224,並且使用葡萄糖液作為電解質層223,但本創作不限定於此。在其他實施例中,可以根據使用者需求及製程需求選擇合適的材料作為覆蓋層及電解質層。
進一步地,可以使用上述電解質-絕緣層-半導體結構係作為生物感測晶片1的感測單元,透過將待檢測之生物樣本與暴露出的作為生物待測液體的電解質層223接觸,將改變電解質層223的表面電位,進而產生電壓位移。因此,可以透過偵測電壓的變化以完成對生物樣本之檢測。此外,生物樣本可以包含但不限於唾液、血液、血清、尿液、脊隨液、腦脊隨液及淋巴液等自人體中分離出的體液,或者可以包含細胞培養物、食物樣本以及諸如空氣、水、泥土、植物的環境樣本等。
如第3圖所繪示,形成於記憶體區域24的金屬-氧化層-高介電材料-氧化層-半導體結構係作為本創作之生物感測晶片1的記憶體單元,其包含矽基板20,且矽基板20上依序設置有第一氧化層241、高介電薄膜層242、第二氧化層243及閘極金屬層244。進一步地,可以使用上述電解質-絕緣層-半導體結構作為生物感測晶片1的記憶體單元,其可以電性連接感測單元,以將感測單元所量測到的電壓變化之電訊號進行及時訊號放大/處理。
具體地,本創作之生物感測晶片1可以透過將待檢測之生物樣本與感測單元之暴露出的電解質層223接觸,以改變電解質層223的表面電位,進而產生電壓位移,並且感測單元所量測到的電壓變化之電訊號可以傳輸至記憶體單元以進行及時訊號放大/處理。其中,生物樣本可以包含但不限於唾液、血液、血清、尿液、脊隨液、腦脊隨液及淋巴液等自人體中分離出的體液,或者可以包含細胞培養物、食物樣本以及諸如空氣、水、泥土、植物的環境樣本等。
也就是說,上述作為感測單元的電解質-絕緣層-半導體結構以及作為記憶體單元的金屬-氧化層-高介電材料-氧化層-半導體結構的第一氧化層221、241及高介電薄膜層222、242可以使用相同的材料,使得上述電解質-絕緣層-半導體結構以及金屬-氧化層-高介電材料-氧化層-半導體結構可以共用第一氧化層及高介電薄膜層,進而設置於同一基板20上,以簡化生物感測晶片1之製程步驟、降低製程成本,並且可以減少設置感測器及記憶體所需的空間,進而提升生物感測晶片1進一步微型化設計之可行性。
請參閱第4圖,第4圖為根據本創作另一實施例之生物感測晶片的示意圖。
如第4圖所繪示,根據本創作另一實施例之生物感測晶片2進一步設置有一印刷電路板10,且基板20包含相對於第一表面的一第二表面,並且印刷電路板10與基板20之第二表面之間設置有黏著層12,以使印刷電路板10與基板20彼此連接。在本實施例中,使用銀膠作為黏著層12,但本創作不限定於此。在其他實施例中,可以根據使用者需求及製程需求選擇合適的材料作為黏著層。
此外,印刷電路板10可以包含至少一焊墊14,其可以電性連接至作為感測單元之電解質-絕緣層-半導體結構以及作為記憶體單元之金屬-氧化層-高介電材料-氧化層-半導體結構。具體來說,在本實施例中,印刷電路板10上設置有電性連接電解質-絕緣層-半導體結構的第一焊墊14以及電性連接金屬-氧化層-高介電材料-氧化層-半導體結構的第二焊墊14,使得本創作之生物感測晶片2可以透過上述焊墊14電性連接其他的外部裝置以進行進一步的應用。
此外,本創作之生物感測晶片2的製作方法包含晶片薄膜製程及構裝製程,其中晶片薄膜製程包含以下步驟:使用化學氣相沉積於矽基板20的第一表面上成長第一氧化層221、241,其材料為二氧化矽;定義感測器區域22的範圍;使用射頻濺鍍(RF Sputter)於矽基板20上形成摻雜雜或未摻雜之高介電薄膜層222、242,其厚度介於12至50nm;對感測器區域22的高介電薄膜層222進行表面處理,例如快速熱退火(rapid thermal anneal,RTA);設置電解質層223於高介電薄膜層222上;定義記憶體區域24的範圍;使用化學氣相沉積於記憶體區域24的高介電薄膜層242上形成第二氧化層243,其厚度介於10至20nm,且材料為二氧化矽;使用化學氣相沉積於第二氧化層243上形成閘極金屬層244;以及,在基板的第二表面上鍍鋁。藉由上述步驟,可以初步完成本創作之生物感測晶片2。
並且,在完成晶片薄膜製程後接續執行構裝製程,其包含以下步驟:使用銀膠作為黏著層12以將上述生物感測晶片2的基板20之第二表面黏附於一印刷電路板10的銅箔上;以及,使用環氧樹脂膠作為覆蓋層224以包覆電解質層223的周圍,並暴露出電解質層223的一部分作為感測窗口,其尺寸約為5mm × 5mm。藉由上述製程,即可形成本創作之生物感測晶片2。此外,由於基板20與印刷電路板10的銅箔接觸的第二表面鍍有鋁,因此基板20可以與印刷電路板10電性連接並且固定於印刷電路板10的銅箔上。
綜上所述,本創作之生物感測晶片於基板之感測器區域形成有電解質-絕緣層-半導體(EIS)結構作為感測單元,且於同一基板之記憶體區域形成有金屬-氧化層-高介電材料-氧化層-半導體(MOHOS)結構作為記憶體單元,並且上述感測單元及記憶體單元共用高介電薄膜層,使得高介電薄膜層可以分別作為感測薄膜及記憶體薄膜使用。藉由上述配置,本創作之生物感測晶片可以將感測器結構及記憶體結構整合至同一基板上,以大幅簡化生物感測晶片之製程步驟、降低製程成本,並且可以減少設置感測器及記憶體所需的空間,進而提升生物感測晶片進一步微型化設計之可行性。
1,2:生物感測晶片
10:印刷電路板
12:黏著層
14:焊墊
20:基板
22:感測器區域
24:記憶體區域
221,241:第一氧化層
222,242:高介電薄膜層
223:電解質層
224:覆蓋層
243:第二氧化層
244:閘極金屬層
為了更清楚地說明本創作的技術方案,下面將對實施例中所需要使用的圖式作簡單地介紹;
第1圖為根據本創作實施例之生物感測晶片的示意圖;
第2圖為根據本創作實施例之生物感測晶片的電解質-絕緣層-半導體結構的示意圖;
第3圖為根據本創作實施例之生物感測晶片的金屬-氧化層-高介電材料-氧化層-半導體結構的示意圖;以及
第4圖為根據本創作另一實施例之生物感測晶片的示意圖。
1:生物感測晶片
20:基板
22:感測器區域
24:記憶體區域
221,241:第一氧化層
222,242:高介電薄膜層
223:電解質層
224:覆蓋層
243:第二氧化層
244:閘極金屬層
Claims (10)
- 一種生物感測晶片,其包含: 一基板,係具有一第一表面,且該第一表面包含一感測器區域及一記憶體區域; 一第一氧化層,係設置於該第一表面上; 一高介電薄膜層,係設置於該第一氧化層上; 一第二氧化層,係設置於該記憶體區域的該高介電薄膜層上; 一閘極金屬層,係設置於該第二氧化層上;以及 一電解質層,係設置於該感測器區域的該高介電薄膜層上。
- 如請求項1所述之生物感測晶片,其包含一覆蓋層,係設置於該感測器區域的該高介電薄膜層上並包圍該電解質層,且該覆蓋層暴露該電解質層的一部分。
- 如請求項2所述之生物感測晶片,其中該覆蓋層包含環氧樹脂膠。
- 如請求項1所述之生物感測晶片,其中該基板包含相對於該第一表面的一第二表面,並且一印刷電路板與該基板之該第二表面透過一黏著層以連接。
- 如請求項4所述之生物感測晶片,其中該黏著層包含銀膠。
- 如請求項4所述之生物感測晶片,其中該生物感測晶片於該感測器區域形成有一電解質-絕緣層-半導體結構,並且於該記憶體區域形成有一金屬-氧化層-高介電材料-氧化層-半導體結構,並且該印刷電路板包含電性連接該電解質-絕緣層-半導體結構及該金屬-氧化層-高介電材料-氧化層-半導體結構的至少一焊墊。
- 如請求項1所述之生物感測晶片,其中該感測器區域與該記憶體區域之間相間隔一預定距離。
- 如請求項1所述之生物感測晶片,其中該高介電薄膜層的厚度介於12至50nm,且該高介電薄膜層為摻雜或未摻雜。
- 如請求項1所述之生物感測晶片,其中該第一氧化層及該第二氧化層包含二氧化矽,且該第二氧化層的厚度介於10至20nm。
- 如請求項1所述之生物感測晶片,其中該高介電薄膜層之材料係選自於由氧化鋁、五氧化二鉭、三氧化鎢、二氧化錫、氧化鋅、氧化鋯、二氧化鉿、二氧化鈦、氧化釓、三氧化二釤、三氧化二鐠及氮化矽所組成之群組中的至少一者。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110214802U TWM624923U (zh) | 2021-12-13 | 2021-12-13 | 生物感測晶片 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110214802U TWM624923U (zh) | 2021-12-13 | 2021-12-13 | 生物感測晶片 |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM624923U true TWM624923U (zh) | 2022-03-21 |
Family
ID=81748100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110214802U TWM624923U (zh) | 2021-12-13 | 2021-12-13 | 生物感測晶片 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM624923U (zh) |
-
2021
- 2021-12-13 TW TW110214802U patent/TWM624923U/zh unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI422818B (zh) | 氫離子感測場效電晶體及其製造方法 | |
TWI377342B (en) | Method for forming an extended gate field effect transistor (egfet) based sensor and the sensor formed thereby | |
US20160266102A1 (en) | Electrical biosensor for detecting a substance in a bodily fluid, and method and system for same | |
Huck et al. | Capacitively coupled electrolyte-conductivity sensor based on high-k material of barium strontium titanate | |
Pan et al. | Structural and sensing characteristics of Dy2O3 and Dy2TiO5 electrolyte− insulator− semiconductor pH sensors | |
US20160045144A1 (en) | Metal-oxide-semiconductor capacitor based sensor | |
TWI223062B (en) | Manufacture of an array pH sensor and device of its readout circuit | |
CN106093138A (zh) | 通过金属氧化物检测气体的传感器的制造方法及传感器 | |
JPH0374947B2 (zh) | ||
TWM624923U (zh) | 生物感測晶片 | |
TWI244702B (en) | Titanium oxide thin film for extended gate field effect transistor using reactive sputtering | |
Yang et al. | Improved sensitivity and stability for SnO ion-sensitive field-effect transistor-based ph sensor by electrical double layer gate and AlO sensitive film | |
CN101101272B (zh) | 一种生化微传感集成芯片、制作及模具制备方法 | |
Xie et al. | Real time cytokine quantification in wound fluid samples using nanowell impedance sensing | |
CN116429841A (zh) | 多栅结构场效应晶体管pH传感器及制造方法 | |
Palan et al. | CMOS ISFET-based structures for biomedical applications | |
JPH0233979B2 (ja) | Yokyokusankaarumikanshitsumakunoseiho | |
TWI417539B (zh) | Nickel oxide base pH sensor and its manufacturing method | |
JPS61120958A (ja) | ガラス応答膜を有するイオンセンサ | |
Escobedo et al. | Flexible Potentiostat Readout Circuit Patch for Electrochemical and Biosensor Applications | |
EP4368098A1 (en) | A sensor device and a method for manufacturing a sensor device | |
TWI243899B (en) | Manufacturing process and structure of bio sample ion sensing field effect transistor | |
TW201000639A (en) | Separative extended gate field effect transistor based uric acid sensor, system and the method for forming the uric acid sensor | |
TWI388824B (zh) | Ion field - effect transistor with samarium titanium oxide and its ion sensing electrode | |
Lin et al. | MEMS Cavity-Based pH Image Biosensor for Wound Dressings to Monitor Hard-to-Cure Wounds |