TWM618640U - Distributed synchronization system - Google Patents
Distributed synchronization system Download PDFInfo
- Publication number
- TWM618640U TWM618640U TW110207391U TW110207391U TWM618640U TW M618640 U TWM618640 U TW M618640U TW 110207391 U TW110207391 U TW 110207391U TW 110207391 U TW110207391 U TW 110207391U TW M618640 U TWM618640 U TW M618640U
- Authority
- TW
- Taiwan
- Prior art keywords
- synchronization
- signal
- synchronization device
- control signal
- management device
- Prior art date
Links
Images
Landscapes
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
Description
本新型是有關於一種通訊同步機制,且特別是有關於一種分散式同步系統。The present invention relates to a communication synchronization mechanism, and particularly relates to a distributed synchronization system.
請參照圖1A,其是傳統框架交換器(chassis switch)的示意圖。如圖1A所示,在傳統框架交換器110中,各個線卡(line card,LC)112係獨立連接於控制平面(control plane,CP)111上,以進行時間、相位及頻率的同步。Please refer to FIG. 1A, which is a schematic diagram of a traditional chassis switch. As shown in FIG. 1A, in the
請參照圖1B,其是分散式分解框架(distributed disaggregated chassis,DDC)系統的示意圖。有別於圖1A的傳統框架交換器110,在圖1B中的DDC系統120中,CP 121與LC 122之間係採用交織連接(fabric)的方式連接。然而,此種連接方式並不支精確時間協定(precision time protocol,PTP)時間戳記、SyncE或其他硬體時鐘信號傳輸功能,而習知技術中一般會另設置連接於DDC系統的管理交換器,以解決上述問題。Please refer to FIG. 1B, which is a schematic diagram of a distributed disaggregated chassis (DDC) system. Different from the
請參照圖2,其是設置有管理交換器的DDC系統的示意圖。如圖2所示,DDC系統200可包括管理交換器201、多個CP及LC(各LC例如可視為一個電信邊界時鐘(telecom boundary clock,T-BC)),而其個別可透過10吉位元乙太網路介面(以下略稱為10G介面)連接於管理交換器201。在圖2中,管理交換器201例如是具備IEEE 1588及同步乙太網路(Synchronous Ethernet,SyncE)能力的管理裝置,並可作為邊界時鐘(boundary clock,BC)以同步於DDC系統200中的LC。Please refer to Figure 2, which is a schematic diagram of a DDC system with a management switch. As shown in FIG. 2, the
在此情況下,管理交換器201可經配置以基於主時鐘(grandmaster,GM)202所提供的PTP封包來讓DDC系統200中的各個LC進行同步,進而讓其他後端的裝置(例如所示的電信時間僕時鐘(Telecom Time Slave Clock,T-TSC)、eNodeB等)進行同步。In this case, the
然而,圖2所示的二層式DDC架構(即,一層為管理交換器201,另一層為DDC系統200中的多個LC)中,由於管理交換器201的運作一般將會有5~10ns的時間誤差,而DDC系統200中的各LC在進行同步時亦會有5~10ns的時間誤差,因此將相應地影響同步時的準確性。However, in the two-layer DDC architecture shown in FIG. 2 (that is, one layer is the
有鑑於此,本新型提供一種分散式同步系統,其可用於解決上述技術問題。In view of this, the present invention provides a distributed synchronization system, which can be used to solve the above technical problems.
本新型提供一種分散式同步系統,其包括彼此串接的多個同步裝置,其中前述同步裝置中的第i個同步裝置包括網路輸入介面、同步模組及網路輸出介面。網路輸入介面包括多個第一輸入腳位、多個第二輸入腳、位多個1秒脈衝(pulse per second,PPS)信號輸入腳位及多個日時間信號輸入腳位。前述第一輸入腳位用以從前述同步裝置中的第i-1個同步裝置接收 ,其中 ,N為前述同步裝置的總數, 為所述第i-1個同步裝置產生的頻率信號。前述第二輸入腳位用以從所述第i-1個同步裝置接收一控制信號,其中控制信號要求所述第i個同步裝置同步於所述第i-1個同步裝置。前述1PPS信號輸入腳位用以從所述第i-1個同步裝置接收 ,其中 為所述第i-1個同步裝置產生的1PPS信號。前述日時間信號輸入腳位用以從所述第i-1個同步裝置接收 ,其中 為所述第i-1個同步裝置產生的日時間資訊。同步模組耦接於網路輸入介面及網路輸出介面之間,並經配置以:基於控制信號、 、 、 執行與所述第i-1個同步裝置的一同步操作,並相應地產生另一同步信號及另一控制信號;以及透過網路輸出介面發送所述另一同步信號及所述另一控制信號。 The present invention provides a distributed synchronization system, which includes a plurality of synchronization devices connected in series, wherein the i-th synchronization device among the aforementioned synchronization devices includes a network input interface, a synchronization module, and a network output interface. The network input interface includes multiple first input pins, multiple second input pins, multiple pulse per second (PPS) signal input pins, and multiple time-of-day signal input pins. The aforementioned first input pin is used to receive from the i-1th synchronization device in the aforementioned synchronization device ,in , N is the total number of the aforementioned synchronization devices, Is the frequency signal generated by the i-1th synchronization device. The aforementioned second input pin is used to receive a control signal from the i-1th synchronization device, wherein the control signal requires the i-th synchronization device to synchronize with the i-1th synchronization device. The aforementioned 1PPS signal input pin is used to receive from the i-1th synchronization device ,in Is the 1PPS signal generated by the i-1th synchronization device. The aforementioned time-of-day signal input pin is used to receive from the i-1th synchronization device ,in The time of day information generated by the i-1th synchronization device. The synchronization module is coupled between the network input interface and the network output interface, and is configured to: based on control signals, , , Perform a synchronization operation with the i-1th synchronization device, and generate another synchronization signal and another control signal accordingly; and send the other synchronization signal and the another control signal through the network output interface .
本新型提供一種分散式同步系統,其包括彼此串接的多個同步裝置,其中前述同步裝置中的第1個同步裝置包括網路輸入介面、同步模組及網路輸出介面。網路輸入介面包括多個第一輸入腳位、多個第二輸入腳位、多個1PPS信號輸入腳位及多個日時間信號輸入腳位。前述第一輸入腳位用以從一管理裝置接收 ,其中 為一管理裝置經解譯一精確時間協定封包而取得的一參考頻率信號。前述第二輸入腳位用以從管理裝置接收一參考控制信號,其中參考控制信號要求所述第1個同步裝置同步於管理裝置。前述1PPS信號輸入腳位,其用以從管理裝置接收 ,其中 為管理裝置經解譯精確時間協定封包而取得的一參考1秒脈衝信號。前述日時間信號輸入腳位用以從管理裝置接收 ,其中 為管理裝置經解譯精確時間協定封包而取得的一參考日時間資訊。同步模組耦接於網路輸入介面及網路輸出介面之間,並經配置以:基於參考控制信號、 、 、 執行與管理裝置的一同步操作,並相應地產生一第一同步信號及一第一控制信號;以及透過網路輸出介面發送第一同步信號及第一控制信號至前述同步裝置中的第2個同步裝置。 The present invention provides a distributed synchronization system, which includes a plurality of synchronization devices connected in series with each other, wherein the first synchronization device among the aforementioned synchronization devices includes a network input interface, a synchronization module, and a network output interface. The network input interface includes multiple first input pins, multiple second input pins, multiple 1PPS signal input pins, and multiple day time signal input pins. The aforementioned first input pin is used to receive from a management device ,in It is a reference frequency signal obtained by a management device by interpreting a precise time agreement packet. The aforementioned second input pin is used to receive a reference control signal from the management device, wherein the reference control signal requires the first synchronization device to synchronize with the management device. The aforementioned 1PPS signal input pin, which is used to receive from the management device ,in A reference 1-second pulse signal obtained by the management device by interpreting the precise time agreement packet. The aforementioned time of day signal input pin is used to receive from the management device ,in To manage the time information of a reference day obtained by the device by interpreting the precise time agreement packet. The synchronization module is coupled between the network input interface and the network output interface, and is configured to: based on the reference control signal, , , Perform a synchronization operation with the management device, and accordingly generate a first synchronization signal and a first control signal; and send the first synchronization signal and the first control signal to the second one of the aforementioned synchronization devices through the network output interface Sync device.
本新型提供一種分散式同步系統,其包括一管理裝置,管理裝置包括處理模組及網路輸出介面。處理模組經配置以提供一參考同步信號及一參考控制信號,其中參考同步信號包括 、 、 , 為一參考1PPS信號, 為一參考頻率信號, 為一參考日時間資訊,且參考控制信號要求彼此串接的多個同步裝置中的第1個同步裝置同步於管理裝置。網路輸出介面耦接於處理模組並接收參考同步信號及參考控制信號,其中網路輸出介面包括:多個第一輸出腳位、多個第二輸出腳位、多個1PPS信號輸出腳位及多個日時間信號輸出腳位。前述第一輸出腳位用以發送 至所述第1個同步裝置。前述第二輸出腳位用以發送參考控制信號至所述第1個同步裝置。前述1PPS信號輸出腳位用以發送 至所述第1個同步裝置。前述日時間信號輸出腳位用以發送 至所述第1個同步裝置。 The present model provides a distributed synchronization system, which includes a management device, and the management device includes a processing module and a network output interface. The processing module is configured to provide a reference synchronization signal and a reference control signal, wherein the reference synchronization signal includes , , , Is a reference 1PPS signal, Is a reference frequency signal, It is a reference date and time information, and the reference control signal requires that the first synchronization device among the multiple synchronization devices serially connected with each other be synchronized with the management device. The network output interface is coupled to the processing module and receives the reference synchronization signal and the reference control signal. The network output interface includes: a plurality of first output pins, a plurality of second output pins, and a plurality of 1PPS signal output pins And multiple daily time signal output pins. The aforementioned first output pin is used to send To the first synchronization device. The aforementioned second output pin is used to send a reference control signal to the first synchronization device. The aforementioned 1PPS signal output pin is used to send To the first synchronization device. The aforementioned time of day signal output pin is used to send To the first synchronization device.
請參照圖3,其是依據本新型之一實施例繪示的分散式同步系統示意圖。在圖3中,分散式同步系統300例如是一DDC系統,其可包括管理裝置MM及彼此串接的N個同步裝置D1~DN(N為正整數),其中管理裝置MM例如是一管理交換器,而同步裝置D1~DN個別可為一線卡,但可不限於此。Please refer to FIG. 3, which is a schematic diagram of a distributed synchronization system according to an embodiment of the present invention. In FIG. 3, the
在本新型的實施例中,管理裝置MM可包括網路輸入介面IM及網路輸出介面OM,其可分別為RJ45輸入介面及RJ45輸出介面,但可不限於此。相似地,各同步裝置D1~DN亦可具有網路輸入介面及網路輸出介面。舉例而言,同步裝置D1(其可視為同步裝置D1~DN中的第1個同步裝置)可包括網路輸入介面I1及網路輸出介面O1,同步裝置D2(其可視為同步裝置D1~DN中的第2個同步裝置)可包括網路輸入介面I2及網路輸出介面O2,而同步裝置DN(其可視為同步裝置D1~DN中的第N個同步裝置)可包括網路輸入介面IN及網路輸出介面ON。In the embodiment of the present invention, the management device MM may include a network input interface IM and a network output interface OM, which may be an RJ45 input interface and an RJ45 output interface, but are not limited thereto. Similarly, each synchronization device D1~DN can also have a network input interface and a network output interface. For example, the synchronization device D1 (which can be regarded as the first synchronization device among the synchronization devices D1~DN) may include the network input interface I1 and the network output interface O1, and the synchronization device D2 (which can be regarded as the synchronization devices D1~DN) The second sync device in D1) can include the network input interface I2 and the network output interface O2, and the sync device DN (which can be regarded as the Nth sync device among the sync devices D1~DN) can include the network input interface IN And the network output interface is ON.
為便於說明,以下將同步裝置D1~DN中的第i個( )同步裝置略稱為同步裝置Di,而其可包括網路輸入介面Ii及網路輸出介面Oi,但可不限於此。此外,相似於管理裝置MM,同步裝置Di的網路輸入介面Ii及網路輸出介面Oi亦可分別為RJ45輸入介面及RJ45輸出介面,但可不限於此。 For the convenience of description, the i-th ( ) The synchronization device is abbreviated as the synchronization device Di, and it may include a network input interface Ii and a network output interface Oi, but is not limited to this. In addition, similar to the management device MM, the network input interface Ii and the network output interface Oi of the synchronization device Di can also be RJ45 input interfaces and RJ45 output interfaces, but are not limited to this.
簡言之,管理裝置MM及同步裝置D1~DN可依序透過RJ45輸入/輸出介面串接而形成如圖3所示的環狀結構,而管理裝置MM及同步裝置D1~DN兩兩之間可採用習知的RJ45線材連接即可。另外,為了在管理裝置MM及同步裝置D1~DN之間傳遞信號,圖3中的各個網路輸入介面及網路輸出介面的腳位可具有與習知技術不同的定義,而相關細節將在之後另行說明。In short, the management device MM and the synchronizing devices D1~DN can be serially connected through the RJ45 input/output interface to form a ring structure as shown in Figure 3, and the management device MM and the synchronizing devices D1~DN can be connected in series. The conventional RJ45 wire can be used for connection. In addition, in order to transmit signals between the management device MM and the synchronization devices D1~DN, the pins of each network input interface and network output interface in Figure 3 may have different definitions from those in the prior art, and the relevant details will be described in It will be explained later.
在本新型的實施例中,管理裝置MM、同步裝置D1、同步裝置Di( )及同步裝置DN可個別用於執行本新型提出的分散式同步方法,但其個別執行的操作皆有所不同,以下將輔以第一至第四實施例作進一步說明。 In the embodiment of the present invention, the management device MM, the synchronization device D1, and the synchronization device Di ( ) And the synchronization device DN can be individually used to execute the distributed synchronization method proposed in the present invention, but the operations performed individually are different. The following will be supplemented with the first to fourth embodiments for further explanation.
在本新型的第一實施例中,管理裝置MM還可包括處理模組,而此處理模組可包括一處理器(其例如是微處理器、控制器、微控制器、現場可程式閘陣列電路(Field Programmable Gate Array,FPGA)及/或中央處理單元(central processing unit,CPU))及一數位鎖相迴路(digital phase lock loop,DPLL),其中所述處理器可載入特定的軟體、程式碼、應用程式,以協同所述DPLL來實現本新型提出的分散式同步方法,其細節詳述如下。In the first embodiment of the present invention, the management device MM may also include a processing module, and the processing module may include a processor (for example, a microprocessor, a controller, a microcontroller, a field programmable gate array) Circuit (Field Programmable Gate Array, FPGA) and/or central processing unit (CPU)) and a digital phase lock loop (DPLL), where the processor can be loaded with specific software, The program code and the application program cooperate with the DPLL to realize the distributed synchronization method proposed by the present invention. The details are as follows.
請參照圖4A,其是依據本新型第一實施例繪示的分散式同步方法流程圖。本實施例的方法可由圖3的管理裝置MM執行,以下即搭配圖3所示的元件說明圖4A各步驟的細節。Please refer to FIG. 4A, which is a flowchart of the distributed synchronization method according to the first embodiment of the present invention. The method of this embodiment can be executed by the management device MM in FIG. 3. The details of each step in FIG. 4A are described below with the components shown in FIG. 3.
首先,在步驟S411中,管理裝置MM可接收PTP封包P1,並解譯PTP封包P1以取得參考1PPS信號(以下以 代稱)、參考頻率信號(以下以 代稱)及參考日時間資訊(以下以 代稱)。 First, in step S411, the management device MM can receive the PTP packet P1, and interpret the PTP packet P1 to obtain a reference 1PPS signal (hereinafter referred to as Referred to as), reference frequency signal (hereinafter referred to as Code name) and reference date and time information (hereinafter referred to as Pronoun).
在一實施例中,管理裝置MM例如可透過網路而從圖2所示的GM取得上述PTP封包P1,並可相應地對其進行解譯以取得 、 、 ,但可不限於此。在一實施例中, 例如是具有一預設頻率(例如10MHz)的信號,但可不限於此。 In one embodiment, the management device MM can obtain the above-mentioned PTP packet P1 from the GM shown in FIG. 2 through the network, and can interpret it accordingly to obtain , , , But not limited to this. In one embodiment, For example, it is a signal with a preset frequency (for example, 10 MHz), but it is not limited to this.
接著,在步驟S412中,管理裝置MM可透過管理裝置MM的網路輸出介面OM發送參考同步信號 及參考控制信號 至同步裝置D1(即,同步裝置D1~DN中的第1個同步裝置),其中參考同步信號 可包括 、 、 ,且參考控制信號 可用於要求同步裝置D1基於參考同步信號 同步於管理裝置MM。在本新型的實施例中,參考控制信號 例如是一種通用非同步收發器(Universal Asynchronous Receiver Transmitter,UART)信號,但可不限於此。 Then, in step S412, the management device MM may send the reference synchronization signal through the network output interface OM of the management device MM And reference control signal To the synchronization device D1 (ie, the first synchronization device among the synchronization devices D1~DN), where the reference synchronization signal Can include , , , And refer to the control signal Can be used to request the synchronization device D1 to be based on a reference synchronization signal Synchronize with the management device MM. In the embodiment of the present invention, the reference control signal For example, it is a Universal Asynchronous Receiver Transmitter (UART) signal, but it is not limited to this.
在一實施例中,管理裝置MM的數位鎖相迴路可將 進行一回送(loopback)操作,而經回收操作後的 可用於與同步裝置DN所傳來的資訊進行比較,以作為管理裝置MM要求同步裝置D1~DN的至少其中之一進行時間/相位校正操作的依據。相關細節將在之後輔以第五實施例另行說明。 In one embodiment, the digital phase-locked loop of the management device MM can change Perform a loopback operation, and after the recovery operation It can be used to compare with the information sent from the synchronization device DN, as a basis for the management device MM to request at least one of the synchronization devices D1 to DN to perform a time/phase correction operation. The relevant details will be described later with the aid of the fifth embodiment.
在本新型的第二實施例中,同步裝置D1還可包括同步模組,而此同步模組可包括處理器(其例如是微處理器、控制器、微控制器、FPGA及/或CPU)及數位鎖相迴路,其中所述處理器可載入特定的軟體、程式碼、應用程式,以協同所述數位鎖相迴路來實現本新型提出的分散式同步方法,其細節詳述如下。In the second embodiment of the present invention, the synchronization device D1 may also include a synchronization module, and the synchronization module may include a processor (for example, a microprocessor, a controller, a microcontroller, an FPGA and/or a CPU) And a digital phase-locked loop, where the processor can load specific software, program codes, and application programs to cooperate with the digital phase-locked loop to realize the distributed synchronization method proposed in the present invention. The details are described below.
請參照圖4B,其是依據本新型第二實施例繪示的分散式同步方法流程圖。本實施例的方法可由圖3的同步裝置D1執行,以下即搭配圖3所示的元件說明圖4B各步驟的細節。Please refer to FIG. 4B, which is a flow chart of the distributed synchronization method according to the second embodiment of the present invention. The method of this embodiment can be executed by the synchronization device D1 in FIG. 3. The details of each step in FIG. 4B are described below in conjunction with the components shown in FIG. 3.
首先,在步驟S421中,同步裝置D1可透過同步裝置D1的網路輸入介面I1從管理裝置MM接收參考同步信號 及參考控制信號 。 First, in step S421, the synchronization device D1 can receive the reference synchronization signal from the management device MM through the network input interface I1 of the synchronization device D1 And reference control signal .
之後,在步驟S422中,同步裝置D1可基於參考同步信號 及參考控制信號 執行與管理裝置MM的同步操作,並相應地產生同步信號 。具體而言,由於參考控制信號 係要求同步裝置D1參考同步信號 同步於管理裝置MM,因此當同步裝置D1接收到參考控制信號 之後,可相應地將管理裝置MM視為主(master)裝置,並以僕(slave)裝置的身分與將自身的頻率、時間、相位同步於管理裝置MM,但可不限於此。 After that, in step S422, the synchronization device D1 may be based on the reference synchronization signal And reference control signal Perform synchronization operation with management device MM, and generate synchronization signal accordingly . Specifically, due to the reference control signal Department requires synchronization device D1 reference synchronization signal Synchronize with the management device MM, so when the synchronization device D1 receives the reference control signal After that, the management device MM can be regarded as a master device accordingly, and its own frequency, time, and phase can be synchronized with the management device MM as a slave device, but it is not limited to this.
因此,在第二實施例中,步驟S422中的同步操作可包括時間同步操作、頻率同步操作及相位同步操作。在一實施例中,同步裝置D1可基於參考同步信號 中的 與管理裝置MM進行頻率同步操作,以相應地產生 (即,同步裝置D1產生的頻率信號,其亦可對應於上述預設頻率(例如10MHz))。再者,同步裝置D1可基於參考同步信號 中的 與管理裝置MM進行時間同步操作,以相應地產生 (即,同步裝置D1產生的日時間資訊)。 Therefore, in the second embodiment, the synchronization operation in step S422 may include a time synchronization operation, a frequency synchronization operation, and a phase synchronization operation. In an embodiment, the synchronization device D1 may be based on the reference synchronization signal middle Perform frequency synchronization operation with the management device MM to generate accordingly (That is, the frequency signal generated by the synchronization device D1 may also correspond to the aforementioned preset frequency (for example, 10 MHz)). Furthermore, the synchronization device D1 can be based on the reference synchronization signal middle Perform time synchronization operation with the management device MM to generate accordingly (That is, the time of day information generated by the synchronization device D1).
此外,在第二實施例中,同步裝置D1可基於參考同步信號 中的 與管理裝置MM進行相位同步操作,以相應地產生一特定1PPS信號。之後,同步裝置D1的數位鎖相迴路例如可對此特定1PPS信號執行一回送操作,而同步裝置D1可估計 與(經回送操作後的)特定1PPS信號之間的特定偏移量,並基於此特定偏移量將所述特定1PPS信號校正為 ,但本新型可不限於此。在一實施例中,同步裝置D1可另透過10G介面連接於管理裝置MM,並可透過此10G介面將上述特定偏移量回報至管理裝置MM,但可不限於此。 In addition, in the second embodiment, the synchronization device D1 may be based on the reference synchronization signal middle Perform a phase synchronization operation with the management device MM to generate a specific 1PPS signal accordingly. After that, the digital phase-locked loop of the synchronization device D1 can perform a loopback operation for this specific 1PPS signal, and the synchronization device D1 can estimate The specific offset between the specific 1PPS signal and the specific 1PPS signal (after the loopback operation), and the specific 1PPS signal is corrected to , But the present invention is not limited to this. In one embodiment, the synchronization device D1 can be further connected to the management device MM through a 10G interface, and the specific offset can be reported to the management device MM through this 10G interface, but it is not limited to this.
接著,在步驟S423中,同步裝置D1可透過同步裝置D1的網路輸出介面O1發送同步信號 及控制信號 至同步裝置D2,其中同步信號 可包括 、 、 ,而控制信號 可由同步裝置D1所產生,並用於要求同步裝置D2基於同步信號 同步於同步裝置D1。在本新型的實施例中,控制信號 例如是一種UART信號,但可不限於此。 Then, in step S423, the synchronization device D1 may send a synchronization signal through the network output interface O1 of the synchronization device D1 And control signal To the synchronization device D2, where the synchronization signal Can include , , , And the control signal Can be generated by the synchronization device D1 and used to request the synchronization device D2 to be based on the synchronization signal Synchronized with the synchronization device D1. In the embodiment of the present invention, the control signal For example, it is a UART signal, but it is not limited to this.
在本新型的第三實施例中,當 時,同步裝置Di還可包括同步模組,而此同步模組可包括處理器及數位鎖相迴路,其中所述處理器可載入特定的軟體、程式碼、應用程式,以協同所述數位鎖相迴路來實現本新型提出的分散式同步方法,其細節詳述如下。 In the third embodiment of the present invention, when When the synchronization device Di can also include a synchronization module, and the synchronization module can include a processor and a digital phase-locked loop, wherein the processor can load specific software, program codes, and application programs to cooperate with the digital The phase-locked loop is used to realize the distributed synchronization method proposed by the present invention, and the details are described in detail as follows.
請參照圖4C,其是依據本新型第三實施例繪示的分散式同步方法流程圖。本實施例的方法可由圖3的同步裝置Di( )執行,以下即搭配圖3所示的元件說明圖4C各步驟的細節。 Please refer to FIG. 4C, which is a flowchart of the distributed synchronization method according to the third embodiment of the present invention. The method of this embodiment can be used by the synchronization device Di ( ) Execution, the details of each step in FIG. 4C are described below with the components shown in FIG. 3.
首先,在步驟S431中,同步裝置Di可透過同步裝置Di的網路輸入介面Ii從第i-1個同步裝置接收同步信號 及控制信號 ,其中控制信號 可由所述第i-1個同步裝置所產生,並用於要求同步裝置Di基於同步信號 同步於所述第i-1個同步裝置。在本新型的實施例中,控制信號 例如是一種UART信號,但可不限於此。 First, in step S431, the synchronization device Di can receive a synchronization signal from the i-1th synchronization device through the network input interface Ii of the synchronization device Di And control signal , Where the control signal Can be generated by the i-1th synchronization device and used to request the synchronization device Di to be based on a synchronization signal Synchronize with the i-1th synchronization device. In the embodiment of the present invention, the control signal For example, it is a UART signal, but it is not limited to this.
此外,同步信號 可包括 、 、 ,其中 為所述第i-1個同步裝置產生的1PPS信號, 為所述第i-1個同步裝置產生的頻率信號(其亦可具有上述預設頻率(例如10MHz)), 為所述第i-1個同步裝置產生的日時間資訊,但可不限於此。 In addition, the synchronization signal Can include , , ,in Is the 1PPS signal generated by the i-1th synchronization device, Is the frequency signal generated by the i-1th synchronization device (which may also have the above-mentioned preset frequency (for example, 10MHz)), It is the time of day information generated by the i-1th synchronization device, but it is not limited to this.
之後,在步驟S432中,同步裝置Di可基於同步信號 及控制信號 執行與所述第i-1個同步裝置的同步操作,並相應地產生同步信號 。具體而言,由於控制信號 係要求同步裝置Di基於同步信號 同步於所述第i-1個同步裝置,因此當同步裝置Di接收到控制信號 之後,可相應地將所述第i-1個同步裝置視為主裝置,並以僕裝置的身分與將自身的頻率、時間、相位同步於所述第i-1個同步裝置,但可不限於此。 After that, in step S432, the synchronization device Di may be based on the synchronization signal And control signal Perform a synchronization operation with the i-1th synchronization device, and generate a synchronization signal accordingly . Specifically, due to the control signal The system requires that the synchronization device Di is based on a synchronization signal Is synchronized with the i-1th synchronization device, so when the synchronization device Di receives the control signal After that, the i-1th synchronization device can be regarded as the master device accordingly, and its own frequency, time, and phase can be synchronized with the i-1th synchronization device as a slave device, but it is not limited to this.
因此,在第三實施例中,步驟S432中的同步操作可包括時間同步操作、頻率同步操作及相位同步操作。在一實施例中,同步裝置Di可基於同步信號 中的 與所述第i-1個同步裝置進行頻率同步操作,以相應地產生 (即,同步裝置Di產生的頻率信號,其亦可對應於上述預設頻率(例如10MHz))。再者,同步裝置Di可基於同步信號 中的 與所述第i-1個同步裝置進行時間同步操作,以相應地產生 (即,同步裝置Di產生的日時間資訊)。 Therefore, in the third embodiment, the synchronization operation in step S432 may include a time synchronization operation, a frequency synchronization operation, and a phase synchronization operation. In an embodiment, the synchronization device Di may be based on a synchronization signal middle Perform frequency synchronization operation with the i-1th synchronization device to generate (That is, the frequency signal generated by the synchronization device Di may also correspond to the aforementioned preset frequency (for example, 10 MHz)). Furthermore, the synchronization device Di may be based on a synchronization signal middle Perform a time synchronization operation with the i-1th synchronization device to generate (That is, the time of day information generated by the synchronization device Di).
此外,在第三實施例中,同步裝置Di可基於同步信號 中的 與所述第i-1個同步裝置進行相位同步操作,以相應地產生一特定1PPS信號。之後,同步裝置Di的數位鎖相迴路例如可對此特定1PPS信號執行一回送操作,而同步裝置Di可估計 與(經回送操作後的)特定1PPS信號之間的特定偏移量,並基於此特定偏移量將所述特定1PPS信號校正為 ,但本新型可不限於此。在一實施例中,同步裝置Di可另透過10G介面連接於管理裝置MM,並可透過此10G介面將上述特定偏移量回報至管理裝置MM,但可不限於此。 In addition, in the third embodiment, the synchronization device Di may be based on the synchronization signal middle Perform a phase synchronization operation with the i-1th synchronization device to correspondingly generate a specific 1PPS signal. After that, the digital phase-locked loop of the synchronization device Di can perform a loopback operation for this specific 1PPS signal, and the synchronization device Di can estimate The specific offset between the specific 1PPS signal and the specific 1PPS signal (after the loopback operation), and the specific 1PPS signal is corrected to , But the present invention is not limited to this. In one embodiment, the synchronization device Di can be connected to the management device MM through a 10G interface, and the specific offset can be reported to the management device MM through the 10G interface, but it is not limited to this.
接著,在步驟S433中,同步裝置Di可透過同步裝置Di的網路輸出介面Oi發送同步信號 及控制信號 至第i+1個同步裝置,其中同步信號 可包括 、 、 ,而控制信號 可由同步裝置Di所產生,並用於要求所述第i+1個同步裝置基於同步信號 同步於同步裝置Di。在本新型的實施例中,控制信號 例如是一種UART信號,但可不限於此。 Then, in step S433, the synchronization device Di may send a synchronization signal through the network output interface Oi of the synchronization device Di And control signal To the i+1th synchronization device, where the synchronization signal Can include , , , And the control signal Can be generated by the synchronization device Di, and used to require the i+1th synchronization device to be based on a synchronization signal Synchronous to the synchronization device Di. In the embodiment of the present invention, the control signal For example, it is a UART signal, but it is not limited to this.
在本新型的第四實施例中,同步裝置DN還可包括同步模組,而此同步模組可包括處理器及數位鎖相迴路,其中所述處理器可載入特定的軟體、程式碼、應用程式,以協同所述數位鎖相迴路來實現本新型提出的分散式同步方法,其細節詳述如下。In the fourth embodiment of the present invention, the synchronization device DN may also include a synchronization module, and the synchronization module may include a processor and a digital phase-locked loop, wherein the processor can load specific software, code, The application program cooperates with the digital phase-locked loop to realize the distributed synchronization method proposed by the present invention, the details of which are detailed as follows.
請參照圖4D,其是依據本新型第四實施例繪示的分散式同步方法流程圖。本實施例的方法可由圖3的同步裝置DN執行,以下即搭配圖3所示的元件說明圖4D各步驟的細節。Please refer to FIG. 4D, which is a flowchart of the distributed synchronization method according to the fourth embodiment of the present invention. The method of this embodiment can be executed by the synchronization device DN in FIG. 3. The details of each step in FIG. 4D will be described below with the components shown in FIG. 3.
首先,在步驟S441中,同步裝置DN可透過同步裝置DN的網路輸入介面IN從第N-1個同步裝置接收同步信號 及控制信號 ,其中控制信號 可由所述第N-1個同步裝置所產生,並用於要求同步裝置DN基於同步信號 同步於所述第N-1個同步裝置。在本新型的實施例中,控制信號 例如是一種UART信號,但可不限於此。 First, in step S441, the synchronization device DN may receive a synchronization signal from the N-1th synchronization device through the network input interface IN of the synchronization device DN And control signal , Where the control signal It can be generated by the N-1th synchronization device and used to request the synchronization device DN to be based on a synchronization signal Synchronize with the N-1th synchronization device. In the embodiment of the present invention, the control signal For example, it is a UART signal, but it is not limited to this.
此外,同步信號 可包括 、 、 ,其中 為所述第N-1個同步裝置產生的1PPS信號, 為所述第N-1個同步裝置產生的頻率信號(其亦可具有上述預設頻率(例如10MHz)), 為所述第N-1個同步裝置產生的日時間資訊,但可不限於此。 In addition, the synchronization signal Can include , , ,in Is the 1PPS signal generated by the N-1th synchronization device, Is the frequency signal generated by the N-1th synchronization device (which may also have the above-mentioned preset frequency (for example, 10MHz)), It is the time of day information generated by the N-1th synchronization device, but it is not limited to this.
之後,在步驟S442中,同步裝置DN可基於同步信號 及控制信號 執行與所述第N-1個同步裝置的同步操作,並相應地產生同步信號 。具體而言,由於控制信號 係要求同步裝置DN基於同步信號 同步於所述第N-1個同步裝置,因此當同步裝置DN接收到控制信號 之後,可相應地將所述第N-1個同步裝置視為主裝置,並以僕裝置的身分與將自身的頻率、時間、相位同步於所述第N-1個同步裝置,但可不限於此。 After that, in step S442, the synchronization device DN may be based on the synchronization signal And control signal Perform a synchronization operation with the N-1th synchronization device, and generate a synchronization signal accordingly . Specifically, due to the control signal The system requires the synchronization device DN to be based on the synchronization signal Synchronize to the N-1th synchronization device, so when the synchronization device DN receives the control signal After that, the N-1th synchronization device can be regarded as the master device accordingly, and its own frequency, time, and phase can be synchronized with the N-1th synchronization device as a slave device, but it may not be limited to this.
因此,在第四實施例中,步驟S442中的同步操作可包括時間同步操作、頻率同步操作及相位同步操作。在一實施例中,同步裝置DN可基於同步信號 中的 與所述第N-1個同步裝置進行頻率同步操作,以相應地產生 (即,同步裝置DN產生的頻率信號,其亦可對應於上述預設頻率(例如10MHz))。再者,同步裝置DN可基於同步信號 中的 與所述第N-1個同步裝置進行時間同步操作,以相應地產生 (即,同步裝置DN產生的日時間資訊)。 Therefore, in the fourth embodiment, the synchronization operation in step S442 may include a time synchronization operation, a frequency synchronization operation, and a phase synchronization operation. In an embodiment, the synchronization device DN may be based on a synchronization signal middle Perform frequency synchronization operation with the N-1th synchronization device to generate (That is, the frequency signal generated by the synchronization device DN may also correspond to the aforementioned preset frequency (for example, 10 MHz)). Furthermore, the synchronization device DN can be based on a synchronization signal middle Perform a time synchronization operation with the N-1th synchronization device to generate (That is, the time of day information generated by the synchronization device DN).
此外,在第四實施例中,同步裝置DN可基於同步信號 中的 與所述第N-1個同步裝置進行相位同步操作,以相應地產生一特定1PPS信號。之後,同步裝置DN的數位鎖相迴路例如可對此特定1PPS信號執行一回送操作,而同步裝置DN可估計 與(經回送操作後的)特定1PPS信號之間的特定偏移量,並基於此特定偏移量將所述特定1PPS信號校正為 ,但本新型可不限於此。在一實施例中,同步裝置DN可另透過10G介面連接於管理裝置MM,並可透過此10G介面將上述特定偏移量回報至管理裝置MM,但可不限於此。 In addition, in the fourth embodiment, the synchronization device DN may be based on the synchronization signal middle Perform a phase synchronization operation with the N-1th synchronization device to correspondingly generate a specific 1PPS signal. After that, the digital phase-locked loop of the synchronization device DN can perform a loopback operation for this specific 1PPS signal, and the synchronization device DN can estimate The specific offset between the specific 1PPS signal and the specific 1PPS signal (after the loopback operation), and the specific 1PPS signal is corrected to , But the present invention is not limited to this. In one embodiment, the synchronization device DN can be further connected to the management device MM through a 10G interface, and the specific offset can be reported to the management device MM through this 10G interface, but it is not limited to this.
接著,在步驟S443中,同步裝置DN可透過同步裝置DN的網路輸出介面ON發送同步信號 及控制信號 至管理裝置MM,其中同步信號 可包括 、 、 ,而控制信號 可由同步裝置DN所產生,並用於通知管理裝置MM同步裝置D1~DN已完成同步,但可不限於此。在本新型的實施例中,控制信號 例如是一種UART信號,但可不限於此。 Then, in step S443, the synchronization device DN can send a synchronization signal through the network output interface ON of the synchronization device DN And control signal To the management device MM, where the synchronization signal Can include , , , And the control signal It can be generated by the synchronization device DN and used to notify the management device MM that the synchronization devices D1~DN have completed synchronization, but it is not limited to this. In the embodiment of the present invention, the control signal For example, it is a UART signal, but it is not limited to this.
在第五實施例中,管理裝置MM可網路輸入介面IM從同步裝置DN接同步信號 及控制信號 。之後,管理裝置MM即可估計(經回送操作的) 及 之間的相位偏移量,並判斷此相位偏移量是否大於一偏移量門限值。 In the fifth embodiment, the management device MM can receive the synchronization signal from the synchronization device DN via the network input interface IM And control signal . After that, the management device MM can estimate (via loopback operation) and And determine whether the phase offset is greater than an offset threshold.
在一實施例中,反應於判定所述相位偏移量大於偏移量門限值,管理裝置MM可依據相位偏移量與偏移量門限值之間的差值控制同步裝置D1~DN的至少其中之一進行相位校正操作。In an embodiment, in response to determining that the phase offset is greater than the offset threshold, the management device MM may control at least the synchronization devices D1 to DN according to the difference between the phase offset and the offset threshold. One of them performs phase correction operations.
舉例而言,假設 及 之間的相位偏移量為+7ns,而所述偏移量門限值為5ns。在此情況下,管理裝置MM例如可基於+7ns與5ns之間的差值(即,+2ns)來控制同步裝置D1~DN的至少其中之一進行相位校正操作。例如,管理裝置MM可要求同步裝置D1~DN的其中之二個別將所產生的1PPS信號調慢1ns(即,共調慢2ns),以實現上述相位校正操作,但可不限於此。 For example, suppose and The phase offset between is +7ns, and the offset threshold is 5ns. In this case, the management device MM may, for example, control at least one of the synchronization devices D1 to DN to perform a phase correction operation based on the difference between +7ns and 5ns (ie, +2ns). For example, the management device MM may require two of the synchronization devices D1 to DN to individually slow down the generated 1PPS signal by 1 ns (ie, a total of 2 ns slower) to achieve the above-mentioned phase correction operation, but it is not limited to this.
由上可知,透過本新型提出的分散式同步系統及方法,可在管理裝置MM不具備IEEE 1588及SyncE功能的情況下,以較低的成本實現同步裝置D1~DN的同步。並且,相較於圖2所示的二層式DDC架構,圖3的單層式DDC架構可達到較高的同步精確度。It can be seen from the above that through the distributed synchronization system and method proposed by the present invention, the synchronization of the synchronization devices D1 to DN can be realized at a lower cost when the management device MM does not have IEEE 1588 and SyncE functions. Moreover, compared to the two-layer DDC architecture shown in FIG. 2, the single-layer DDC architecture of FIG. 3 can achieve higher synchronization accuracy.
請參照圖5,其是依據本新型之一實施例繪示的同步裝置的資料平面及控制平面的示意圖。在圖5中,對於各個同步裝置Di( )而言,其可包括資料平面DPi及控制平面CPi,其中資料平面DPi可包括100G及400G的介面,而控制平面CPi可包括網路輸入介面Ii、網路輸出介面Oi及10G介面Eth,但可不限於此。 Please refer to FIG. 5, which is a schematic diagram of the data plane and the control plane of the synchronization device according to an embodiment of the present invention. In Fig. 5, for each synchronization device Di( ), it can include a data plane DPi and a control plane CPi, where the data plane DPi can include 100G and 400G interfaces, and the control plane CPi can include a network input interface Ii, a network output interface Oi, and a 10G interface Eth, but It is not limited to this.
在本實施例中,由於同步裝置Di係透過屬於控制平面CPi中的網路輸入介面Ii及網路輸出介面Oi來接收/發送同步信號及控制信號,而非透過屬於資料平面DPi的100G及400G的介面(即,具有較高傳輸能力)來接收/發送資料量較少的同步信號及控制信號,因此可讓同步裝置Di的硬體資源得到較為適當的利用。In this embodiment, because the synchronization device Di receives/sends synchronization signals and control signals through the network input interface Ii and the network output interface Oi belonging to the control plane CPi, rather than through the 100G and 400G belonging to the data plane DPi The interface (that is, with higher transmission capability) to receive/send synchronization signals and control signals with a small amount of data, so that the hardware resources of the synchronization device Di can be used more appropriately.
為使本案的概念更易於理解,以下另輔以圖6說明本案與習知技術的差異。請參照圖6,其是依據圖2及圖3繪示的技術比較圖。在圖6中,DDC系統600例如相同於圖2的DDC系統200,而DDC系統610例如是圖3的分散式同步系統300的一種實施態樣(即,N為5時的態樣)。In order to make the concept of this case easier to understand, Figure 6 is supplemented below to illustrate the difference between this case and the conventional technology. Please refer to FIG. 6, which is based on the technology comparison diagram shown in FIG. 2 and FIG. 3. In FIG. 6, the
如先前所提及的,DDC系統600中的管理交換器及各個LC係個別為一邊界時鐘。然而,在實現本新型提出的分散式同步方法之後,DDC系統610中的管理裝置MM及同步裝置D1~D5個別可理解為一普通時鐘(ordinary clock,OC),因而可體現與DDC系統600不同的運作方式/概念。As mentioned earlier, the management switch and each LC in the
此外,如先前所提及的,為了讓圖3中的各個網路輸入介面及網路輸出介面可用於傳遞日時間資訊(例如 )、控制信號(例如 )、1PPS信號(例如 )及頻率信號(例如 ),各網路輸入介面及網路輸出介面的腳位可具有與習知RJ45不同的定義,以下將作進一步說明。 In addition, as mentioned earlier, in order to allow each network input interface and network output interface in Figure 3 to be used to transmit time of day information (such as ), control signals (e.g. ), 1PPS signal (e.g. ) And frequency signals (e.g. ), the pins of each network input interface and network output interface may have different definitions from the conventional RJ45, which will be further explained below.
在本新型的實施例中,所提及的日時間資訊、控制信號、1PPS信號及頻率信號個別可為一差動信號。在此情況下,每個1PPS信號(例如 )可理解為包括1PPS-及1PPS+等信號成分;每個頻率信號(例如是對應於10MHz的 )可理解為包括10M-及10M+等信號成分;每個控制信號(例如 )可理解為包括UART-及UART+等信號成分;每個日時間資訊(例如 )可理解為包括ToD-及ToD+等信號成分,但可不限於此。 In the embodiment of the present invention, the mentioned time of day information, control signal, 1PPS signal and frequency signal may be a differential signal individually. In this case, each 1PPS signal (e.g. ) Can be understood as including signal components such as 1PPS- and 1PPS+; each frequency signal (for example, corresponding to 10MHz ) Can be understood as including signal components such as 10M- and 10M+; each control signal (for example ) Can be understood as including signal components such as UART- and UART+; time information of each day (for example ) Can be understood as including signal components such as ToD- and ToD+, but not limited to this.
請參照圖7,其是依據本新型之一實施例繪示的習知RJ45介面腳位表與本案RJ45介面腳位表的比較圖。如圖7所示,在習知RJ45介面腳位表710中共有編號1至編號8等8個腳位,其中編號1及2(以下將編號1及2的腳位稱為第一腳位)係保留(reserved)腳位,編號3係用於傳送/接收1PPS-,編號4為接地端腳位,編號5為使用者定義(user-defined)腳位(以下將編號4及5的腳位稱為第二腳位),編號6用於傳送/接收1PPS+,編號7用於傳送/接收ToD-,編號8用於傳送/接收ToD+。Please refer to FIG. 7, which is a comparison diagram of the conventional RJ45 interface pin table according to an embodiment of the present invention and the RJ45 interface pin table of this case. As shown in Figure 7, in the conventional RJ45 interface pin table 710, there are a total of 8 pins numbered 1 to 8, among which the
然而,在本案的RJ45介面腳位表720中,編號1改為用於傳送/接收10M-,編號2改為用於傳送/接收10M+(即,上述第一腳位改為用於傳送/接收頻率信號)。另外,編號4改為用於傳送/接收UART-,而編號5則改為用於傳送/接收UART+(即,上述第二腳位改為用於傳送/接收控制信號)。其餘的編號3、6、7、8的功能則未更動。However, in the RJ45 interface pin table 720 of this case, the
在此情況下,當圖3中的任一網路輸入介面採用RJ45介面腳位表720時,此網路輸入介面即可透過編號1~8的腳位分別接收10M-、10M+、1PPS-、UART-、UART+、1PPS+、ToD-及ToD+等信號成分,但可不限於此。換言之,編號1、2可理解為第一輸入腳位,編號3、6可理解為1PPS信號輸入腳位,編號4、5可理解為第二輸入腳位,編號7、8可理解為日時間信號輸入腳位,但可不限於此。In this case, when any network input interface in Figure 3 uses RJ45 interface pin table 720, this network input interface can receive 10M-, 10M+, 1PPS-, Signal components such as UART-, UART+, 1PPS+, ToD- and ToD+, but not limited to this. In other words, the
另一方面,當圖3中的任一網路輸出介面採用RJ45介面腳位表720時,此網路輸入介面即可透過編號1~8的腳位分別傳送10M-、10M+、1PPS-、UART-、UART+、1PPS+、ToD-及ToD+等信號成分,但可不限於此。換言之,編號1、2可理解為第一輸出腳位,編號3、6可理解為1PPS信號輸出腳位,編號4、5可理解為第二輸出腳位,編號7、8可理解為日時間信號輸出腳位,但可不限於此。On the other hand, when any network output interface in Figure 3 uses RJ45 interface pin table 720, this network input interface can transmit 10M-, 10M+, 1PPS-, UART through the pins numbered 1~8, respectively. -, UART+, 1PPS+, ToD- and ToD+ and other signal components, but not limited to this. In other words, the
請參照圖8,其是依據本新型之一實施例繪示的同步裝置的功能方塊圖。在圖8中,同步裝置Di可包括網路輸入介面Ii、網路輸出介面Oi及同步模組SNi,其中網路輸入介面Ii、網路輸出介面Oi可個別採用圖7所示的RJ45介面腳位表720。Please refer to FIG. 8, which is a functional block diagram of a synchronization device according to an embodiment of the present invention. In FIG. 8, the synchronization device Di can include a network input interface Ii, a network output interface Oi, and a synchronization module SNi. The network input interface Ii and the network output interface Oi can individually use the RJ45 interface pins shown in Figure 7 Bit table 720.
在此情況下,網路輸入介面Ii可用於接收來自前一級裝置的
、
、
及控制信號
,而網路輸出介面Oi則可用於傳送同步裝置Di產生的
、
、
及控制信號
至下一級裝置。舉例而言,若同步裝置Di為同步裝置D1(即,i為1),則網路輸入介面Ii可用於接收來自圖3中管理裝置MM(即,同步裝置D1的前一級裝置)的
、
、
及參考控制信號
,而網路輸出介面Oi則可用於傳送
、
、
及控制信號
至同步裝置D2(即,同步裝置D1的下一級裝置)。舉另一例而言,若同步裝置Di為同步裝置DN(即,i為N),則網路輸入介面Ii可用於接收來自圖3中第N-1個同步裝置(即,同步裝置DN的前一級裝置)的
、
、
及控制信號
,而網路輸出介面Oi則可用於傳送
、 、 及控制信號
至管理裝置MM(即,同步裝置DN的下一級裝置)。
In this case, the network input interface Ii can be used to receive data from the previous device , , And control signal , And the network output interface Oi can be used to transmit the data generated by the synchronization device Di , , And control signal Go to the next level device. For example, if the synchronization device Di is the synchronization device D1 (i.e., i is 1), the network input interface Ii can be used to receive information from the management device MM in FIG. 3 (ie, the previous level device of the synchronization device D1) , , And reference control signal , And the network output interface Oi can be used to send , , And control signal To the synchronization device D2 (ie, the next level device of the synchronization device D1). For another example, if the synchronization device Di is the synchronization device DN (i.e., i is N), the network input interface Ii can be used to receive data from the N-1th synchronization device in FIG. 3 (ie, the front of the synchronization device DN).
另外,如先前所提及的,網路輸入介面Ii所接收的控制信號 、 、 、 個別可為一差動信號,即圖8上半部雙虛線處所示的10M-/+、1PPS-/+、UART-/+及ToD-/+。 In addition, as mentioned earlier, the control signal received by the network input interface Ii , , , Each can be a differential signal, that is, 10M-/+, 1PPS-/+, UART-/+, and ToD-/+ shown in the double dashed line in the upper half of FIG. 8.
在一實施例中,同步模組SNi可基於控制信號 、 、 、 執行與前一級裝置的同步操作,並相應地產生同步信號 及控制信號 。之後,同步模組SNi可透過網路輸出介面Oi發送同步信號 及控制信號 至下一級裝置。同步模組SNi所執行操作的細節可參考先前實施例中有關於同步裝置D1~DN的說明,於此不另贅述。 In one embodiment, the synchronization module SNi can be based on the control signal , , , Perform synchronization operation with the previous level device and generate synchronization signal accordingly And control signal . After that, the synchronization module SNi can send synchronization signals through the network output interface Oi And control signal Go to the next level device. For details of the operations performed by the synchronization module SNi, please refer to the description of the synchronization devices D1 to DN in the previous embodiment, which will not be repeated here.
如圖8所示,同步模組SNi可包括差動至單端橋接器DSi、數位鎖相迴路LLi、處理器Pi及單端至差動橋接器SDi。差動至單端橋接器DSi可耦接於網路輸入介面Ii,並用於將 、 、控制信號 及 分別轉換為對應的第一單端信號 、第二單端信號 、第三單端信號 及第四單端信號 。 As shown in FIG. 8, the synchronization module SNi may include a differential to single-ended bridge DSi, a digital phase-locked loop LLi, a processor Pi, and a single-ended to differential bridge SDi. The differential to single-ended bridge DSi can be coupled to the network input interface Ii and used to connect , ,control signal and Respectively converted to the corresponding first single-ended signal , The second single-ended signal , The third single-ended signal And the fourth single-ended signal .
在一實施例中,由於硬體上的特性,控制信號 及 等二個差動信號會彼此綁定(bundle),因此差動至單端橋接器DSi可在接收綁定的控制信號 及 之後,將此二差動信號分離,並個別轉換為對應的單端信號。 In one embodiment, due to the characteristics of the hardware, the control signal and Wait for the two differential signals to be bundled with each other, so the differential to single-ended bridge DSi can receive the bound control signal and After that, the two differential signals are separated and converted into corresponding single-ended signals individually.
在此情況下,差動至單端橋接器DSi可包括RS422埠DSi1及UART DSi2。RS422埠DSi1可耦接於上述第二輸入腳位(即,網路輸入介面Ii的編號4、5)及上述日時間信號輸入腳位(即,網路輸入介面Ii的編號7、8),並用於接收彼此綁定的該參考控制信號及 。另外,UART DSi2可耦接於RS422埠DSi1及處理器Pi,並用於分離控制信號 及 ,並將控制信號 及 分別轉換成對應的第三單端信號 及第四單端信號 。 In this case, the differential to single-ended bridge DSi may include the RS422 port DSi1 and UART DSi2. The RS422 port DSi1 can be coupled to the above-mentioned second input pin (ie, the network input interface Ii No. 4, 5) and the above-mentioned time of day signal input pin (ie, the network input interface Ii No. 7, 8), And used to receive the reference control signal bound to each other and . In addition, UART DSi2 can be coupled to RS422 port DSi1 and processor Pi, and used to separate control signals and , And the control signal and Converted into the corresponding third single-ended signal respectively And the fourth single-ended signal .
數位鎖相迴路LLi耦接於差動至單端橋接器DSi,並接收分別對應於 、 的第一單端信號 及第二單端信號 。 The digital phase lock loop LLi is coupled to the differential-to-single-ended bridge DSi, and receives corresponding to , First single-ended signal And the second single-ended signal .
處理器Pi耦接於數位鎖相迴路LLi及差動至單端橋接器DSi,並經配置以控制數位鎖相迴路LLi基於第一單端信號 及第二單端信號 執行與前一級裝置的頻率同步操作及相位同步操作,並相應地產生第五單端信號 及第六單端信號 ,其中第五單端信號 及第六單端信號 分別對應於第一單端信號 及第二單端信號 。接著,處理器Pi可從差動至單端橋接器DSi接收分別對應於控制信號 及 的第三單端信號 及第四單端信號 ,並基於第三單端信號 產生第七單端信號 (即用於控制下一級裝置與同步裝置Di進行同步的單端信號)。並且,處理器Pi可基於第四單端信號 執行與前一級裝置的時間同步操作,以產生第八單端信號 。 The processor Pi is coupled to the digital phase-locked loop LLi and differentially to the single-ended bridge DSi, and is configured to control the digital phase-locked loop LLi based on the first single-ended signal And the second single-ended signal Perform frequency synchronization operation and phase synchronization operation with the previous stage device, and generate the fifth single-ended signal accordingly And the sixth single-ended signal , Where the fifth single-ended signal And the sixth single-ended signal Corresponding to the first single-ended signal And the second single-ended signal . Then, the processor Pi can receive the control signals corresponding to each from the differential to the single-ended bridge DSi and Third single-ended signal And the fourth single-ended signal , And based on the third single-ended signal Generate seventh single-ended signal (That is, a single-ended signal used to control the next-level device to synchronize with the synchronization device Di). And, the processor Pi may be based on the fourth single-ended signal Perform the time synchronization operation with the previous stage device to generate the eighth single-ended signal .
單端至差動橋接器SDi可耦接於處理器Pi及數位鎖相迴路LLi,並經配置以從數位鎖相迴路LLi接收第五單端信號 及第六單端信號 ,並將其分別轉換為 、 。另外,單端至差動橋接器SDi可從處理器Pi接收第七單端信號 及第八單端信號 ,並將其分別轉換為控制信號 及 。之後,單端至差動橋接器SDi可將 、 、控制信號 及 發送至網路輸出介面Oi。 The single-ended to differential bridge SDi can be coupled to the processor Pi and the digital phase-locked loop LLi, and is configured to receive the fifth single-ended signal from the digital phase-locked loop LLi And the sixth single-ended signal , And convert them to , . In addition, the single-ended to differential bridge SDi can receive the seventh single-ended signal from the processor Pi And eighth single-ended signal , And convert them into control signals and . After that, the single-ended to differential bridge SDi can connect , ,control signal and Send to the network output interface Oi.
此外,單端至差動橋接器SDi可包括RS422埠SDi1及UART SDi2。RS422埠SDi1可耦接於上述第二輸出腳位(即,網路輸出介面Oi的編號4、5)及上述日時間信號輸出腳位(即,網路輸出介面Oi的編號7、8)。另外,UART SDi2可耦接於RS422埠SDi1及處理器Pi。在本實施例中,UART SDi2可用於將第七單端信號
及第八單端信號
分別轉換為對應的差動信號(即,控制信號
及
),並將控制信號
綁定於
,以及將綁定後的控制信號
及
發送至RS422埠SDi1。之後,RS422埠SDi1即可將綁定後的控制信號
及
傳送至網路輸出介面Oi中的對應腳位,以發送至下一級裝置(的網路輸入介面),但可不限於此。
In addition, the single-ended to differential bridge SDi can include RS422 ports SDi1 and UART SDi2. The RS422 port SDi1 can be coupled to the aforementioned second output pin (ie, the network output interface Oi's
請參照圖9A,其是依據本新型之一實施例繪示的管理裝置的功能方塊圖。如圖9A所示,管理裝置MM可包括處理模組PM、網路輸出介面Oi及一單端至差動橋接器。在本實施例中,處理模組PM可用於提供參考同步信號 及參考控制信號 。具體而言,處理模組PM可包括處理器MP及數位鎖相迴路ML,其中處理器MP可在透過10G介面從GM(未繪示)接收PTP封包P1之後,藉由解譯PTP封包P1而取得對應於 、 、 。之後,處理器MP可控制數位鎖相迴路ML對 進行回送操作,以用於與同步裝置DN提供的 比較。另外,處理器MP可產生用於要求同步裝置D1基於參考同步信號 同步於管理裝置MM的參考控制信號 ,並透過管理裝置MM的單端至差動橋接器將 、 、 及參考控制信號 發送至網路輸出介面OM。相應地,網路輸出介面OM即可將 、 、 及參考控制信號 發送至同步裝置D1。 Please refer to FIG. 9A, which is a functional block diagram of a management device according to an embodiment of the present invention. As shown in FIG. 9A, the management device MM may include a processing module PM, a network output interface Oi, and a single-ended to differential bridge. In this embodiment, the processing module PM can be used to provide a reference synchronization signal And reference control signal . Specifically, the processing module PM can include a processor MP and a digital phase-locked loop ML. The processor MP can decode the PTP packet P1 after receiving the PTP packet P1 from the GM (not shown) through a 10G interface. Get corresponding to , , . After that, the processor MP can control the digital phase-locked loop ML pair Perform loopback operation for use with the synchronization device DN provided Compare. In addition, the processor MP can generate a reference synchronization signal for requesting the synchronization device D1 Reference control signal synchronized with the management device MM , And through the single-ended-to-differential bridge of the management device MM , , And reference control signal Send to the network output interface OM. Correspondingly, the network output interface OM can convert , , And reference control signal Send to sync device D1.
在圖9A中,處理器MP與所示單端至差動橋接器之間的信號傳遞方式,以及單端至差動橋接器的運作方式可參照圖8中處理器Pi與單端至差動橋接器SDi的相關說明,其細節於此不另贅述。In FIG. 9A, the signal transmission mode between the processor MP and the single-ended-to-differential bridge shown in FIG. The details of the related description of the bridge SDi will not be repeated here.
請參照圖9B,其是依據圖9A繪示的管理裝置的功能方塊圖。在本實施例中,管理裝置MM可更包括網路輸入介面IM,其可用於接收來自同步裝置DN的 、 、 及控制信號 ,並相應地轉傳至處理模組PM。 Please refer to FIG. 9B, which is a functional block diagram of the management device shown in FIG. 9A. In this embodiment, the management device MM may further include a network input interface IM, which can be used to receive the information from the synchronization device DN , , And control signal , And forward it to the processing module PM accordingly.
另外,本實施例的處理模組PM可另包括所示的差動至單端橋接器,而其運作的方式可參照圖8中差動至單端橋接器DSi的相關說明,於此不另贅述。In addition, the processing module PM of this embodiment may further include the differential to single-ended bridge shown, and the operation mode can refer to the related description of the differential to single-ended bridge DSi in FIG. Go into details.
綜上所述,透過本新型提出的分散式同步系統及方法,可在管理裝置不具備IEEE 1588及SyncE功能的情況下,以較低的成本實現同步裝置之間的同步。並且,相較於習知的二層式DDC架構,本案所呈現的單層式DDC架構可達到較高的同步精確度。In summary, through the distributed synchronization system and method proposed by the present invention, synchronization between synchronization devices can be achieved at a lower cost when the management device does not have IEEE 1588 and SyncE functions. Moreover, compared with the conventional two-layer DDC architecture, the single-layer DDC architecture presented in this case can achieve higher synchronization accuracy.
並且,由於本案的管理裝置及同步裝置係透過RJ45輸出/輸入介面傳送/接收對應的控制信號、1PPS信號、日時間資訊及頻率信號,而非透過資料平面中具較高傳輸能力的介面進行傳送,因此可讓管理裝置及同步裝置的硬體資源得到較合理的運用。Moreover, because the management device and synchronization device in this case transmit/receive corresponding control signals, 1PPS signals, time of day information and frequency signals through the RJ45 output/input interface, instead of transmitting through the interface with higher transmission capability in the data plane Therefore, the hardware resources of the management device and the synchronization device can be used more reasonably.
另外,為讓本案的RJ45輸出/輸入介面可用於傳送/接收控制信號及頻率信號,本案的RJ45輸出/輸入介面中的多個腳位可具有異於習知作法的定義方式。In addition, in order to allow the RJ45 output/input interface of this project to be used to transmit/receive control signals and frequency signals, the multiple pins in the RJ45 output/input interface of this project may have a definition method different from the conventional practice.
雖然本新型已以實施例揭露如上,然其並非用以限定本新型,任何所屬技術領域中具有通常知識者,在不脫離本新型的精神和範圍內,當可作些許的更動與潤飾,故本新型的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The scope of protection of this new model shall be subject to the scope of the attached patent application.
110:傳統框架交換器
111, 121, CPi:CP
112, 122:LC
120, 200, 600, 610:DDC系統
201:管理交換器
202:GM
300:分散式同步系統
710, 720:RJ45介面腳位表
MM:管理裝置
D1~DN:同步裝置
IM, I1~IN:網路輸入介面
OM, O1~ON:網路輸出介面
P1:PTP封包
~
:同步信號
~
:控制信號
~
:1PPS信號
~
:頻率信號
~
:日時間資訊
DPi:資料平面
Eth:10G介面
SNi:同步模組
Pi, MP:處理器
LLi, ML:數位鎖相迴路
DSi:差動至單端橋接器
SDi:單端至差動橋接器
DSi1, SDi1:RS422埠
DSi2, SDi2:UART
PM:處理模組
S411, S412, S421~S423, S431~S433:步驟
110:
圖1A是傳統框架交換器的示意圖。 圖1B是分散式分解框架系統的示意圖。 圖2是設置有管理交換器的DDC系統的示意圖。 圖3是依據本新型之一實施例繪示的分散式同步系統示意圖。 圖4A是依據本新型第一實施例繪示的分散式同步方法流程圖。 圖4B是依據本新型第二實施例繪示的分散式同步方法流程圖。 圖4C是依據本新型第三實施例繪示的分散式同步方法流程圖。 圖4D是依據本新型第四實施例繪示的分散式同步方法流程圖。 圖5是依據本新型之一實施例繪示的同步裝置的資料平面及控制平面的示意圖。 圖6是依據圖2及圖3繪示的技術比較圖。 圖7是依據本新型之一實施例繪示的習知RJ45介面腳位表與本案RJ45介面腳位表的比較圖。 圖8是依據本新型之一實施例繪示的同步裝置的功能方塊圖。 圖9A是依據本新型之一實施例繪示的管理裝置的功能方塊圖。 圖9B是依據圖9A繪示的管理裝置的功能方塊圖。 Figure 1A is a schematic diagram of a conventional frame exchanger. Figure 1B is a schematic diagram of a decentralized decomposition frame system. Figure 2 is a schematic diagram of a DDC system provided with a management switch. Fig. 3 is a schematic diagram of a distributed synchronization system according to an embodiment of the present invention. 4A is a flowchart of a distributed synchronization method according to the first embodiment of the present invention. Fig. 4B is a flow chart of the distributed synchronization method according to the second embodiment of the present invention. Fig. 4C is a flow chart of the distributed synchronization method according to the third embodiment of the present invention. Fig. 4D is a flowchart of a distributed synchronization method according to a fourth embodiment of the present invention. FIG. 5 is a schematic diagram of the data plane and the control plane of the synchronization device according to an embodiment of the present invention. FIG. 6 is a comparison diagram based on the techniques shown in FIG. 2 and FIG. 3. FIG. 7 is a comparison diagram between the conventional RJ45 interface pin table and the RJ45 interface pin table of the present invention according to an embodiment of the present invention. FIG. 8 is a functional block diagram of a synchronization device according to an embodiment of the present invention. Fig. 9A is a functional block diagram of a management device according to an embodiment of the present invention. FIG. 9B is a functional block diagram of the management device shown in FIG. 9A.
200:DDC系統 200: DDC system
201:管理交換器 201: Management Switch
202:GM 202: GM
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110207391U TWM618640U (en) | 2020-07-15 | 2020-07-15 | Distributed synchronization system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110207391U TWM618640U (en) | 2020-07-15 | 2020-07-15 | Distributed synchronization system |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM618640U true TWM618640U (en) | 2021-10-21 |
Family
ID=79603828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110207391U TWM618640U (en) | 2020-07-15 | 2020-07-15 | Distributed synchronization system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM618640U (en) |
-
2020
- 2020-07-15 TW TW110207391U patent/TWM618640U/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5811794B2 (en) | Communication device | |
CN101951312B (en) | E1 link-based bidirectional time-frequency synchronous transmission method and master-slave device | |
CN102104476B (en) | Clock synchronization device and method | |
US11588568B2 (en) | Packet processing method and network device | |
US8693506B2 (en) | Transparent clock adaptor for a network device | |
EP2130316B1 (en) | Synchronous network device | |
WO2009071029A1 (en) | Synchronization system and method of time information and related equipment | |
CN102299788A (en) | Method and device for controlling automatic transmission of IEEE1558 (Institute of Electrical and Electronic Engineers 1558) protocol message | |
CN101977104A (en) | IEEE1588 based accurate clock synchronization protocol system and synchronization method thereof | |
EP2764644B1 (en) | Egress clock domain synchronization to multiple ingress clocks | |
WO2011085585A1 (en) | Method and device for time synchronization | |
CN105027489B (en) | Precision clock protocol synchronization method and node | |
CN102013931A (en) | Time synchronization method and system, salve timing device and main timing device | |
WO2022052609A1 (en) | Time delay compensation method, apparatus and device, and computer-readable storage medium | |
US20110305248A1 (en) | Clock selection for synchronous ethernet | |
WO2011017867A1 (en) | Method and system for bearing time synchronization protocol in optical transport network | |
WO2008098450A1 (en) | A method, a system and a device for implementing time synchronization in communication network | |
TWM605565U (en) | Distributed synchronization system | |
TWM612938U (en) | Distributed synchronization system | |
CN113424466A (en) | Method and device for clock synchronization | |
TWM618640U (en) | Distributed synchronization system | |
TWI772843B (en) | Distributed synchronization system | |
TWI769486B (en) | Distributed synchronization system | |
WO2022237238A1 (en) | Packet transmission method and apparatus, device, and storage medium | |
US20240259151A1 (en) | Distributed synchronization system |